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6.3. Invariance Theorem. Let M be a closed mfd.

Thm. MH∗(M) does not depend on the auxiliary parameters you chose: given
Morse f0, f1 : M → R and generic metrics g0, g1, there is an isomorphism

[ϕ10] : MH∗(f0, g0)
∼=−→ MH∗(f1, g1)

and these isomorphisms satisfy

(1) [ϕ21] ◦ [ϕ10] = [ϕ20] (∀fi, gi, i = 0, 1, 2)
(2) [ϕ00] = id (∀f0, g0)

Outline

(1) Construct a continuation map

ϕ : MC−
∗ → MC+

∗ (MC±
∗ = MC∗(f

±, g±), f± Morse, g± generic)

defined on generators as follows (then extend linearly):

ϕ(p−) =
∑

dimC(p−,q+)=0

#C(p−, q+) · q+

which counts the moduli space of continuation solutions

C(p−, q+) = {v : R → M : ∂sv = −∇sfs(v),
v(s) → p−, q+ as s → −∞,+∞}

where p− ∈ Crit(f−), q+ ∈ Crit(f+), gs(∇sfs, ·) = dfs. This moduli space
depends on a choice of smooth homotopy fs, gs,

s 7→ (fs : M → R), s 7→ gs

where the functions fs need not be Morse and the metrics gs need not be
Morse-Smale for fs. The key requirement1 is that for some S:

fs =

{

f− for s ≤ −S
f+ for s ≥ S

gs =

{

g− for s ≤ −S
g+ for s ≥ S

(∗)

Rmk. Transversality for C(p−, q+) is achieved for generic paths gs.

Rmk. Note that we do not2 quotient C(p−, q+) by an R-action by shifting
s, unlike what we did for M(p, q) = W (p, q)/R.

(2) ϕ = identity for the constant data fs = f , gs = g+ = g−.

Date: May 3, 2011, ©c Alexander F. Ritter, Trinity College, Cambridge University.
1this is crucial for the energy estimate, later.
2indeed, cannot: ∇sfs is not invariant under shifting s 7→ s+ constant.
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(3) ϕ is a chain map:

ϕ ◦ ∂− = ∂+ ◦ ϕ (∂± : MC±
∗ → MC±

∗−1)

hence we get a map on homology:

[ϕ] : MH−
∗ → MH+

∗ .

(4) [ϕ] does not depend on fs, gs

Consider a homotopy (fλ
s , g

λ
s )0≤λ≤1 from f0

s , g
0
s to f1

s , g
1
s , where we assume

(∗) also for fλ
s , g

λ
s . Denote ϕ0, ϕ1 the continuations for f0

s , g
0
s and f1

s , g
1
s .

Claim ϕ0, ϕ1 are chain homotopic:

∃ K : MC−
∗ → MC+

∗+1

ϕ0 − ϕ1 = K ◦ ∂− + ∂+ ◦K

hence3 [ϕ0]− [ϕ1] = I. X
(5) Suppose f10

s , g10s is a homotopy from f0, g0 to f1, g1, and f21
s , g21s is a

homotopy from f1, g1 to f2, g2. Glue4 the (reparametrized) homotopies:

f0, g0 f10
s+2S

, g10
s+2S

−S +S

f1, g1 f21
s−2S

, g21
s−2S

s

f2, g2

second hpy (shifted)first hpy (shifted)

Claim. For S ≫ 0, the ϕ obtained for this glued homotopy equals the
composite ϕ21 ◦ ϕ10 of the continuation maps for the two homotopies.

(6) Consequences of these properties:

(4) and (5) ⇒ [ϕ21] ◦ [ϕ10] = [ϕ20] (independently of choices of hpies) X

(2) and (4) ⇒ [ϕ00] = identity (independently of choice of hpy) X

⇒ [ϕ01] ◦ [ϕ10] = [ϕ00] = identity so [ϕ10] injective
⇒ [ϕ10] ◦ [ϕ01] = [ϕ11] = identity so [ϕ10] surjective
⇒ [ϕ10] isomorphism
⇒ Theorem

Key ideas in the proofs:

(1) Redo the transversality proof, now using:

G = {Ck-paths of metrics s 7→ gs with gs =

{

g− for s ≤ −S
g+ for s ≥ S

}

F (u, gs) = ∂su−∇sfs(u) (where gs(∇sfs, ·) = dfs)

⇒ Parametric transversality, Fredholm analysis, etc. like we did for W (·, ·)

⇒
C(p−, q+) smooth mfd for generic smooth gs
dim C(p−, q+) = |p| − |q|

In (3) we explain how to compactify C(p−, q+), and it shows that C(p−, q+)
is compact when dim C(p, q) = |p| − |q| = 0. So ϕ is well-defined.

3since ∂− = 0 on ker ∂−, ∂+(K•) = 0 modulo im ∂+.
4for large S these glue correctly.
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(2) For constant data f = fs, g = gs,

C(p, q) = W (p, q).

So since g = g− = g+ is generic, W (p, q) is a smooth mfd, thus so is C(p, q).
Finally we make a dimension argument:

If v ∈ C(p, q) is a solution then v(· + constant) is a solution since ∂sv =
−∇f(v) has ∇f independent of s.
⇒ if v non-constant, then there is a 1-family of solutions v(·+ constant)
⇒ dim C(p, q) ≥ 1 if p 6= q
⇒ ϕ only counts constant solutions C(p, p) = W (p, p) = {constant at p}
⇒ ϕ(p) = p
⇒ ϕ = identity.

Rmk. The key is not to make an s-dependent perturbation of gs = g− =
g+, but rather to perturb s-independently (in fact, since we assume g− = g+

is generic, we don’t need to). This gives transversality for W (p, q) = C(p, q).

(3) Study the breaking of 1-dimensional C(p−, q+), so |p−| − |q+| = 1.
The key claim is that a once-broken continuation solution does not con-

sist of two continuation solutions, but rather consists of one continuation
solution and one f±-trajectory:5

p−

q+

p−

b+

v
0

1

q+

v

a−
1

0
u+

u−

Proof. Consider a sequence vn of continuation solutions in C(p−, q+). Con-
sider the interval [−S, S] where fs, gs depend on s. Since [−S, S] is compact,
by Arzela-Ascoli a subsequence will satisfy C0-convergence on [−S, S] so
there is no breaking there.

p−

b+

u

v

q+

vnimage of [−S, S] where
fs, gs depend on s

here can apply the
reparametrization trick

(think “stretching of an
interval [−sn,−S] or [S, sn]”)

5In the figure, we denote by v the continuation solutions, and by u± the −∇±f±-trajectories.
We write boldface numbers which indicate the Fredholm index of the linearization of the Fredholm
section. So in the figure, |b| − |q| = 1, |p| − |a| = 1. Recall that

dim(C or W spaces) = dim tangent space = dimker(surj Fred operator) = index.

For W spaces, dimension 1 implies that M = W/R has dimension 0. So solutions v, u in C,W

spaces of dim 0, 1 respectively are called rigid (or isolated).
Finally, these dimension numbers add to give the correct dimension of the breaking family

because of linear gluing (see 5.5 Step 2, details to ➀): “gluing kernels of Fred operators is iso to
kernel of glued Fred operator”. So indices add correctly under gluing.
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In the general case (when we do not assume |p|−|q| = 1): mimick the proof
of 5.3 and use the above observation ⇒ general breaking for C(p−, q+) is:

p−
u−
1

q+ u+
β

u+
1

u−
α

vn v

Here u−
i are −∇−f−-trajectories, u+

j are −∇+f+-trajectories, and v is

a continuation map for (fs, gs).

Details. Reviewing the proof of compactness for W spaces, observe that
what we needed crucially was an a priori energy estimate. In our case it is:

E(v) =
∫∞

−∞
|∂sv|2 ds

=
∫

gs(∂sv, ∂sv) ds
= −

∫

dfs(∂sv) ds (since ∂sv = −∇sfs)
= −

∫

(∂s(fs ◦ v)− (∂sfs)(v)) ds
≤ f−(p−)− f+(q+) +

∫

|∂sfs|v ds
≤ f−(p−)− f+(q+) + 2S ·max

x∈M
|∂sfs(x)|

We also needed the energy consumption trick 3.3. This can also be used in
our setup in the regions s ≤ −S, s ≥ S where fs, gs do not depend on s.

Key observation: each u+
i , u

−
j contributes to 1 to the index difference

|p−| − |q+|, since the M± spaces are empty if the index difference of the
ends is zero or negative.

Key ⇒ for |p−| − |q+| = 0 no breaking can occur ⇒ C(p−, q+) is compact.
Key ⇒ for |p−|− |q+| = 1 only 1 breaking can occur for dimension reasons.

Hence (after reproving the gluing theorem) for |p| − |q| = 1:

∂C(p−, q+) =
⊔

a−

M−
0 (p, a)× C0(a, q) ∪

⊔

b+

C0(p, b)×M+
0 (b, q)

where the numbers indicate the dimension we request6 and M± are the M
spaces for (f±, g±).

⇒ C(p, q) compact 1-mfd
⇒ #∂C(p, q) is even
⇒ ϕ ◦ ∂− + ∂+ ◦ ϕ = 0. �

(4) (fλ
s , g

λ
s )0≤λ≤1 is called homotopy of homotopies (∗)

6|p| = |b| = k, |a| = |q| = k − 1.
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Fix p−, q+ with |p−| − |q+| = 0. Look at the “movie”

Cλ = Cλ(p−, q+; fλ
s , g

λ
s )

as λ varies. This “movie” is called the parametrized moduli space

P(p−, q+) =
⊔

0≤λ≤1

Cλ

For generic data (∗), it is a smooth 1-mfd:7

P(p−, q+)

C
1

death of solutions
λ

x, y, z1, z2 = bad births/deaths

z2

C
0

C
λ

λ = 0 λ = 1

z1

yx

birth of solutions

Warning. Cλ may not be a smooth manifold for fixed λ. Genericity of the
family (in λ) does not guarantee genericity of each point of the family (fixed
λ = λ0). However, one can guarantee that each Cλ satisfies transversality
except for finitely many values of λ.

Breaking analysis: a subsequence (λn, vn) has λn → 0, 1 or λ0 ∈ (0, 1).

⇒ ∂P = C0 ⊔ C1 ⊔B

where B = {bad births/deaths}.
If B = ∅, then P is a 1-cobordism from C0 to C1,

⇒ #C0 −#C1 = #∂P = even = 0 mod 2
⇒ ϕ0 = ϕ1

If B 6= ∅, let K count the bad set B:

p−

q+

p−

b+

1

q+

a−
1

-1 v ∈ Cλ0

−1
(a, q)u+ ∈ M+

0
(b, q)

v ∈ Cλ0

−1
(p, b) u− ∈ M−

0
(p, a)

-1

Question. How is it possible that such v exist: the relevant moduli space
Cλ0 is negative dimensional!

7dimP(p, q) = |p| − |q|+ 1, where the additional 1 is because of the parameter λ.
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Answer. This happens because fλ0
s , gλ0

s is not generic.8 So “−1” is the
virtual dimension: the dimension you would get if transversality held true:

virdim Cλ0(p, q) = |p| − |q|.

Def. Such v ∈ Cλ0

−1(·, ·) (virtual dimension −1) are called rogue trajectories.

There are no rogue trajectories at λ = 0, 1 since by assumption f0
s , g

0
s

and f1
s , g

1
s are generic. So define

K : MC−
∗ → MC+

∗+1

Kx− =
∑

|y+|=|x−|+1

#(rogue trajectories from x to y) · y+

So in the above pictures, the contributions would be:

Kp− = b+ + · · ·
Ka− = q+ + · · ·
∂−p− = a− + · · ·
∂+b+ = q+ + · · ·

So ϕ0 − ϕ1 = ∂+ ◦K +K ◦ ∂− comes from counting the even number of

elements in:

∂P(p−, q+) = C0 ⊔ C1 ⊔
⊔

λ0∈(0,1),b+∈Crit f+

Cλ0

−1(p, b)×M+
0 (b, q)

⊔
⊔

λ0∈(0,1),a−∈Crit f−

M−
0 (p, a)× Cλ0

−1(a, q)

(5) This is a gluing argument: you can approximately glue solutions, then for
large S (depending on p, r, q) you can associate a “unique” actual solution.
This produces a bijection:
⊔

q1∈Critf1

C0(p
0, q1; 1st hpy)× C0(q

1, r2; 2nd hpy) → C0(p
0, r2; glued hpy)

So ϕ21 ◦ ϕ10(p0) and ϕ20(p0) have the same r2 coefficients. Therefore

ϕ21 ◦ ϕ10 = ϕ20

(there are only finitely many critical points, so you can pick the largest of
the S’s, as you vary p, q, r).9

8Just because the family (∗) is generic, does not mean that each fλ0
s , gλ0

s is generic.
9Non-examinable: In more complicated situations, when there are infinitely many generators,

you can still prove the equation at the level of homology: cycles involve finite linear combinations
of generators, so only finitely many generators are involved in showing that the two expressions
agree on a given cycle.


