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4.9. Sobolev setup for transversality theorem (continued).
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F (u, g) = ∂su+ f ′

g(u)

U ×M

where f ′
g is ∇f calculated for g: g(f ′

g, ·) = df .

Lemma. F is a well-defined section.

Proof. The weak derivative ∂s : W 1,2 → L2 is well-defined so only f ′
g may be an

issue. Since f ′
g is Ck, it is L2 on compacts, so we just need to check that f ′

g(u) is

L2 near the ends. Locally near a critical point p = (x = 0):

|f ′

g(x)| ≤ c · |x| by Taylor, since f ′

g(p) = 0.

Hence |f ′
g(u)| ≤ c · |u|, so f ′

g(u) is L
2 near the ends since u is L2. �

Lemma. F is Ck.

Proof. Differentiating in the g direction: only f ′
g contributes, and

df = g(f ′

g, ·)

so locally f ′
g = g−1 · ∂f . This is linear in g−1, hence smooth in g−1. Finally,

inversion is smooth on non-singular matrices. So f ′
g is smooth in g.

Differentiating in the direction ~v ∈ W 1,2
0 (u∗TM) ≡ TvW

1,2
0 (u∗DεTM) (where u

is smooth):

DvF · ~v = ∇t|t=0(∂sw − f ′
g(w)) (see Hwk 12)

where w : R× [0, 1] → M w(s, t) = expv(s)(t~v(s))

t = 0v(s)

w(s, t)

~v(s)

= (∇s∂tw −∇tf
′
g(w))t=0 (using ∇ torsion-free (see Hwk 12))

= ∇s~v − (∇~vf
′
g)v

Note: ∇s = ∂s+A(∂sv)· is linear in v so C∞ in v, (∇~vf
′
g)v = (d(f ′

g)•+A(•) ·f ′
g)V :

the first term is Ck−1, A(•) is C∞, f ′
g is Ck, so (∇~vf

′
g)v is1 Ck−1 in v. �
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1The key point is that we never differentiate v in s.
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4.10. Transversality Theorem.

Lemma. F (u, g) = 0 ⇒ u ∈ Ck+1 (motto: u is “as smooth as” g)

Proof. The weak derivative ∂su = f ′
g(u) is continuous since u is cts.2 Recall that if

the weak derivative is cts then it equals the usual derivative. Now bootstrap.3 �

Conditions of Thm 2.5
∀F (u, g) = 0:

i) D(u,g)F : T(u,g)(U ×G) → E(u,g) surjective;

ii) DuFg : TuU → E(u,g) Fredholm of index < k.

Claim 1. (ii) holds and index = |p| − |q| (so pick k > |p| − |q|)
Claim 2. (i) holds

We will prove the Claims later. First we mention the consequence:

Transversality Theorem
For generic Ck-metrics g,

W k(p, q) = {Ck-flowlines u of −∇f from p to q} = F−1
g (0)

is a Ck-submanifold of U with

dimW k(p, q) = indexFg = |p| − |q|

and tangent space

TuW
k(p, q) = ker(DuFg : TuU

surj
→ Eu)

Proof. Theorem 2.5 and Claims 1 & 2 above. �

Cor. Can take k = ∞

Proof. Pick Ck metric g satisfying ⋔,
⇒ ∃C∞ g′ close to g
⇒ g′ satisfies ⋔ since transversality is an open condition (regularity is open).
Hwk 13: C∞-metrics g satisfying ⋔ are generic. �

⇒
for a generic smooth metric,

W (p, q) = W∞(p, q) is a smooth mfd of dim = |p| − |q|
M(p, q) = W (p, q)/R is a smooth mfd of dim = |p| − |q| − 1

Rmk. Hwk 13 proves that the quotient M(p, q) really is a smooth mfd.

Rmk. Hwk 19 proves that the transversality condition for W (p, q), that is the sur-
jectivity of the linearization DuFg at zeros of Fg, is equivalent to the condition that g

is Morse-Smale for f . So “generic g” is equivalent to saying “g is Morse-Smale”

2
Non-examinable: this is an example of the elliptic regularity theorem: ∂s is an elliptic operator

of order 1, and so weak solutions of ∂su = −f ′

g(u) are as regular as f ′

g plus order, so u is Ck+1.
3We proved u is C1, so ∂su = f ′

g(u) is C1 (since f ′

g is Ck and u is C1) so u is C2 etc.
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4.11. Hilbert spaces tricks. L : A → B bounded linear, A Banach, B Hilbert.

Lemma 1 If im(L) is closed, then

cokerL ∼= (imL)⊥ = {b ∈ B : 〈La, b〉 = 0 ∀a ∈ A}.

Proof. In general, if V ⊂ B closed subspace, then B = V ⊕V ⊥, so V ⊥ ∼= B/V . �

Warning. C∞ ⊂ L2 dense (non-closed) subspace: (C∞)⊥ = 0, but C∞ 6= L2.

Def. Define the adjoint L∗ : B → A of L : A → B, where A,B Hilbert, by

〈La, b〉B = 〈a, L∗b〉A ∀a, b

(easy exercise: ∃ unique bounded linear such L∗).

Lemma 2 (imL)⊥ ∼= kerL∗.

Proof. b ⊥ imL ⇔ 〈La, b〉 = 0 = 〈a, L∗b〉 ∀a ⇔ L∗b = 0. �

L : A = A1 ×A2 → B, A1 Hilbert, A2 Banach, B Hilbert.
L(a1, a2) = D(a1) + P (a2)
D : A1 → B, P : A2 → B bounded linear (think of P as “perturbation”).

Lemma 3 imL closed ⇒ cokerL ⊂ ker(D∗ : B → A1) ∩ (imP )⊥.

Proof. imD ⊂ imL

⇒ kerD∗
by 2
∼= (imD)⊥ ⊃ (imL)⊥

by 1
∼= cokerL

⇒ cokerL ⊥ imL ⊃ imP. �

Lemma 4 D Fredholm ⇒ imL closed.

Proof. B = imD ⊕ C, C = complement (finite dimensional).
imL = imD ⊕ (C ∩ imL) (equality holds since imD ⊂ imL)
Finally: imD closed, and C ∩ imL is finite dimensional hence closed. �

4.12. Claim 1 ⇒ Claim 2. We will apply Lemma 3 to:

=

D P

DuFg · ~u−D(u,g)f
′
g · ~g(D(u,g)F ) · (~u,~g)

L

A1 = W 1,2
0 (u∗TM) ∼= W 1,2

0 (R,Rm) 〈a, a′〉1,2 =
∫
R
gM (a, a′) ds+

∫
R
gM (∂sa, ∂sa

′) ds
A2 = TgG
B = Eu = L2(u∗TM) ∼= L2(R,Rm) 〈b, b′〉L2 =

∫
R
gM (b, b′) ds.

Where D is Fredholm by Claim 1.

Rmk. F (u, g) = 0 so u is Ck+1, and we are using the charts defined by trivi-
alizing TM over u since we only need Ck-Banach mfd structures (F is only Ck

anyway). If you want to use the C∞-Banach space structures, then trivialize over
a smooth u, and study F (v, g) = 0 (where v is an abbreviation for expu(s) v(s),

v ∈ W 1,2
0 (u∗DεTM)) so replace u’s by v’s except in the defns of A1, B.

Cor. cokerD(u,g)F ⊂ ker(DuFg)
∗ ∩ (imP )⊥.

Claim 2 D(u,g)F is surjective.

Proof. If not, then ∃b 6= 0 ∈ Eu:
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(1) (DuFg)
∗b = 0

(2) 〈Df ′
g · ~g, b〉L2 = 0 ∀~g.

Key trick 1: (1) ⇒ b continuous. (Proof in next Lecture)
Key trick 2: b(s0) 6= 0 for some s0 ∈ R. Claim: it suffices to define ~g at u(s0) with

gM ((Df ′

g)u(s) · (~g)u(s), b(s)) > 0 at s = s0 (∗)

Proof of Claim:
pick any Ck-extension of (~g)u(s0) to ~gx defined for x ∈ M close to u(s0)

⇒ by continuity (∗) holds near s0
globalize ~g: multiply ~g by a bump function (= 0 away from u(s0), = 1 at u(s0))

⇒ (∗) holds with “≥” for all s, and with “>” near s0
⇒ (2) fails. Contradiction. �

Construction of ~g as in the Claim:
Locally f ′

g = g−1∂f , so

Df ′

g · ~g = (∂t|t=0(g + t~g)−1) ∂f.

Now use the usual series trick:

(g + t~g)−1 = [g · (1 + tg−1~g)]−1

(1 + tg−1~g)−1 · g−1 (careful with order of matrices!)
(1 − tg−1~g + order t2) · g−1

Hence Df ′
g · ~g = −g−1 · ~g · g−1 · ∂f

Now ∂f 6= 0 since4 u(s0) /∈ Crit(f).

Moreover, g−1 · ~g · g−1 is an arbitrary5 symmetric matrix at s0 by letting ~g vary:
indeed to get the symmetric matrix S take ~g = gSg.

⇒ Df ′
g ·~g is arbitrary at s0. So in our case, we pick ~g so that Df ′

g ·~g = b(s0). �

4u is a −∇f trajectory from p to q 6= p, so it is non-constant: the unique −∇f trajectory
passing through a critical point is the constant trajectory at the critical point.

5G ⊂ Sym2(T ∗M) is an open subset, so TgG = TgSym2(T ∗M).


