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7.8. Example of applying the Leray-Serre theorem.

Let E = {v ∈ TS2 : |v| = 1} (the sphere bundle of TS2).1

S1 // E
π

��

S2

E2
p,q = MHp(S

2)⊗MHq(S
1).

Represent E2 graphically as:

Z

Z Z

Z
d2

p

q

So we can already deduce:a

H0(E) = Z

H1(E) = Z/im d2

H2(E) = ker d2

H3(E) = Z

ahere please take on trust that one can do Morse ho-
mology over Z by keeping track of orientation signs.

We take b = height function on S2, and f = height function on the fibre S1. To find
d2, we need to understand how parallel transport relates the critical points of index
1, 2. Consider how a vector at the North pole p of S2 gets parallel transported to
the South pole q when moving along four great half-circles meeting at 90◦ at p.

min
f = height

f = height

R

R
max

b = height

R

q

p

TpS
2

TqS
2

We see that two2 of the parallel transports of the vector point in the direction of
the maximum in the S1 fibre over q. Indeed, this shows that there are exactly two
great half-circles from p to q such that the minimum in the fibre over p gets parallel
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1Secretly, one knows that E ∼= SO(3) ∼= RP 3.
2secretly, this “two” is the Euler characteristic of the base S2.
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transported to the maximum in the fibre over q.
⇒ d2 = multiplication by 2
⇒ H∗(B) = Z ⊕ Z/2 ⊕ 0 ⊕ Z

∗ = 0 1 2 3

Rmk. One can similarly do this for the higher dimensional case Sn−1 → S(TSn) →
Sn. More generally, this method should in principle yield the Gysin sequence.

8. Morse-Bott theory

8.1. Motivation. Question. In the construction of the Leray-Serre spectral se-
quence, what happens if we let:

supports of ρi shrink to bi
and ε → 0.

Answer. the trajectories become more vertical near the critical fibres, and more
“horizontal” away from them:

bi

bj

bk

So the trajectories converge to a combination of −∇f flows along fibres and

“quantum jumps” between the fibres given by −∇̃b flows:

−∇f

−∇f

flow for finite time here

u2 : R → E

−∇f −∇̃b

−∇̃b

u1 : R → E

(whereas u1, u2, . . . are
flows for infinite time)

bkbi bj

8.2. Morse-Bott functions.

A smooth function b : M → R is called Morse-Bott if

(1) C = Crit b =
⊔

i

Ci is a finite disjoint union of connected submfds Ci ⊂ M

(2) Hesspb = Dp(db) : TpM → T ∗
pM nondegenerate transversely to Ci, meaning

TpCi = kerHesspb ∀p ∈ Ci.

Equivalently: Hesspb induces an invertible self-adjoint map on normal bdles

Hesspb : νCi
→ νCi

.

Examples.

(1) b = Morse, C = {critical points}
(2) b = 0, C = M .
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(3) b(x, y, z) = −x2 + y2 and C = z-axis inside R
3, but not b = −x3 + y2.

(4) a torus lying flat with the height function:

C1 = maxima

C2 = minima

R

b = height

(5) Fibre bundle F // E
π

��

B
b

//
R

Suppose b : B → R is Morse. Then b ◦ π : E → R is Morse-Bott with
Ci = π−1(bi) the fibres over the critical points bi of b.

8.3. Morse-Bott chain complex. Choose auxiliary Morse functions

f = ⊔fi : C = ⊔Ci → R

and a generic metric gC = ⊔gCi
on C. Write ∇f for the gradient of f w.r.t. gC .

Def. Define the grading of p ∈ Crit(fi) ⊂ Ci by:

|p| = indb(p) + indf (p) = indCi + indf (p)

Note that indb(p) is independent of p ∈ Ci and is the index of Hesspb : νCi
→ νCi

.

Key Idea: you are pretending that you perturbed b to b+ ε
∑

ρifi.

Example. In example (3): indb(C) = 1 because of the −x2. For f : C → R,
(0, 0, z) 7→ −z2 get |(0, 0, 0)| = −2, which equals the index for −x2 + y2 − εz2.

Def. Define the Morse-Bott complex by

BC∗ =
⊕

p∈Crit f

Z/2 · p

=
⊕

i

MC∗(fi) [indCi]

The [indCi] is a shift in grading: |p [indCi]| = indfi(p) + indCi, so grading 0
becomes grading indCi.

8.4. Morse-Bott differential. ∂ counts rigid Bott trajectories:

“quantum jump”
Ci

Ck

Cj

flow by −∇fi−∇b flowline

Useful Notation to summarize a Bott flowline:
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p ∈ Crit f

(can be constant)

vn : [0,∞) → M

∂svn = −∇f
(can be constant)
∂sv0 = −∇f

v0 : (−∞, 0] → M

jump u1 : R → M (nonconstant)
∂su1 = −∇b

v1 : [0, ℓ1] → M ∂sv1 = −∇f

q ∈ Crit f

finite length ℓ1 ∈ [0,∞) edge

(can be constant)

jump un (nonconstant)

Def. The moduli space of Bott flowlines with n ≥ 1 jumps is:

Wn(p, q) = {(u1, . . . , un; ℓ1, . . . , ℓn−1) : uj ∈ W (pj , qj ; b), pj 6= qj ∈ C such that
p1 ∈ Wu(p, f), qn ∈ W s(q, f), and qj , pi+1 are connected by a
finite time −∇f flowline vj : [0, ℓj] → C, ℓj ∈ [0,∞)}

W 0(p, q) = W (p, q; f) the moduli space of −∇f flowlines R → C.

Def. The moduli space of Bott trajectories is

B(p, q) =
⋃

n∈N

Wn(p, q)/Rn,

where R
n acts by shifting the s coordinates in u1, . . . , un.

8.5. Breaking of Bott trajectories.

Under C0
loc-convergence, a Bott flowline can break in two ways:

(1) some ℓj → ∞ and therefore vj breaks on some critical level set Ci:

Ci

p ∈ Crit fi

vj

(2) or some uj breaks:

CkCi

uj

Cr

where on the right we indicated the abbreviated notation for the breaking.

The broken Bott flowlines in (2) for Wn(p, q) are precisely the boundary points
of Wn+1(p, q) arising when ℓj = 0. So when we compactify B(p, q) we do not
need to artificially add these limit broken Bott trajectories since they are already
present. However, we still need to enlarge the topology so that it is recognized as
a limit in the sense of (2). So we just artificially add the breakings of type (1):

B(p, q) = B(p, q) ⊔
⊔

n≥2

B(p, p2)× B(p2, p3)× · · ·B(pn, q).

∂B(p, q) = ⊔B(p, p2)×B(p2, p3)×· · ·B(pn, q) are called the broken Bott trajectories.

8.6. Energy estimates for Bott trajectories. Define the energy:

E(v0, u1, v1, . . . , un, vn) =
∑

energies = E(v0)+E(u1)+E(v1)+· · ·+E(un)+E(vn).

Lemma.

(1) b decreases along a Bott trajectory
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(2) ∃δ > 0 such that to go from one Ci to another Cj a Bott trajectory must
consume energy ≥ δ > 0.

(3) There are at most (f(p)− f(q))/δ jumps, so Wn(p, q) = ∅ for large n.

Proof. b is constant along the vi, and b decreases along ui. (2) is proved like 3.3:
|∇b| > δ > 0 outside small nbhds of the Ci’s, etc. and (3) follows from (2). �

For generic metrics gM onM , gC on C, one can prove the corresponding transver-
sality, compactness and gluing results for B(p, q) like we did for M(p, q), thus:

B(p, q) smooth mfd
dimB(p, q) = |p| − |q| − 1
B(p, q) is a compact mfd with corners

8.7. Morse-Bott homology. Recall

BC∗ =
⊕

i

MC∗(fi)[indCi].

Define
∂ : BC∗ → BC∗−1

∂p =
∑

dimB(p,q)=0, p6=q

#B(p, q) · q.

The proof of ∂2 = 0 follows just like for Morse homology from the results in 8.6.
Hence we obain the Morse-Bott homology:

BH∗(b, f) =
ker ∂

im f

Example. In example (4) above, using height functions on the circles C1, C2:

∂p2 = 0 · q2

∂q1 = 0 · q2

q1

q2

p1

p2

∂p1 = 0 · p2 + 0 · q1

This shows ∂ = 0, so over Z/2:

BH∗ = BC∗ = Z/2 ⊕ (Z/2)2 ⊕ Z/2 ∼= H∗(torus)
∗ = 0 1 2

8.8. Invariance of Morse-Bott homology. At this stage, one has to redo some
of the work done for Morse homology:

(1) Build continuation maps,3 when homotopying b, fi, gM , gC .
(2) Prove invariance using continuation map properties.
(3) Invariance (2) implies4 BH∗(b, f) ∼= BH∗(Morse function F, 0) ∼= MH∗(F ) ∼=

H∗(M), thus:

BH∗(b, f) ∼= H∗(M)

3these are a little tricky, since homotopying b can change C drastically.
4Also, BH∗(b, f) ∼= BH∗(0,Morse function F on M) works.
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8.9. Filtration by action. For a ∈ R,

Fa = Fa(BC∗) =
⊕

y∈Crit(f), f(y)≤a

Z/2 · y

Key observations: dFa ⊂ Fa, Fa = 0 for a ≪ 0, Fa = BC∗ for a ≫ 0.
Now make it a discrete filtration, using the δ > 0 of the energy estimates:

· · · ⊂ F0 ⊂ Fδ ⊂ F2δ ⊂ · · · ⊂ Fp·δ ⊂ · · ·

⇒ E0
p,∗−p = F(p+1)δ/Fpδ, and d = d0 on E0 since if you make a quantum jump,

then you fall inside Fpδ, so d only counts −∇f trajectories in C.
⇒ E1

p,∗−p =
⊕

i MH∗(fi)[indCi]
So we deduce:

Thm. There exists a spectral sequence E1 =
⊕

i

MH∗(fi)[indCi] ⇒ BH∗(b, f)

So there is also a spectral sequence
⊕

i

H∗(Ci)[indCi] ⇒ H∗(M)

Cor. The Euler-characteristic χ(M) =
∑

(−1)indCiχ(Ci).

Proof. This follows from the Theorem and from Lemma 7.3:

χ(M) = χ(H∗(M)) = χ(E∞) = χ(E1) = χ (⊕iH∗(Ci)[ind(Ci)]) =
∑

(−1)ind(Ci)χ(Ci).

�

8.10. Filtration by the index of b. Make the following

Assumption. B(p, q) = 0 if indb(p) < indb(q).

For example, this holds in example (5) above. Define

Fp =
⊕

indbCi≤p

⊕

y∈Crit(fi)

Z/2 · y.

Then d = d0 + d1 + d2 + · · · , where

d0 = counts −∇f flowlines in C
d1 = allow one quantum jump
d2 = allow two quantum jumps
. . .

Thm. There exists a spectral sequence of the same form as above.

Example. In example (5), we obtain the Leray-Serre spectral sequence. Use b :
B → R Morse on the base, and fi : Ebi → R Morse on the fibres over bi ∈ Crit(b).

Fp =
⊕

|bi|≤p, y∈Crit f

Z/2 · y

E1 =
⊕

bi∈Crit(b)

MH∗(fi) [ |bi| ]

For π1(B) = 0, get d1 = ∂base. So

E2
p,q = MHp(B)⊗MHq(F ) ⇒ H∗(E).

Note this has the enormous advantage that we do not have to construct a special
metric and a pseudo-gradient vector field.
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9. Where to go from here

I recommend three interesting survey papers:

• Michael Hutchings, Lecture Notes on Morse homology.

This is available online. It is a very elegant treatment of many interest-
ing topics. It covers parts of this course, but sometimes using a different
approach (some proofs in Morse homology can be simplified if one uses
smooth dependence of ODE’s on initial conditions, but unfortunately these
proofs do not generalize to Floer theory so we avoided this approach).

• Dietmar Salamon, Lectures on Floer homology.

This is available online. It is the best place to learn the basics of Floer
homology. Always short and to the point, which is wonderful.

• Kenji Fukaya, Morse homotopy, A∞-category and Floer homologies.

Available online (the fonts are a little strange). This is excellent to get a
feel for the ideas involved in Floer theory.

For research directions on more advanced topics, I recommend three books:

• Dusa McDuff and Dietmar Salamon, J-Holomorphic Curves and Quantum
Cohomology, 1994 (not the similarly called 2004 version).

This is a great book and is very readable.

• Paul Seidel, Fukaya categories and Picard-Lefschetz theory.

This is a very advanced book. It is the key reference for A∞-algebras, La-
grangian Floer homology, Lefschetz fibrations, Fukaya categories. This is
useful if you become a mathematician in the area of symplectic topology.

• Peter Kronheimer and Tomasz Mrowka, Monopoles and Three-Manifolds.

This is a very detailed treatment of Seiberg-Witten Floer homology. It al-
ways motivates ideas using Morse homology, which is a great approach.


