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4.9. Sobolev setup for transversality theorem (continued).
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where f; is V f calculated for g: g(f,,-) = df.
Lemma. F is a well-defined section.

Proof. The weak derivative 0, : W12 — L? is well-defined so only f; may be an
issue. Since f; is CF, it is L? on compacts, so we just need to check that fo(u) is
L? near the ends. Locally near a critical point p = (z = 0):

|fo(x)] < c-|z| by Taylor, since f, (p) = 0.
Hence |f; (u)| < ¢ |ul, so f}(u) is L? near the ends since u is L*. O

Lemma. F is CF.

Proof. Differentiating in the g direction: only f; contributes, and
so locally f, = g='-df. This is linear in g~', hence smooth in g~'.
inversion is smooth on non-singular matrices. So f; is smooth in g.

Differentiating in the direction 7 € Wy *(u*TM) = T,W, > (u* D.TM) (where u
is smooth):

Finally,

D,F -7 = Vi|i=0(0sw — fy(w)) (see Hwk 12)
where w: R x [0,1] = M w(s,t) = exp, ) (t(s))

w(s,t)

v(s)

v(s)
= (V0w — Vi fy(w))i=o (using V torsion-free (see Hwk 12))
= V- (V{;‘fé)v

Note: Vg = 05 + A(9sv)- is linear in v so C* in v, (Vzf,), = (d(f;) e +A(e)- f))V:

the first term is C*~1, A(e) is C>, f] is C*, so (V5f}), is' CF~1 in . O
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IThe key point is that we never differentiate v in s.
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4.10. Transversality Theorem.
Lemma. F(u,g) =0 = u € C* (motto: u is “as smooth as” g)

Proof. The weak derivative ,u = f}(u) is continuous since u is cts.* Recall that if

the weak derivative is cts then it equals the usual derivative. Now bootstrap.®? [

Conditions of Thm 2.5
YV F(u,g)=0:
i) Dy, F' = Tru,g) (U X G) = E, 4) surjective;
ii) DyFy : T,U — By q) Fredholm of index < k.

Claim 1. (ii) holds and index = |p| — |¢| (so pick k > |p| — |q])
Claim 2. (i) holds

We will prove the Claims later. First we mention the consequence:

Transversality Theorem
For generic C*-metrics g,

W*(p,q) = {C*-flowlines u of — V£ from p to ¢} = Fgfl(O)
is a C*-submanifold of U with
dim W¥(p, q) = index Fy = [p| — |q|
and tangent space
T, W*(p,q) = ker(D, F, : T,U ¥ E,)
Proof. Theorem 2.5 and Claims 1 & 2 above. O

Cor. Can take k = 0o

Proof. Pick C* metric g satisfying m,

= 3C> ¢’ close to g

= ¢’ satisfies M since transversality is an open condition (regularity is open).
Hwk 13: C*°-metrics g satisfying rh are generic. O

for a generic smooth metric,
= W(p,q) = W>=(p,q) is a smooth mfd of dim = |p| — |¢]
M(p,q) = W(p,q)/R is a smooth mfd of dim = |p| — |¢| — 1

Rmk. Hwk 13 proves that the quotient M(p, q) really is a smooth mfd.

Rmk. Hwk 19 proves that the transversality condition for W(p,q), that is the sur-
Jjectivity of the linearization D, Fy at zeros of Fy, is equivalent to the condition that g

is Morse-Smale for f. So‘ “generic g” is equivalent to saying “g is Morse-Smale”

2Non-ezaminable: this is an example of the elliptic regularity theorem: 0s is an elliptic operator
of order 1, and so weak solutions of dsu = 7fl/] (u) are as regular as fé plus order, so u is CF+1.
3We proved u is C1, so dsu = fl/](u) is C'1 (since f; is C% and u is C1) so u is C? etc.
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4.11. Hilbert spaces tricks. L: A — B bounded linear, A Banach, B Hilbert.
Lemma 1 Ifim(L) is closed, then

coker L = (im L)* = {b € B : (La,b) = 0 Ya € A}.
Proof. In general, if V C B closed subspace, then B =V @& V<L so V- = B/V. O
Warning. C> C L? dense (non-closed) subspace: (C>°)+ = 0, but C> # L2.
Def. Define the adjoint L* : B — A of L : A — B, where A, B Hilbert, by

(La,b)p = {(a, L*b) 4 Va,b

(easy exercise: 3 unique bounded linear such L*).
Lemma 2 (im L)* = ker L*.
Proof. b L im L < (La,b) =0 = (a, L*b) Ya < L*b = 0. O

L: A=A x A, — B, A, Hilbert, A; Banach, B Hilbert.
L(al, ag) = D(al) + P((IQ)
D: Ay — B, P: Ay — B bounded linear (think of P as “perturbation”).
Lemma 3 im L closed = coker L C ker(D* : B — A;) N (im P)*.
Proof. im D C im L
by 2 by 1
= ker D* 2 (imD)* D (imL)* = coker L
= coker L 1 im L D im P. O
Lemma 4 D Fredholm = im L closed.

Proof. B=im D @& C, C = complement (finite dimensional).
imL=imD® (CNimL) (equality holds since imD C im L)
Finally: im D closed, and C'Nim L is finite dimensional hence closed. ]

4.12. Claim 1 = Claim 2. We will apply Lemma 3 to:

\—\/\/ N
L D P

Ay = W (W' TM) = W (R,R™)  (a,a')10 = [, garla,a’) ds+ [, grr(9sa, dsa’) ds
Ay = T,G
B=E, = L’(TM) = 2R,R™)  (b,V)52 = [, gar(b, V') ds.

Where D is Fredholm by Claim 1.

Rmk. F(u,g) = 0 so u is C**1, and we are using the charts defined by trivi-
alizing TM over u since we only need C*-Banach mfd structures (F is only C*
anyway). If you want to use the C°°-Banach space structures, then trivialize over
a smooth u, and study F(v,g) = 0 (where v is an abbreviation for exp, s v(s),

v E Wol’Q(u*DETM)) so replace u’s by v’s except in the defns of Ay, B.
Cor. coker D, o F C ker(D,Fy)* N (im P)*.
Claim 2 D, 4 F is surjective.

Proof. If not, then 3b # 0 € E,:
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(1) (DuFy)*b =0
(2) (Dfg-g,b)r> =0 Vg.
Key trick 1: (1) = b continuous. (Proof in next Lecture)
Key trick 2: b(sg) # 0 for some sg € R. Claim: it suffices to define § at u(so) with

9 ((Dfg)uis) - (Gu(s):0(s)) >0 ats=s9  (¥)
Proof of Claim:
pick any C*-extension of (§)y(s,) to g defined for z € M close to u(so)
= by continuity (%) holds near sg
globalize §: multiply ¢ by a bump function (= 0 away from u(sg), = 1 at u(sg))
= (x) holds with “>” for all s, and with “>” near sg
= (2) fails. Contradiction. [

Construction of g as in the Claim:
Locally f, = g lof, so

Dfy -G = (Otli=o(g +tg) ") Of.

Now use the usual series trick:

g+t~ = [g-A+tg g™
(1+tg~tg)~t-g7! (careful with order of matrices!)
(1 —tg=tg+ordert?) . g=!

Hence | Df}-G=—g'-g-g7"-0f

Now df # 0 since* u(sg) ¢ Crit(f).

1 1

Moreover, g~ - §- g~ ' is an arbitrary® symmetric matrix at s by letting § vary:
indeed to get the symmetric matrix S take § = ¢gSg.

= Df; g is arbitrary at so. So in our case, we pick g so that D f;-g = b(so). O

duis a —V f trajectory from p to q¢ # p, so it is non-constant: the unique —V f trajectory

passing through a critical point is the constant trajectory at the critical point.
5G € Sym?2(T* M) is an open subset, so TyG = TySym?(T*M).



