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7.5. Spectral sequences.

Spectral sequence = algebraic gadget that interlocks a bunch of exact sequences.
It usually arises for a chain complex C∗ with

d = d0 + d1 + d2 + · · ·

where d0 is “dominant” in some way over the higher order terms d1, d2, . . ., and we
hope to approximate H∗(C∗, d) by

E1 = H∗(C∗, d0), E
2 = “H∗(E

1, d1)”, . . .
cges?
⇒ H∗(C∗, d).

Def. An exact couple is an exact1 triangle of vector spaces of the form
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Given an exact couple, define

d = j ◦ k : E → E

Then d2 = jkjk = 0 since kj = 0 by exactness. Thus we obtain the derived couple:
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Exercise. Check these maps are well-defined, and that this new triangle is exact.

Rmk. If i = inclusion, then k = 0, so d = 0, so E ≡ H(E, d) = A/iA unchanged!

7.6. Example: the spectral sequence for a bounded filtration.

Suppose (C∗, d) is a Z-graded chain complex2 with a filtration by subcomplexes3

0 = F−1 ⊂ F0 ⊂ F1 ⊂ · · · ⊂ Fn = C∗

Date: May 3, 2011, ©c Alexander F. Ritter, Trinity College, Cambridge University.
1recall exact means the kernel of one arrow equals the image of the previous arrow.
2d : Ck → Ck−1, d

2 = 0.
3dFp ⊂ Fp.
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⇒ 0 → Fp−1
i
→ Fp

j
→ Fp/Fp−1 → 0 exact

⇒ define Fp = 0 for p < 0, Fp = C∗ for p ≥ n. Then define

E0
p,∗−p =

⊕

p

(Fp/Fp−1)the part in Z-grading ∗

Then the LES asssociated to the above SES:4

A1 =
⊕

p H∗(Fp−1)
i1 //

jj

k1 UUUUUUUUUUUUUUUUU
/

⊕
p H∗(Fp) = A1

j1ttiiiiiiiiiiiiiiii

H∗(
⊕

p E
0
p,∗−p) =

⊕
p E

1
p,∗−p

The dash on the arrow indicates that the grading ∗ drops by 1. Abbreviate q = ∗−p
(∗ = p+ q is called the total degree). Deriving the couple, we obtain:

d1 = k1 ◦ j1 : E1
p,q → E1

p−1,(∗−1)−(p−1) = E1
p−1,q.

A2 i2 //ff

k2

MMMMMMMMMMM
/

A2

j2xxqqqqqqqqqqq

H(E1, d1) = E2

and keep deriving. So obtain Er, dr = jr ◦ kr : Er
p,q → Er

p−r,q+r−1

Er
k,0

p

q

diagonal of elements
in total degree ∗ = p+ q = k

up r − 1

left r

Er
0,k

dr

dr

dr

A1 = sum up (0 → H(F0)
i
→ H(F1)

i
→ · · ·

i
→ H(Fn)

=
→ H

=
→ · · · )

where H = H(C∗, d) = H(Fp) for p ≥ n. The image under in becomes:

An+1 = sum up (0 → inH(F0) ⊂ inH(F1) ⊂ · · · ⊂ inH(Fn) = H = · · · )

= sum up (G0 ⊂ G1 ⊂ · · · ⊂ Gn = H = · · · ) where Gp = im (H(Fp)
in

→ H).
Rmk
⇒ Er

p,∗−p = ⊕(Gp/Gp−1)the part in Z-grading ∗ = E∞
p,∗−p constant for r ≫ 0.

But now H ∼= G0 ⊕ (G1/G0)⊕ (G2/G1)⊕ · · · ⊕ (Gn/Gn−1), so rewriting:

⇒ H∗(C∗, d) ∼=
⊕

p

E∞
p,∗−p

4recall that every short exact sequence gives rise to a long exact sequence. E.g. see Hatcher’s
Algebraic Topology.
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One abbreviates this result by writing

E1
p,q ⇒ H∗(C∗, d)

(read “⇒” as “converges to”) and one says the spectral sequence E1
p,q converges.5

Warning: the last two isomorphisms are not canonical, because you are recover-
ing the group from certain successive quotients.

7.7. Leray-Serre spectral sequence.

Thm.

F // E

π
��
B

Let E be a fibre bundle with simply connected base B, and with fibre
F , where B,E, F are closed mfds. Then there is a spectral sequence

E2
p,q = MHp(B)⊗MHq(F ) ⇒ MH∗(E).

Example. Künneth’s theorem: E = B × F , then E2
p,q = E∞

p,q.

Proof. Fix Morse-Smale data:

(b : B → R, gB) (f : F → R, gF )
Crit b = {b1, b2, . . . , bn} Crit f = {y1, . . . , ym}.

Pick disjoint opens Bi around bi ∈ B with trivializations

E|Bi

fi
��

∼= // Bi × F

f
��

R R

Fix bump functions ρi : B → [0, 1], ρi =

{
0 outside Bi

1 near bi
Then we obtain a function on E:

h = b+ ε
∑

ρifi : E → R

where we abusively write b but mean b ◦ π : E → B → R.

Claim. h is Morse for 0 < ε ≪ 1.
Proof. h = b⊕ εf on (ρi = 1) ⊂ Bi × F is Morse (compare Künneth proof) X

Outside ∪i(ρi = 1): |db| > δ > 0, so for ε ≪ δ get |db| > 1
2δ > 0 (ρi, fi are

C1-bdd since F compact). �

This also proves that

Crith = Crit b× Crit f (in the trivializations). (∗)

Now want to build a metric on E such that in the above trivializations we are
in the Künneth setup:

gE = gB ⊕ gF on Bi × F
⇒ ∇h = ∇b⊕ ε∇fi on ρi = 1.

Problem: ∇h is useless: outside ρi = 1 you get ∇ρi terms and also you will need
to perturb gE to get transversality

5In our case, one also says the spectral sequence degenerates at sheet n+1 because dr = 0 for
r ≥ n+ 1, so we may identify En+1 = En+2 = · · · .
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⇒ you have no idea what dπ(∇h) is.

⇒ no idea what π ◦ (−∇h trajectory) is.
Trick: we will construct a gradient-like vector field v for h such that

{
➀ dπ ◦ v = ∇b
➁ v = ∇h = ∇b⊕ ε∇fi on ρi = 1

Hence, for e 6= e′ ∈ Crith define:

V (e, e′) = {−v flowlines converging to e, e′}/R .

Because of ➀, V (e, e′) projects via π to the moduli spaces M(bi, bj) for b : B → R,
where bi = π(e), bj = π(e′). Like for the M spaces,6

dim V (e, e′) = |e| − |e′| − 1

calculating the indices for h, since near the ends −v = −∇h by ➁.

Modifying gE: Define the vertical and horizontal subspaces of TE by

V = ker dπ,
H = V ⊥ (perpendicular for gE)

So in particular V = TF and H = TBi over Bi × F ∼= E|Bi
. Define

g̃E =

{
gE on V
π∗gB on H

and V ⊥ H for g̃E

v = ∇̃b+ ε
∑

ρi∇̃fi (∇̃ = gradient for g̃E)

Note that g̃E = gE on ∪i(ρi = 1).

Proof of ➀ and ➁: ➁ is immediate.

db = g̃E(∇̃b, •)

= g̃E(∇̃b, projectH •) since db = 0 on V

= (π∗gB)(projectH∇̃b, projectH •) since V ⊥ H for g̃E
= gB(dπ∇̃b, dπ•)

⇒ dπ · ∇̃b = ∇b

⇒ dπ · v = ∇b since7 dπ∇̃fi = 0
⇒ ➀ X

Proof v is gradient-like: dh(v) = |∇̃b|2−order(ε) > 0 outside ρi = 1, and on ρi = 1
v is the gradient of h by ➁ X.

We now construct a Morse-like complex for −v. Because of (∗), we define

C∗ = MC∗(h) = MC∗(b)⊗MC∗(f),

6indeed, the same proof holds: our index calculation shows that only the asymptotics of the
linearization of the flow matter, and at the ends the flow is a Morse flow: −v = −∇h by ➁.

7g̃E(∇̃fi,H) = dfi(H) = df(TBi) = 0 over Bi, and outside Bi have ρi = 0.
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with differential

de =
∑

dimV (e,e′)=0, e6=e′

#V (e, e′) · e′

= (d0 + d1 + d2 + · · · ) e

dpe =
∑

|πe|−|πe′|=p, dimV (e,e′)=0

#V (e, e′) · e′.

Define the filtration:

Fp =
⊕

|πe|≤p, e∈Crit h

Z/2 · e.

Observe: Fnegative = 0, FdimB = C∗, Fp−1 ⊂ Fp.

Crucial claim. Fp is a subcomplex: dFp ⊂ Fp.
Proof. if ∃ −v traj u, then π ◦ u is a −∇b traj.
⇒ |πe| − |πe′| = dimW (πe, πe′) ≥ 0
⇒ |πe′| ≤ |πe| ≤ pX

⇒ E0
p,∗−p = Fp/Fp−1 = MCp(b)⊗MC∗−p(f) with d = d0 on E0.

Claim. d0 = ∂fibre counts −∇f trajectories in the fibres.
Pf. |πe| = |πe′| ⇒ W (πe, πe′) = ∅ unless πe = πe′, in which case π ◦u =constant.X

⇒ E1
p,q

∼= MCp(b)⊗MHq(f)

Warning: this isomorphism is not canonical, because we made choices of trivial-
izations. So let us be more precise:

E1
p,q =

⊕

bi∈Crit b

Rq(bi)

Rq(bi) = MHq(Ebi , h|Ebi
= b(bi) + εfi|Ebi

)

≡ MHq(Ebi , fi|Ebi
)

and non-canonically Rq(bi) ∼= MHq(F, f) by using the choice of trivializations.

Using B simply connected. For simply connected B you can identify fibres
by following a path in B, and if you change the path then you get a homotopic
identification: hence the homology does not notice the change. Pictorial idea:8

B
bi bj

Ebi Ebj

Write Fp = Cp ⊕ Fp−1, where Cp is generated by the e with |πe| = p. Then

Fp = Cp ⊕ Fp−1

d =
[
d0 0
∂′ ∂′′

]
// Cp ⊕ Fp−1

8on the right, compare parallel transports P1, P2 along two paths: homotope to a constant the

loop that concatenates the two paths; obtain a chain homotopy between P−1

2
◦ P1 and id.
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where ∂′, ∂′′ are d1 + d2 + · · · composed with projection to Cp, Fp−1 respectively.

Fp−1 = Cp−1 ⊕ Fp−2
i

−→ Fp = Cp ⊕ Fp−1

(a, b) 7→ (0, a+ b)

H∗(Fp−1)
i1 //

gg

k1 NNNNNNNNNNN
/

H∗(Fp)

j1xxqqqqqqqqqq

H∗(Fp/Fp−1) = E1
p,∗−p

[(a, b)]
i1 // [(0, a+ b)] [(α, β)]

j1vvnnnnnnnnnnnnnn

[α]

Recall k1 is the boundary of the LES, so study the SES’s:

0 // (Fp−1)∗ //

d

��

(Fp)∗ //

d

��

(Fp/Fp−1)∗ //

d

��

0

0 // (Fp−1)∗−1
// (Fp)∗−1

// (Fp/Fp−1)∗−1
// 0

and diagram chase what happens to α:

(α, 0) //

d

��

α //

d

��

0

0 // (∂′α, 0) // d(α, 0) = (0, ∂′α) // d0α = 0 // 0

so, by definition of the boundary k1, in the triangle above we get

[(∂′α, 0)]
\\

k1 99
99

99
9
/

[α]

So d1[α] = j1k1[α] = [∂′α] = [d1α] ∈ H∗−1(Fp−1/Fp−2) (here d1 and ∂′ agree since
we quotient by Fp−2). Thus

d1[α] = [d1α]

We need to understand d1:

d1(bi ⊗ y) =
∑

|bj |=p−1, any y′∈Crit f

#V0(bi ⊗ y, bj ⊗ y′) · bj ⊗ y′

counts the 0-dimensional V spaces, and recall each u ∈ V0(bi ⊗ y, bj ⊗ y′) lies over
the −∇b trajectory π ◦ u from bi to bj .

Note d1 : R(bi) → R(bj) is a chain map (with respect to d0) since:
9

0 = d2 = d20 + (d1d0 + d0d1) + · · ·

and d20 = ∂2
fibre = 0, hence d1d0 + d0d1 = 0. (Exercise: you can also prove this last

equality by a breaking analysis like in 7.4)

Idea. d1 counts trajectories which have an index drop in the base, so we expect
the trajectories to be “constant” fibrewise. This makes sense if E is trivial (that is
how we proved the Künneth thm), but otherwise the notion of “locally constant”
depends on choices of local trivializations. So we need to keep track of choices.

9we break d2 up according to the filtration, so each summand must vanish.
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Claim. Along a trivialization over the path π ◦ u the solutions u are continuation
solutions of a Morse flow, and the count d1 of such rigid solutions defines the same
identification between R(bi) and R(bj) as the one induced on ordinary homology by
parallel translation along any path joining bi, bj.

Proof.

B

Ebi Ebj

bi πu bj

Pick a trivialization R× F agreeing10 with the given ones at bi, bj , so

h =

{
εf + constant at −∞
εf + constant at +∞

The count of isolated −v flowlines in this trivialization (which project to the ∂s
flow in R) then defines a map similar to a continuation map. Indeed, by covering
the path πu by small charts, and extending the trivialization to these charts, we
can homotope the metric g̃E to make it a direct sum metric gB ⊕ gF (which it
already is at the ends of the path πu), so that v is the gradient of a homotopy
hs = b + εfs, where fs at the ends equals f . But now this homotopy can be
homotoped to hs = b + εf + c(s), where c(s) only depends on s and at the ends
equals the constants in the above expression for h at ±∞.

Observe that ∇(b + εf + c(s)) = ∇(b + εf), so just as in the case of a constant
hpy (6.3 (2)), one proves that b+ εf + c(s) induces the identity continuation map.
Hence, our original count of flowlines is chain homotopic to the identity. Hence
on Morse homology it equals the identity. Thus the map agrees with the parallel
transport map which defined the various trivializations (see footnote 10). X

Conclusion: Recover d1 by finding the isolated −∇b trajectories on B, and doing
parallel transport in the fibres to get the map between the R(bi)’s. More precisely:

d1 on E1 =
⊕

bi

R(bi) can be identified with ∂base on MC∗(b)⊗MH∗(f)

⇒ E2
p,q = MHp(b)⊗MHq(f)

⇒ Er
p,q ⇒ H∗(C∗, d)

Finally, the last step of the proof of the Leray-Serre theorem, is:

H∗(C∗, d) ∼= MH∗(h)

This is proved by a parametrized moduli space argument like in 6.3 (4): you homo-

tope −v to −∇̃h. Note that −v = −∇̃h except in the regions where the ρi 6= 0, 1
which are small subsets of Bi \ (ρi = 1). �

10 Need to choose trivializations carefully: pick a trivialization Bi×F for some bi, then parallel
transport this over chosen paths to define the trivializations for the other Bj × F ’s. Finally we

use the fact π1B = 0 to obtain the required trivialization with prescribed ends.


