LECTURE 13.

PART III, MORSE HOMOLOGY, 2011 HTTP://MORSEHOMOLOGY.WIKISPACES.COM

4.9. Sobolev setup for transversality theorem (continued).

$$\bigvee_{U \times M} F(u,g) = \partial_s u + f'_g(u)$$

where f'_q is ∇f calculated for g: $g(f'_q, \cdot) = df$.

Lemma. F is a well-defined section.

Proof. The weak derivative $\partial_s: W^{1,2} \to L^2$ is well-defined so only f'_g may be an issue. Since f'_g is C^k , it is L^2 on compacts, so we just need to check that $f'_g(u)$ is L^2 near the ends. Locally near a critical point p = (x = 0):

$$|f'_q(x)| \le c \cdot |x|$$
 by Taylor, since $f'_q(p) = 0$.

Hence $|f_g'(u)| \le c \cdot |u|$, so $f_g'(u)$ is L^2 near the ends since u is L^2 .

Lemma. F is C^k .

Proof. Differentiating in the g direction: only f'_q contributes, and

$$df = g(f'_g, \cdot)$$

so locally $f_g'=g^{-1}\cdot\partial f$. This is linear in g^{-1} , hence smooth in g^{-1} . Finally, inversion is smooth on non-singular matrices. So f_g' is smooth in g.

Differentiating in the direction $\vec{v} \in W_0^{1,2}(u^*TM) \equiv T_v W_0^{1,2}(u^*D_\varepsilon TM)$ (where u is smooth):

$$D_{v}F \cdot \vec{v} = \nabla_{t}|_{t=0}(\partial_{s}w - f'_{g}(w)) \qquad \text{(see Hwk 12)}$$

$$\text{where } w : \mathbb{R} \times [0,1] \to M \qquad w(s,t) = \exp_{v(s)}(t\vec{v}(s))$$

$$v(s) \qquad t = 0$$

$$= (\nabla_{s}\partial_{t}w - \nabla_{t}f'_{g}(w))_{t=0} \qquad \text{(using ∇ torsion-free (see Hwk 12))}$$

$$= \nabla_{s}\vec{v} - (\nabla_{\vec{v}}f'_{g})_{v}$$

Note: $\nabla_s = \partial_s + A(\partial_s v)$ · is linear in v so C^{∞} in v, $(\nabla_{\vec{v}} f'_g)_v = (d(f'_g) \bullet + A(\bullet) \cdot f'_g)V$: the first term is C^{k-1} , $A(\bullet)$ is C^{∞} , f'_g is C^k , so $(\nabla_{\vec{v}} f'_g)_v$ is C^{k-1} in v.

Date: May 3, 2011, © Alexander F. Ritter, Trinity College, Cambridge University.

1

 $^{^{1}}$ The key point is that we never differentiate v in s.

4.10. Transversality Theorem.

Lemma.
$$F(u,g) = 0 \Rightarrow u \in C^{k+1}$$
 (motto: u is "as smooth as" g)

Proof. The weak derivative $\partial_s u = f'_g(u)$ is continuous since u is cts.² Recall that if the weak derivative is cts then it equals the usual derivative. Now bootstrap.³

Conditions of Thm 2.5

$$\forall F(u,g) = 0$$
:

- i) $D_{(u,g)}F:T_{(u,g)}(U\times G)\to E_{(u,g)}$ surjective;
- ii) $D_u F_g : T_u U \to E_{(u,g)}$ Fredholm of index < k.

Claim 1. (ii) holds and index = |p| - |q| (so pick k > |p| - |q|)

Claim 2. (i) holds

We will prove the Claims later. First we mention the consequence:

Transversality Theorem

For generic C^k -metrics q,

$$W^k(p,q) = \{C^k\text{-flowlines } u \text{ of } -\nabla f \text{ from } p \text{ to } q\} = F_g^{-1}(0)$$

is a C^k -submanifold of U with

$$\dim W^k(p,q) = \operatorname{index} F_q = |p| - |q|$$

and tangent space

$$T_u W^k(p,q) = \ker(D_u F_q : T_u U \stackrel{\text{surj}}{\to} E_u)$$

Proof. Theorem 2.5 and Claims 1 & 2 above.

Cor. Can take $k = \infty$

Proof. Pick C^k metric g satisfying \pitchfork ,

$$\Rightarrow \exists C^{\infty} \ g' \ \text{close to} \ g$$

 \Rightarrow g' satisfies \pitchfork since transversality is an open condition (regularity is open).

Hwk 13: C^{∞} -metrics g satisfying \pitchfork are generic.

for a generic smooth metric,
$$W(p,q) = W^{\infty}(p,q) \text{ is a smooth mfd of dim} = |p| - |q|$$

$$\mathcal{M}(p,q) = W(p,q)/\mathbb{R} \text{ is a smooth mfd of dim} = |p| - |q| - 1$$

Rmk. Hwk 13 proves that the quotient $\mathcal{M}(p,q)$ really is a smooth mfd.

Rmk. Hwk 19 proves that the transversality condition for W(p,q), that is the surjectivity of the linearization D_uF_g at zeros of F_g , is equivalent to the condition that g is Morse-Smale for f. So "generic g" is equivalent to saying "g is Morse-Smale"

²Non-examinable: this is an example of the elliptic regularity theorem: ∂_s is an elliptic operator of order 1, and so weak solutions of $\partial_s u = -f'_g(u)$ are as regular as f'_g plus order, so u is C^{k+1} .

³We proved u is C^1 , so $\partial_s u = f'_g(u)$ is C^1 (since f'_g is C^k and u is C^1) so u is C^2 etc.

4.11. Hilbert spaces tricks. $L: A \to B$ bounded linear, A Banach, B Hilbert.

Lemma 1 If im(L) is closed, then

$$\operatorname{coker} L \cong (\operatorname{im} L)^{\perp} = \{ b \in B : \langle La, b \rangle = 0 \ \forall a \in A \}.$$

Proof. In general, if $V \subset B$ closed subspace, then $B = V \oplus V^{\perp}$, so $V^{\perp} \cong B/V$. \square

Warning. $C^{\infty} \subset L^2$ dense (non-closed) subspace: $(C^{\infty})^{\perp} = 0$, but $C^{\infty} \neq L^2$.

Def. Define the adjoint $L^*: B \to A$ of $L: A \to B$, where A, B Hilbert, by

$$\langle La, b \rangle_B = \langle a, L^*b \rangle_A \qquad \forall a, b$$

(easy exercise: \exists unique bounded linear such L^*).

Lemma 2 $(\operatorname{im} L)^{\perp} \cong \ker L^*$.

Proof.
$$b \perp \operatorname{im} L \Leftrightarrow \langle La, b \rangle = 0 = \langle a, L^*b \rangle \ \forall a \Leftrightarrow L^*b = 0.$$

 $L: A = A_1 \times A_2 \to B$, A_1 Hilbert, A_2 Banach, B Hilbert.

 $L(a_1, a_2) = D(a_1) + P(a_2)$

 $D: A_1 \to B, P: A_2 \to B$ bounded linear (think of P as "perturbation").

Lemma 3 im L closed \Rightarrow coker $L \subset \ker(D^* : B \to A_1) \cap (\operatorname{im} P)^{\perp}$.

Proof. im
$$D \subset \operatorname{im} L$$

⇒ $\ker D^* \stackrel{\text{by 2}}{\cong} (\operatorname{im} D)^{\perp} \supset (\operatorname{im} L)^{\perp} \stackrel{\text{by 1}}{\cong} \operatorname{coker} L$
⇒ $\operatorname{coker} L \perp \operatorname{im} L \supset \operatorname{im} P$.

Lemma 4 D Fredholm \Rightarrow im L closed.

Proof. $B = \operatorname{im} D \oplus C$, $C = \operatorname{complement}$ (finite dimensional). $\operatorname{im} L = \operatorname{im} D \oplus (C \cap \operatorname{im} L)$ (equality holds since $\operatorname{im} D \subset \operatorname{im} L$) Finally: im D closed, and $C \cap \text{im } L$ is finite dimensional hence closed.

4.12. Claim $1 \Rightarrow$ Claim 2. We will apply Lemma 3 to:

$$\underbrace{(D_{(u,g)}F)\cdot(\vec{u},\vec{g})}_{L} = \underbrace{D_{u}F_{g}\cdot\vec{u} - D_{(u,g)}f'_{g}\cdot\vec{g}}_{P}$$

 $A_1 = W_0^{1,2}(u^*TM) \cong W_0^{1,2}(\mathbb{R}, \mathbb{R}^m) \quad \langle a, a' \rangle_{1,2} = \int_{\mathbb{R}} g_M(a, a') \, ds + \int_{\mathbb{R}} g_M(\partial_s a, \partial_s a') \, ds$ $B = E_u = L^2(u^*TM) \cong L^2(\mathbb{R}, \mathbb{R}^m) \quad \langle b, b' \rangle_{L^2} = \int_{\mathbb{R}} g_M(b, b') \, ds.$

Where D is Fredholm by Claim 1.

Rmk. F(u,g) = 0 so u is C^{k+1} , and we are using the charts defined by trivializing TM over u since we only need C^k -Banach mfd structures (F is only C^k anyway). If you want to use the C^{∞} -Banach space structures, then trivialize over a smooth u, and study F(v,g) = 0 (where v is an abbreviation for $\exp_{u(s)} v(s)$, $v \in W_0^{1,2}(u^*D_{\varepsilon}TM)$ so replace u's by v's except in the defns of A_1, B .

Cor. coker $D_{(u,q)}F \subset \ker(D_uF_q)^* \cap (\operatorname{im} P)^{\perp}$.

Claim 2 $D_{(u,g)}F$ is surjective.

Proof. If not, then $\exists b \neq 0 \in E_u$:

- $(1) (D_u F_g)^* b = 0$
- (2) $\langle Df_q' \cdot \vec{g}, b \rangle_{L^2} = 0 \ \forall \vec{g}.$

Key trick 1: $(1) \Rightarrow b$ continuous. (Proof in next Lecture)

Key trick 2: $b(s_0) \neq 0$ for some $s_0 \in \mathbb{R}$. Claim: it suffices to define \vec{g} at $u(s_0)$ with

$$g_M((Df_q')_{u(s)} \cdot (\vec{g})_{u(s)}, b(s)) > 0$$
 at $s = s_0$ (*)

Proof of Claim:

pick any C^k -extension of $(\vec{g})_{u(s_0)}$ to \vec{g}_x defined for $x \in M$ close to $u(s_0)$

 \Rightarrow by continuity (*) holds near s_0

globalize \vec{g} : multiply \vec{g} by a bump function (= 0 away from $u(s_0)$, = 1 at $u(s_0)$)

- \Rightarrow (*) holds with " \geq " for all s, and with ">" near s_0
- \Rightarrow (2) fails. Contradiction.

Construction of \vec{g} as in the Claim:

Locally $f'_g = g^{-1}\partial f$, so

$$Df'_g \cdot \vec{g} = (\partial_t|_{t=0}(g+t\vec{g})^{-1}) \partial f.$$

Now use the usual series trick:

$$\begin{array}{rcl} (g+t\vec{g})^{-1} & = & [g\cdot(1+tg^{-1}\vec{g})]^{-1} \\ & & (1+tg^{-1}\vec{g})^{-1}\cdot g^{-1} \quad \text{(careful with order of matrices!)} \\ & & & (1-tg^{-1}\vec{g}+\operatorname{order} t^2)\cdot g^{-1} \end{array}$$

Hence
$$Df'_g \cdot \vec{g} = -g^{-1} \cdot \vec{g} \cdot g^{-1} \cdot \partial f$$

Now $\partial f \neq 0$ since $u(s_0) \notin \text{Crit}(f)$.

Moreover, $g^{-1} \cdot \vec{g} \cdot g^{-1}$ is an arbitrary⁵ symmetric matrix at s_0 by letting \vec{g} vary: indeed to get the symmetric matrix S take $\vec{g} = gSg$.

 $\Rightarrow Df'_g \cdot \vec{g}$ is arbitrary at s_0 . So in our case, we pick \vec{g} so that $Df'_g \cdot \vec{g} = b(s_0)$. \square

 $^{^4}u$ is a $-\nabla f$ trajectory from p to $q \neq p$, so it is non-constant: the unique $-\nabla f$ trajectory passing through a critical point is the constant trajectory at the critical point.

 $^{{}^5}G \subset \operatorname{Sym}^2(T^*M)$ is an open subset, so $T_qG = T_q\operatorname{Sym}^2(T^*M)$.