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6.3. Invariance Theorem. Let M be a closed mfd.

Thm. MH.(M) does not depend on the auxiliary parameters you chose: given
Morse fo, f1 : M — R and generic metrics go, g1, there is an isomorphism

lp10] : MH.(fo. g0) — MH.(f1,91)
and these isomorphisms satisfy

(1) [p21] © [p10] = [20] (Vfi,g9i, i =0,1,2)
(2) [poo] =1d (Vfo, 90)

Outline

(1) Construct a continuation map

|- Mo~ MCH

(MCE = MC.(f%,g%), f* Morse, g* generic)

defined on generators as follows (then extend linearly):
e )= Y. #COp .qh)-q"
dimC(p~,gT)=0

which counts the moduli space of continuation solutions

Clp=yq)={v:R—=M : 9v=-V5fs(v),
v(s) = p~,q" as s — —o0, +00}

where p~ € Crit(f7), ¢© € Crit(fT), gs(V*fs, ) = dfs. This moduli space
depends on a choice of smooth homotopy fs, gs,

s (fs: M —=R), s gs

where the functions fs; need not be Morse and the metrics g5 need not be
Morse-Smale for f,. The key requirement! is that for some S:

| f7 fors< =8 | g fors< =8
fs_{f+ for s > S 9=\ gt fors>S8 (+)

Rmk. Transversality for C(p~,q™") is achieved for generic paths gs.

Rmk. Note that we do not®> quotient C(p~,q") by an R-action by shifting
s, unlike what we did for M(p,q) = W(p,q)/R.

(2) ¢ = identity for the constant data fs = f, gs =g" =¢g~.

Date: May 3, 2011, © Alexander F. Ritter, Trinity College, Cambridge University.
Lthis is crucial for the energy estimate, later.
2indeed7 cannot: V?®fs is not invariant under shifting s — s + constant.
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(3) ¢ is a chain map:

(oo =0t op| (0% : MCF — MCE)

hence we get a map on homology:

[o] : MH, — MH].

(4) ‘ [¢] does not depend on f;, gs

Consider a homotopy (f2,g2)o<x<1 from 0, g% to f1, gl, where we assume
(%) also for f2,g2. Denote ©°, o' the continuations for f0,¢% and f}, gl.

Claim ¢°, ¢! are chain homotopic:

3K :MC; — MC},

WP —pl=Kod  +0t oK

hence® [p°] — [p!] = 1. v
(5) Suppose f10 gl% is a homotopy from f9 ¢° to f!, g%, and f2!, ¢! is a
homotopy from f!, g to f2, g%. Glue* the (reparametrized) homotopies:
-s +S
| | | | s

I I
0 0 10 10 1 .1 21 21 2 2
f 5 g 5+25795+25 f 5 g 5_25795_25 f 59

first hpy (shifted) second hpy (shifted)

Claim. For § > 0, the ¢ obtained for this glued homotopy equals the
composite 2! o !0 of the continuation maps for the two homotopies.
(6) Consequences of these properties:
(4) and (5) = [p?1] 0 [p'?] = [p?"] (independently of choices of hpies) v’
(2) and (4) = [p"] = identity (independently of choice of hpy) v/
=[] o [p!] = [¢"] = identity so [¢'°] injective
= [p'% o [p] = [p!] = identity so [¢!°] surjective
= [p1%] isomorphism
= Theorem
Key ideas in the proofs:

(1) Redo the transversality proof, now using:

i ) . _J g7 fors< =S
G = {C"-paths of metrics s — g5 with g5 = { gt fors>S }

F(u,gs) = 0su— Vofs(u) (where g5(V?®fs,-) = dfs)

= Parametric transversality, Fredholm analysis, etc. like we did for W (-, -)

C(p~,q") smooth mfd for generic smooth g

= . ,
dimC(p~,q%) = [p| — lq|

In (3) we explain how to compactify C(p~, ¢*"), and it shows that C(p~, q*)
is compact when dimC(p, ¢) = |p| — |q| = 0. So ¢ is well-defined.

3since @~ = 0 on ker &, 81 (Ke) = 0 modulo im .
4for large S these glue correctly.
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(2) For constant data f = fs, g = gs,

C(p,q) = W(p,q).

So since g = g~ = g™ is generic, W (p, q) is a smooth mfd, thus so is C(p, q).
Finally we make a dimension argument:

If v € C(p, q) is a solution then v(- 4+ constant) is a solution since d;v =
—Vf(v) has Vf independent of s.
= if v non-constant, then there is a 1-family of solutions v(- 4+ constant)
= dimC(p,q) > Lifp# ¢
= ¢ only counts constant solutions C(p,p) = W (p,p) = {constant at p}
= ¢(p)=p
= ¢ = identity.
Rmk. The key is not to make an s-dependent perturbation of gs = g~ =
g™", but rather to perturb s-independently (in fact, since we assume g~ =
is generic, we don’t need to). This gives transversality for W (p, q) = C(p,

(3) Study the breaking of 1-dimensional C(p~,¢"), so [p~| — |¢*| = 1.
The key claim is that a once-broken continuation solution does not con-
sist of two continuation solutions, but rather consists of one continuation
solution and one f*-trajectory:®

Proof. Consider a sequence vy, of continuation solutions in C(p~, ¢*). Con-
sider the interval [—S, S] where fq, gs depend on s. Since [—S, S] is compact,
by Arzela-Ascoli a subsequence will satisfy C%-convergence on [—S, S] so
there is no breaking there.

p
v
" here can apply the
image of [—S, S] where Un, bt reparametrization trick
fs,9s depend on s (think “stretching of an
u .
interval [—spn, —S] or [S,sn]”)
q+

5In the figure, we denote by v the continuation solutions, and by u® the — V¥ f¥-trajectories.
We write boldface numbers which indicate the Fredholm index of the linearization of the Fredholm
section. So in the figure, |b] — |¢| = 1, |p| — |a| = 1. Recall that

dim(C or W spaces) = dim tangent space = dim ker(surj Fred operator) = index.

For W spaces, dimension 1 implies that M = W/R has dimension 0. So solutions v,u in C, W
spaces of dim 0,1 respectively are called rigid (or isolated).

Finally, these dimension numbers add to give the correct dimension of the breaking family
because of linear gluing (see 5.5 Step 2, details to 0): “gluing kernels of Fred operators is iso to
kernel of glued Fred operator”. So indices add correctly under gluing.
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In the general case (when we do not assume |p| — |¢| = 1): mimick the proof
of 5.3 and use the above observation = general breaking for C(p~,¢™) is:

Here u; are —V~ f~-trajectories, u;' are —V T ft-trajectories, and v is
a continuation map for (fs, gs).

Details. Reviewing the proof of compactness for W spaces, observe that
what we needed crucially was an a priori energy estimate. In our case it is:

E(w) = [7_|0sv[*ds
[ 9s(0sv,05v) ds
ffdfs (Osv)ds (since Osv = —V* f)

= - [ (fsov (0sfs)(v)) ds
< f7) = fTa) + [10sfslods
< fT7) - fT@h)+2S max |0, f5(z)|

We also needed the energy consumption trick 3.3. This can also be used in
our setup in the regions s < —S5, s > S where fy, gs do not depend on s.

Key observation: each ul ,u; contributes to 1 to the index difference

Ip~| — |¢T|, since the M* spaces are empty if the index difference of the
ends is zero or negative.

Key = for |p~| — |[¢T| = 0 no breaking can occur = C(p~,¢") is compact.
Key = for [p~|—|¢*| = 1 only 1 breaking can occur for dimension reasons.

Hence (after reproving the gluing theorem) for |p| — |¢| = 1:
) = Mg (p,a) x Cola, q) U|_|Co(p,b) x M{ (b,q)

b+

where the numbers indicate the dimension we request® and M=* are the M
spaces for (f*,g%).

= C(p, q) compact 1-mfd
= #09C(p, q) is even
= pod +0Top=0. O

(4) (f2,9))0<r<1 is called homotopy of homotopies (x)

Olp| = (8] = K, la] = |q| =k — 1.
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Fix p~,¢* with |[p~| — |¢*| = 0. Look at the “movie”

Cr=C o, q" 12, 92)
as A varies. This “movie” is called the parametrized moduli space

P .q") = || ¢

0<A<1

For generic data (), it is a smooth 1-mfd:”
Vel ")

C)‘ /\
CO — m . Cl

o )
e

xT ’
A
death of solutions
birth of solutions x,y, 21, 22 = bad births/deaths

Warning. C* may not be a smooth manifold for fized \. Genericity of the
family (in X) does not guarantee genericity of each point of the family (fixed
A = \o). However, one can guarantee that each C* satisfies transversality
except for finitely many values of \.

Breaking analysis: a subsequence (A, vy,) has A, — 0,1 or Mg € (0,1).
=oP=CcuctuB

where B = {bad births/deaths}.
If B =), then P is a 1-cobordism from C° to C!,

= #C° — #C!' = #OP = even = 0 mod 2
= ¢’ = ¢!

If B # 0, let K count the bad set B:

Question. How is it possible that such v exist: the relevant moduli space
C?0 is negative dimensional!

7dim P(p,q) = |p| — |g| + 1, where the additional 1 is because of the parameter .
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Answer. This happens because f2°, g0 is not generic.® So “~1” is the
virtual dimension: the dimension you would get if transversality held true:
virdim €*(p, q) = [p| - |gl-

Def. Suchv € Ci“l(-, -) (virtual dimension —1) are called rogue trajectories.

There are no rogue trajectories at A = 0,1 since by assumption f?, g°
and fl, gl are generic. So define

K : MC;— MCH,
Ka™ = Z #(rogue trajectories from x to y) - y

lytl=lz—[+1

+

So in the above pictures, the contributions would be:

Kp— = bt 4.
Ka= = q"+---
0" p = a +---
otpt = q++,,,

So ‘ WVt =0T o K+ Kod~ ‘ comes from counting the even number of

elements in:

dP(p~,q")=Ccuct U L] C2(p, b) x Mg (b,q)
X0 €(0,1),b+eCrit f+
U || M (p,a) x €2} (a, q)

Ao €(0,1),a= €Crit f—
(5) This is a gluing argument: you can approzimately glue solutions, then for
large S (depending on p,r,q) you can associate a “unique” actual solution.
This produces a bijection:

| ] Co®® q"1°" hpy) x Co(g",r%; 2" hpy) — Co(p°, 7%; glued hpy)
gteCrit f1
So ¢t 0 p1%(p?) and ¢?°(p°) have the same r? coefficients. Therefore

o o pl0 = 20
(there are only finitely many critical points, so you can pick the largest of
the S’s, as you vary p, q,7).”

8Just because the family () is generic, does not mean that each fﬁo,gﬁo is generic.

9 Non-ezaminable: In more complicated situations, when there are infinitely many generators,
you can still prove the equation at the level of homology: cycles involve finite linear combinations
of generators, so only finitely many generators are involved in showing that the two expressions
agree on a given cycle.



