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The big picture

Symplectic manifolds are locally (C",wp), so we seek global invariants.

M closed M open or closed with OM
“closed strings” HF*(H) = QH"(M) SI,—I (M)
Floer/Quantum cohomology Symplectic cohomology
ropen strinae” HF (L1, L) AW (L, o)
P g Lagrangian Floer cohomology | Wrapped Floer cohomology

Lots of algebraic structure: HF*(L1, Ly) are QH*(M)-modules.



The big picture

Symplectic manifolds are locally (C",wp), so we seek global invariants.

M closed M open or closed with OM
“closed strings” HF"(H) = QH"(M) SH (M)
Floer/Quantum cohomology Symplectic cohomology
“open strines” HF*(Ly, Lo) HW* (L, L)
P g Lagrangian Floer cohomology | Wrapped Floer cohomology

Lots of algebraic structure: HF*(L1, Ly) are QH*(M)-modules.
Fukaya category F(M): package all Lagrangians L C M up into
Aso-category, Mor (L1, Ly) = chain complex underlying HF*(L1, Ly).
Wrapped Fukaya category WW(M): allow non-compact L, use HW*.
Homological Mirror symmetry (Kontsevich '94): Often have mirror
pairs (X, J) complex variety and (M, w) symplectic manifold:

Category of Coherent |Equivalence on the Fukaya category
<>
Sheaves on X derived categories ]:(M) of M

Loosely, relate Lagrangians L C M to holo vector bundles V — X.
Closed-open string map: QH*(M) — HH*(F(M)) = HH*(D"Coh(X)),
and SH*(M) — HH*(W(M)) = HH*(D?Coh(X)). Sometimes isos.



The big picture in a little picture

Example 1: X =C* and M= T*S!

DPCoh(X) generated by structure sheaf O, Mor(0, 0) = K[X] = K[x, x"!].
D™ F(M) gen. by L = 0-section D™W(M) gen. by L = fiber C T*S?!
Mor(L, L) = K&K~ G_.(S')  Mor(L, L) = K[x,x ] ~ G _.(QS")

flow L 2
a lot

flow L
a little

QH* (M) = H*(M) 2 K & K SH*(M) = Hy_(£S") = K[x, x~1] ® H*(5Y)



The big picture in a little picture

Example 1: X =C* and M= T*S!

DPCoh(X) generated by structure sheaf O, Mor(0, 0) = K[X] = K[x, x"!].
D™ F(M) gen. by L = 0-section D™W(M) gen. by L = fiber C T*S?!
Mor(L, L) = K&K~ G_.(S')  Mor(L, L) = K[x,x ] ~ G _.(QS")

flow L 2
a lot

flow L
a little

TSt st
QH* (M) =2 H* (M) =2 Ka K SH*(M) = H;_.(£S?) =2 K[x,x '] ® H*(S!)
Example 2: X = CP? and M = Landau-Ginzburg model ((C*)?, W)
DPCoh(X) generated by 3 W=2z+2z+z"'2":(C)P2-=C
vector bundles O, O(—1),0(-2)  F(M, W) = “Fukaya-Seidel category”
Momenipolytope of CP? Db(f(M, W)) generated by 3 objects
0= (L0) y 2= (h Y L = S*x S* with 3 “holonomies"e H*(L;C)

le =t0.1) > 3 Critical points of W.

M=CP?: “D™(F(M)) = H'(MF(W))", MF(W)= Cat. Matrix Factorizations.
Actually pieces Fy(M), MF(W—X): QH*(M)=K|[x]/(x}* - N}) 2 Ko KoK,
For non-compact M, expect D™(F(M)) = DPerf(X) for singular variety X.



Floer, Quantum and Symplectic Cohomology

(M,w) Symplectic Manifold H-M—>R
1-periodic Xy orbits dH = w(-, Xy)

generate CF*(H)

Closed Strings

Product counts
u : 3-punctured sphere - M
(du— Xy ®B)>t =0
Differential counts
u:RxSl M
Osu + JOru = —VH
(elliptic PDE)

M compact = QH*(M) = HF*(H) for any H (Floer 1989, PSS 1996)

= HF*(H) = Floer cohomology
(formally, Morse cohomology of an “action” LM — R)



Floer, Quantum and Symplectic Cohomology
(M,w) Symplectic Manifold H:-M=R
dH:w(sz)

Holomorphic
sphere

1-periodic Hamiltonian
orbits generate CF*(H

Critical point of H

Classical Quantum
cup product contributions

Cycle
in M

= HF*(H) = Morse cohomology = H*(M) as a vector space
= HF*(H) = Quantum cohomology QH*(M) as a ring

M non-compact: QH* (M) = HF (Hsman ) —>SH*(M):[rI1> HF*(H)| ring hom (R."12)
(M \ {compact},w) = (X x (1,00),d(Ra)) for contact mfd (X, «); H linear in R at oo

Differential counts
u:Rx Sl M
Osu+ JOru = —VH




e SH*(C™)=0. Also (Cieliebak 2002): SH*(subcrit. Stein mfd)=0

e C" = C" blown up at 0, (R. 2013):
SH*(Cn) = QH*(C")/(generalised 0-espace of w) = Klw]/(w" + t)
K =formal Laurent series in t over a field.

@ In the Fano regime 1 < k < m, (R. 2013):

SH(Opn(—K)) = K[]/( &k~ f(k)f )
QM (Omm(—R)) = K/ &  — k)bt )
compare: QH*(P™) = Klw]/( orm " )

® SH*(T*N) = H,_.(LN) (Viterbo 1996)
(also: Abbondandolo-Schwarz 2004, Salamon-Weber 2003)

e 7 : E — B negative vector bundle over sympl.mfd., (R. 2013):
SH* (E) = QH" (E)g) =
QH*(E)/(generalised 0-eigensummand of 7*cop( E))

@ M compact toric Fano: Jac(W)2= QH*(M) (Batyrev 93/Givental 96)
(R. 2015): For "many" non-compact Fano toric varieties:

JaC(W) = SH*(M) = QH*(M)PD[Dl],...,PD[D,] not QH*(M)|



Fukaya and Wrapped Fukaya categories F (M), W(M)

(M,w) Symplectic Manifold L; C M Lagrangian submanifolds
(w|L =0,locally L=R" C C" = M)

Open Strings

Hamiltonian
orbits

u:Rx[0,1] - M
Osu + JOru = —VH



Fukaya and Wrapped Fukaya categories F (M), W(M)

(M,w) Symplectic Manifold L; C M Lagrangian submanifolds
(w]L = 0,locally L=R"C C"= M)

Open Strings

< |Intersections Lo N Ly
generate CF*(Lo, L1)

Ly

Differential counts
—<—— holomorphic strips
Osu+ JOtu =0

Hamiltonian
orbits

u:Rx[0,1] = M
Osu+ JOru = —VH

Fukaya category F(M)

Objects: Lagrangians
Morphisms: CF*(Lo, L1)




Fukaya and Wrapped Fukaya categories F (M), W(M)

(M,w) Symplectic Manifold  L; C M Lagrangian submanifolds
(w|L =0,locally L=R" C C" = M)

Open Strings

~—Intersections Lo N L7
generate CF*(Lo, L1)

Ly
Differential counts
—<—— holomorphic strips

Osu+ JOru =0

—~

Hamiltonian
orbits
/N e -

u:Rx[0,1] - M
Osu + JOtu = —VH

Fukaya category F(M)

Ao-category

Product counts - ; Objects: Lagrangians

holomorphic triangles Higher operations count Morphisms: CF*(Lo, L1)

Not Associative i -
holomorphic polygons (M exact (Seidel 2008))

M non-cpt = Wrapped cat. W(M) allow non-cpt Lags. Morphs:* Ii_>m”CF*(g0}4(Lo), Ly)
(M exact (Fukaya-Seidel-Smith 2007 / Abouzaid 2010), M Fano (R./Smith 2012))



The open-closed and closed-open string maps OC, CO

‘OC : HH,(F(M)) — QH* (M) ‘ (String maps appeared in Seidel’'s ICM talk '02)
Lo ‘-L Here OC4 on Hochschild Homology bar complex,
L 4 e CF*(Lay Lo) ® CF*(L3, L4) ® ... ® CF*(Lo, L1) — QH*(M)
(0-part OCo : HF*(L, L) — QH*(M) is: &i?ﬁj
K s OCo by Albers '05, Biran-Cornea '08)
L
|OC - HH.(W(M)) — SH'(M) | I particular, OCo - HW"(L, L) — SH"(M)

L
o Get above picture if glue HE* (H) 2 QH* (M)

Cycle
in M

(Abouzaid 2010 in exact case)
(R. & Smith 2012-17 in monotone case)

“Dually” CO : QH*(M) — HH*(F(M)) and SH*(M) — HH*(W(M)).
e.g. counts of the picture above defines the following factor of HH*:
Hom( CF*(Ls, Ly) ® CF*(La, L3) ® CF*(Ly, Ly) ® CF*(Lo,L1), CF*(Lo, Ls) )

Generation Criterion (Abouzaid exact '10, R./Smith monotone '17)
Restrict OC to a subcategory generated by Li,..., Ly, then:
If OC hits 1 = Ly,..., L, split-generate whole category.




Module structure

Theorem (R. & Smith '12-'17, independently Ganatra '13 for exact M)
e HH,.(F(M)) is QH*(M)-module

e HH.(W(M)) is SH*(M)-module

e OC is a QH*(M)-module hom, respectively an SH*(M)-module hom
e CO is a unital algebra homomorphism.

n :‘,} @ holo sphere
Here QH* (M) out. Why OC is
acts L QH*(M)-mod ‘" A
on CC7(F(M)) e Py .
lands in CCy s homomorphism

ocCy



Module structure

Theorem (R. & Smith '12-'17, independently Ganatra '13 for exact M)

e HH,.(F(M)) is QH*(M)-module

e HH,(W(M)) is SH*(M)-module

e OC is a QH*(M)-module hom, respectively an SH*(M)-module hom
e CO is a unital algebra homomorphism.

" ;‘l} @ holo sphere
Here QH*(M) 817 "o Why OC is @
acts L QH*(M)-mod N A
on CQ?(]:(M)) ° . homomorphism -
lands in CCy4 g 0Ca aluing oc;

Monotonicity and c;-eigenvalues (Kontsevich, Seidel, Auroux)

Monotone Lagrangians L C monotone M with HF*(L, L) # 0, the unit

[L] € HF* satisfies ¢;(TM) = [L] = A\ [L], A € {evalues of ¢;(TM) € QH*}

In fact, to ensure (Floer differential)? = 0, restrict to F\(M) = {only such L}.

Eigensummand decomposition (R./Smith) $OC, : HH, (F\(M)) — QH*(M)\
Corollary Hitting invertible in QH*(M), = Generation for F(M).

Example. If eigensummands QH*(M), are 1-dimensional (so field!) then:

OC non-zero = hit invertible = Generation for F(M)



Applications to Fano toric varieties

QH*(CP?) = K[x]/(x3 — t) = S o Kb o K ¢ = e2mi/3

x—1t W x—(t 2t

Trick: [pt] € C.(L) ~ CF*(L, L), leading OC([pt]) term is constant disc,
‘(’)C([pt]):PD(point)+higher t ‘:>non—zero:>generation if 3L, 9[pt]=0
Key: (Cho-Oh'06) Crit(W) < tori L with A\ = W(z), and d[pt] = 0.
W=24+2+ thlZgl has 3 crit points, crit vals = three evals of c;.
Batyrev'93/Givental'96:QH* (M) =2 Jac(W) =K[z. . ]/(O,W.. . .), ct (M) — W
= trick works for closed Fano M, Morse W),. But don't need Morse by
Cho-Hong-Lau'19 & Lekili-Evans’19. Don't need Fano by Abouzaid-FOOO




Applications to Fano toric varieties

QH*(CP?) = K[x]/(x® — t) = Kb g Kbd o Kix] ¢ = e2mif3

x—1t W x—Ct ¥ x—-_2t

Trick: [pt] € C.(L) ~ CF*(L, L), leading OC([pt]) term is constant disc,
‘(’)C([pt]):PD(point)+higher t ‘:>non—zero:>generation if 3L, 9[pt]=0

Key: (Cho-Oh'06) Crit(W) < tori L with A\ = W(z), and d[pt] = 0.

W=24+2+ thlZgl has 3 crit points, crit vals = three evals of c;.
Batyrev'93/Givental'96:QH* (M) =2 Jac(W) =K[z. . ]/(O,W.. . .), ct (M) — W
= trick works for closed Fano M, Morse W),. But don't need Morse by
Cho-Hong-Lau'19 & Lekili-Evans’19. Don't need Fano by Abouzaid-FOOO

Theorem (R./Smith '12-'17, R.'16)

W(Opm(—k)) for 1 < k < m is split-generated by Lagrangian torus L
with 14+ m — k choices of holonomy. (L = lift Clifford torus to sphere bundle)
Sketch Proof. SH*(M) = A[w]/(wl*™=k — (—k)*t) = Jac(W), and

OC([pt]) = (—ku)t - PD(fiber) + O(t%) # 0

(leading term: disc in fibre= C bounding S*, it hits [P™] in 1 point) [
Theorem. (R.'16) Works for any monotone toric negative line bundle
E — B with W Morse. Key ingredient R.'16: SH*(E) = Jac(WE).




A message from our sponsor: Technicalities

Fukaya-Oh-Ohta-Ono over the years have carried out major foundational work

on Floer theory: no assumptions on M (closed sympl.), use Kuranishi structures.
Instead we use non-compact M, use explicit perturbations of auxiliary data, but
require assumptions on L, M. At co: w = d(Ra), L “conical” (LegendrianxR).

“Exact” means: w = df globally on M, exact Lags L.

@ Well-defined (single-valued) action functionals for Floer theory!

@ Easy energy estimates, no holo curves, no bubbling problems

© e.g. T*N and (Wein)Stein manifolds, but no interesting Kéhler mfds

© Can avoid direct limits: use Hamiltonians quadratic in R in A -category:
CF(eh(L). L) ® CF(ph(L). L) = crah(tnn) ® craie) “> CF(g(L), L)
Abouzaid '10: canonical CF(p3%(L), L) = CF(p1,(L), L) via Og-flow (Liouville)

“Monotone”: ¢;(M) = kw, k > 0, orientable monotone L (w(u) = Maslov(u)/2 for discs)

© Bubbling controllable: w(u) > 0 = ¢;(u) > 0 = positive Fredholm index

@ Energy: Novikov ring formal variable ¢, high energy = high t-power

© Interesting mfds: negative line bundles over closed Kahler mfds, blow-ups

© Must use direct limit over Hamiltonians linear in R in A,-category



A message from our sponsor: Technicalities (race yourstr

Key issue: implement the direct limit at the chain level.
Exact: A.-algebra CW*(L, L) of one Lagrangian: Abouzaid-Seidel '10.
Monotone: A,-category: R.-Smith '17 (works also for Exact).

Fix H: M =R ey, 1) = & cFe(Li, Lj; wH)]al
w=1

linear at oo.

e CF*(Lj, Lj; wH) generated by 1-orbits of X,y from L; to L;, the “chords”.

e q formal variable of degree —1 satisfying q°> = 0.
= Two copies CF*(L;,LjwH)[q]= CF*(L;,Lj;wH) & CF*(L;,Lj;wH)q.

Differential: |z (x + qy) = (=1)*ox + (=1)¥I(qdy + £y — y)

e 0: CF*(Lj,Lj; wH) — CF**1(L;, L;; wH) usual Floer differential

0 counts strips u bounding L;, L;, asymptotic to chords, du — wXy ® dt holo.
o 8: CF*(L;, Lj; wH) — CF*(L;, Lj; (w + 1)H) Floer continuation map.
e if 9(y) = 0 then qy identifies y and £y at the cohomology level.
Cohomology direct limit: [y] = [Ry] € lim HF*(p} (L), L)=HW*(L, L).
e subcomplex (0q = 0) yields representatives of @HF*(L;, Lj; wH).

Analogously for symplectic cohomology: ‘SC*(I\/I) = @§CF*(wH)|q] ‘




A message from our sponsor: Technicalities (ners morer)

Rough idea of how one counts the Floer PDE solutions:

(du — Xy @)%t = 0 for u : (decorated disc with bdry punctures) — M.

e v = 1-form on punctured disc

e v = w; dt near input puncture for x; € CF*(L;_1, L;; w;H) (iocal strip-like coords)

e Crucial: dv(-,J-) <0 so a max principle stops solutions going to co

o Stokes's theorem = 0 < — [dy = wo — 3, s
x3  Picture: £t¥7¢18¥ x contribution to As.-map

W  (so need a big output weight wp!)

Le 12(axs @ x ® qx1) € CF*(Lo, La; woH)
e x; has q <+ (geodesic xox; has marker) < 33;
X oy = wiag + woz + wzaz + 1 + 33
Lo Ly ® i = dt near xp, x;, else 0 at bdry; da; =0
x1 e 3; = dt near xp, else 0 at bdry; df3; <0 # 0 only near marker

Lo e wy=w; +wy+ w3+ 1+1, due to 51,3
e gxp-output: determined by asking 13 is Oq-linear. Geometrically it
corresponds to one of the markers escaping to xp.

x3 x3
cample 4

Aoo—eqns: ‘, part of u?(gxs, x2) ‘, part of p2(gx3, x2)

so £qu?(x3, x2)

X2 x2



The role of monotonicity

e For (Fredholm) index O solution counts, bubbling is not an issue:
non-constant bubbles have positive area so positive index.
= main component of the broken solution would have virdim < 0.

e Proof 92 = 0: index 2 solutions = 3 Maslov 2 (Chern 1) J-holo sphere
bubble? No: generic J = { spheres } smooth moduli space codimg = 4

e Proof 92 = 0: 3 Maslov 2 disc bubble with boundary on one L?
Lazzarini '10 = { discs } smooth moduli space. (2 is min Maslov: L orientable)
Key: Moduli space of Maslov 2 discs with boundary marked point, evaluation at
marker = locally finite (dim L)-cycle so a multiple of top class [L],

mo(L) = Z t“llev, [M1(8)] = mo(L) [L] € C(llfim(L)(L; NovikovRing).

Oh '93/’95 =0 OD(X) = (mo(L,) — mo(Lj))X.
Serious problem!

Conclusion: Break up A..-category so u! ot = 0:
‘.7'3\(/\/1) . only allow L with mg(L) = )\‘

Compare: Cat of Matrix Factorizations, 82(f:/vl]-'(WfA)HM]-'(Wf/\’)):(/\7>\’)f.
CONVENTION: from now on F(M), W(M) means Fy(M), Wx(M).



The )\ are eigenvalues of ¢;(M)- : QH*(M) — QH*(M).

Kontsevich, Seidel and Auroux (Auroux '07):
HF*(L,L) # 0 = mg(L) is an eigenvalue of c1(M).
1% Suppose L disjoint from If-cycle D representing ci(M). (so PD(c(M)) = D)
2% Suppose Maslovindex(J-holo v : (D, 0D) — (M, L)) = 2#(un D).
= discs counted by mg(L) hit D once, reparametrise: u(0) € D
Use unital ring homomorphism CO : QH*(M) — HF*(L, L):
input CO(D) ="(the discs u above)"= mq(L) [L].

If-cycle
CO(umt [M]) :“(Constant diSCS)”: [L] (Maslov 0 discs)
out = CO(c1(M) — mo(L)[M]) = 0 not invertible! (unit 11 # 0)
L Finally: unital ring hom sends invertibles — invertibles.

Claim (R.-Smith '17): x conditions hold for us.

Proof: Maslovindex = homological intersection number with PD of Maslov
cycle yuy € H*(M, L) (dualise Maslovindex: Ha(M, L) — Z).

Also py + 2¢c1(M) via H?*(M, L) — H?(M). Recall PD(c;(M)) = zero locus of
generic smooth section s of a complex line bundle £ on M with ¢;(&) = c1(M).
But ¢1(M)|. = kw| = 0 = & trivial near L = can ensure s # 0 near L [



Eigensummand decomposition of the string maps

Let c = a(M) — \id
Let QH*(M)y = ker c'*'8° = generalised A-eigensummand of ¢;(M)
Sketch proof that OC : HH,.(Fx(M)) — QH*(M)x:

Picture: QC*-action ¢ on X7 @ X6 @ - - - ® x9 € CCy, showing

X1 me’6

e xs contribution ¢ (xo @ X7 @ x5 @ X5) @ x4 @ -+ @ x1 € CCl,
X0 out 00 in picture: out ® x4 ® X3 ® x; ® x1 € CCy.

“Length of word” keeps decreasing if keep applying v, unless
xe . A apply ¥, to just one element so hit CF*(L, L). But ¢, on

x2 HF*(L, L) is u-product by CO(c) = 0 (previous slide)



Eigensummand decomposition of the string maps

Let c = a(M) — \id

Let QH*(M)y = ker c'*'8° = generalised A-eigensummand of ¢;(M)
Sketch proof that OC : HH,.(Fx(M)) — QH*(M)x:

Picture: QC*-action ¢ on X7 @ X6 @ - - - ® x9 € CCy, showing

X1 me’6

e xs contribution ¢ (xo @ X7 @ x5 @ X5) @ x4 @ -+ @ x1 € CCl,
X0 Out‘x“ in picture: out ® x4 ® x3 @ xo  x1 € CCy4.

. ' “Length of word” keeps decreasing if keep applying 9., unless
x1®

- apply ¥, to just one element so hit CF*(L, L). But ¢, on
X HF*(L, L) is u-product by CO(c) = 0 (previous slide)
Acceleration Diagram (R/Smith'17) Not as simple as it looks! Cannot allow w =0
HH, (A7) in CW* = @CF*(Lo, L1; wH).
HH, (FA(M)) ——HH.(Wx(M)) New A..-category Wo(M): for compact Lags
Ocl loc Lo, Ly, extra summand CF*(Lg, L1)[q]

(perturb CI-'*(«p}((Lo)7 Ly) by compactly supported K as in Seidel).

QH* (M), SH*(M)»  Also SC* = QC*(M)][q] & SC*.

The natural functor W(M) — W,(M) is a quasi-isomorphism. In an
Axo-category one can always invert quasi-isos. So:

AF - J—_-(M) mclude WQ(M) quas: iso W(M)



Generators and relations for SH*(M) for toric M



Seidel representation

Theorem (Seidel 1997)

There is a representation S : Wlﬁ;;I(M) — Aut(QH*(M)) where
S(g) = quantum product by an invertible element S(g)(1).

At the chain level: S : CF*(H) dentification  mps (g py)

x| g X
g'H=Hog — Ky o g ensures g*dAy = dAg«y (A =Floer action), thus
generators and moduli spaces are identified. As HF*(H) = QH*(M)
independently of H, one gets an automorphism of QH*(M):

8t

o S =

S continuation
~ HF*(Ho) —= QH* (M)

QH* (M)—=HF*(Hy) — == HF" (H_1)

Remark. S(g) can be phrased as a 2-point GW-invariant counting
holomorphic sections of a bundle over S?, fibre M, transition g.



Example: M = CP!

Dy = {z =0} Hamiltonian S!-actions which rotate about

1 the toric divisors D; = {z; = 0}
__ [p2mit .
H go(t)z =[e""zy : z1]
moment map gl(t)z = [ZO : ezmtzl]
0 determine invertibles in QH*(CP?):

Dy = {z =0} moment x0 = S(g0)(1) = PD[Dg] = w
polytope x1 = S(g1)(1) =PD[Dy] = w
P2zl =[z0: A "z] = & =& "t
= x0 = S(&) = S(El_l't) = Xl_l't
= xpx1 = t, therefore w * w = t.

Theorem (McDuff-Tolman 2006)

For closed Fano toric symplectic manifolds, the relations among the
SY-rotations around the toric divisors D; = {z; = 0} yield, via S, the
non-classical relations among the x; = PD[D;].

QH*(M) _ K[Xo, X1, . ]/ ( homology relations among xj=PD[Dj] )

S(relations among rotations about Dj)

BATYREV (1993) / GIVENTAL (1996) / CIELIEBAK-SALAMON (2002) / McDUFF-TOLMAN (2004).



Landau-Ginzburg Superpotential W

Moment polytope A = {y € R™: (y, &) > \;} Polytope for CP?
W : (C*)" — K = Novikov Ring w=(10) ¥ (-1,-1)
W(Zy,...,2Zn)=> t7NZ% _)T
Example. CP2, W = Zy + Z, + tZ; ' Z; ! e =(0,1)

By Batyrev (1993):

QH* (M) = Klxo, x1, - xr] Jac(W) = K[z, ..., Z5

( linear relations )
SR-relations

(O W, .. 07, W)

xj =PD[D}] +— tNZ%

linear relations — relations 0z W = 0.
The kernel includes the SR-relations since these correspond to (primitive)
relations among edges, so relations among the Z€.
Remark. The Z; are automatically invertible in Jac(W).
The x; = S(gj) are invertible because gj_l € miHam(M).
Ostrover-Tyomkin'08 p € Crit(W) non-degenerate = field summand C Jac(W).
R."16 Perturb w = W Morse = Jac(W) becomes semi-simple = Gfields, so get
Generation results for Fukaya/Wrapped Cat.



Generators and relations in SH*(M) from S'-actions

For M non-compact, | constructed homs similar to the Seidel rep.
r: 7TlHaHl linear,slope>0(M) — End(QH*(M))
R : mHam jear (M) —  Aut(SH*(M))
(M \ {compact},w) = (X x (1,00), d(Ra)) for contact mfd (¥, @)
Theorem (R. '14)
If on M\ {compact} the Reeb flow on ¥ arises as a Hamiltonian
Sl-action g on M, then there is an r(g) € QH*(M) with
SH*(M) = QH*(M),(¢) (localisation)

Theorem (R. '16)
For any non-compact Fano toric variety M (& technical conditions),
SH*(M) = QH*(M)ppip,,..Ppp[D,] = Jac(W)
r(gj) — PD[Dj] —  tNZY

Example (R.'16) E — B Fano toric neg.line bdle.: QH*(E) vs QH*(B)?
e same generators xg, . . ., Xm, same linear relations
e quantum relations: replace tg +— te(—kx)* = tgci(E)k

SH*(E) = QH™(E)x  (x = [we] = 7*[ws], alB] =>_x)



Example: the blow-up of C? at 0, namely Ocpi(—1)

c? c2 =Blowup of C? at 0 Hirzebruch surface Blpg(CP?)
€1 = (170)
—t=
e3 :(1,1) (1’0) \
/' e=(01) T (=11
T ©.1)

W=z1+2z2+t1z20 = o, W=1+ t~ 125, similarly for z
Jac(W) = K[z, 25 /(z1 + t, 20 + £) 2 K

QH*=QH*(Op(-1))
=K[x]/(x? + tx) 2K

Agrees with Batyrev presentation:
SR-reln e; + e = €3, 50 x1x0 = x3-t
Linear reln x; =xo = —x3. Put x = x3.

SR-relation comes from the relation among rotations g1 8> = g3-t.
Localize at x;: SH* = K[x*]/(x? + tx) 2 K[x]/(x + t) 2 K.

SH* — Jac(W), x1 = z1 = —t, xo = 20 = —t, x3 t 17z =t.



Symplectic vs Quantum when there is an S'-action

(M \ {compact},w) = (X x (1,00), d(Ra)) for contact mfd (¥, @)
Theorem (R. '14)

If on M\ {compact} the Reeb flow on ¥ arises as a Hamiltonian
St-action g on M, then there is an r(g) € QH*(M) with
SH*(M) = QH*(M),(¢) (localisation)

Fix small Hy. Let Hyy1=(g })*Hx = Hrog ' + Ko g™l (kgeneratesg)
(1) Canonically: CF*(Hx) = CF*(Hk11), x + g1 - x (Seidel 1997)
(2) g - [HF*(Hk) = HF*(Hi11)] = [HF*(Hii1) = HF* (Hicp2)]
(3) SH*(M) = lim (QH = HF(Ho) — HF(Hy) — HF(Hy) — - -)

=lim (QH = QH =% QH == --°)

=~ QH*(M ) / (generalized 0-espace of r)

4) Description of QH s QH:

o O ..

H* 9HF *
Q canomcal Fr(Ha )WHF (Ho) —= QH*(M)

continuation map




More precise statement of the toric presentation (R. '16)

Let X be a non-compact Fano toric manifold, such that the
Hamiltonians generating the rotations g; about the toric divisors satisfy
the Floer theory maximum principle.

Let J = ideal generated by the linear and SR-relations. Then:
QH*(X) =2 K[x1,...,x]/TJ, PD[Dj] — x; (Batyrev presentation)
SHA(X) = KPq™, ... 1/ T, r(g) = x

c* 1 QH*(X) — SH*(X) is the localization at PD[Dj].

SH*(X) 2 Jac(W), x; — t = Nz9.

QH*(X) = Rx/(0,W,...) for the K-subalgebra Rx C K[x}, .. ]
generated by z° for e € Spany(e;).

ci(TX) =>_PD[Dj] = > xj corresponds to W € Jac(W).

Details about max principle: at infinity, want Hamiltonians to have the
form f(y) - R, where R is the radial coordinate, and f : ¥ — R is
invariant under the Reeb flow. This is a slightly broader class of
Hamiltonians than k - R, and these can be used to define SH*.



The cohomological McKay Correspondence

Joint work with Mark McLean
Stony Brook University N.Y.



The big picture: resolutions of quotient singularities
Let G C SL(n,C) be a finite subgroup # 1. Quotient C" by G-action,

= Sing(X) ={[z] e X : g-z=2zsome g # 1 € G}.
= X singular at 0 and possibly elsewhere. Take a resolution

meaning: Y non-singular quasi-proj. var., 7 proper birational morphism,
isomorphism away from the exceptional locus £ = 7~ 1(Sing(X)).

Question:
{Geometry of Y} AN {Representation theory of G}.

Example A;. For G = {£l} C SL(2,C), first embed
- vo 1 C2/{EI} = C3, (x,y) = (X2, xy,y?).
' - Image = Variety(XZ — Y2 = 0). Then blow-up 0 to get

A ‘ Y = T*CP' = O¢pi(—2). Generators of H*(Y) = (1, wp1)

< irreducible representations 1 € GL(C) and £1 € GL(C).



Classical McKay correspondence: dim =2, G C SL(2,C)

Finite subgroups of SL(2,C) are classified up to conjugation (Z,, D2y,
']1‘12 @24 H60) in 1:1 correspondence with ADE Dynkin Diagrams.

Clx,y]¢ = (f, f, ;) determine a surface C?/G — C2 singular at 0.
Klein / 1934 Du Val: up to analytic isomorphism, such equations classify
the simple surface singularities (rational double points).

Example: Quaternion group D4 C SL(2,C), X ={x?+zy?+23=0} C C3:

o Exceptional
™ divisors :
. ' W Dynkin Diagram Dy

In the minimal resolution Y — C?/G, exceptional divisors E; are in 1:1
correspondence with the non-trivial irreducible representations of G.
Remark: E; generate H.(Y), #(Irreducible Reps)=+#(Conj. Classes).
1980 McKay: McKay quiver for C? is the extended Dynkin diagram.
1983 Gonzalez-Sprinberg, Verdier: K-theory Ko(Y') = Rep(G).

2000 Kapranov, Vasserot: D?(Coh(Y)) =~ D?(Coh(C?)¢).




Higher dimensions: generalized McKay correspondence

Let 7: Y — X = C"/G be a crepant resolution, so Ky = m*Kx (=0).

In general: Ky = 7*Kx + >_ a,E; for a; > 0. Exceptional divisors E; with

a; = 0 must appear on any resolution. Crepant resolutions may not exist.

Dixon-Harvey-Vafa-Witten '85 / Atiyah-Segal '89 / Hirzebruch-Héofer '90
Conjecture: x(Y) = #Conj.Classes(G)

Miles Reid '92 stated the Cohomological McKay correspondence:

H°dd(y,C) = 0] and |dim H?*(Y,C) = #(age k conjugacy classes)

g ! € Aut(C") has evalues e, ... e, a; € [0,27), define
age(g) = % >-aj €[0,n).
Proofs: dim = 3 Ito-Reid 1994, abelian G Batyrev-Dais 1996, in general
Batyrev 1999 & Denef-Loeser 2002 (Motivic integration). Many ideas:
[to-Nakamura 1999, Ito-Nakajima 2000, Bridgeland-King-Reid 2001, ...
Open problem: find a “natural” basis for H*(Y,C) <+ Conj.classes(G)
Kaledin 2002: 3 basis if G C Sp(m) C SL(2m, C) (Valuations).

Nelson,etal. 2015: A,-surface sing.= dim ESH (Y) = n+1=|Conj(Zn1)|
Abreu-Macarini 2016: G abelian, C"/G isolated = Y mean(Link)=21(Y).



Theorem (McLean - R. 2018)

Let C"/G be an isolated singularity for G C SL(n,C) a finite subgroup.
Given any crepant resolution w: Y — C"/G, there is a bijection

Conj,(G) = {age k conjugacy classes} — (basis of H**(Y;K))
and H°%(Y; K) = 0.

Rmk.1 Singularity at 0 is isolated if elements+ 1 do not have eigenvalue 1.
We are currently writing up the paper for the non-isolated case.

Rmk.2 Any field IC of characteristic 0 works. For finite characteristic we
need to assume char K ¢ {2,3,...,|G|}.

Key Idea: Build a Z-graded symplectic invariant SHY (Y'), and an iso

dsc = SHI YY) = H*(Y)

Generators are certain Hamiltonian orbits xg : Sl — Y inside Y, related
to eigenvectors in C” of the g € G. Gradings:

CZ(xg) — 1 =12age(g)




Warm-up: Hamiltonian orbits in X = C"/G

Can assume G C SU(n), by an averaging argument.

Diagonal C*-action on C" descends to X = C"/G.

The S*-action by e rotation is the Hamiltonian flow for h = J||z[%.
Suppose Hy : X — R convex function of h, so that flow on each slice

S = {||z|| = constant > 0} = 52n—1/G
is et with a “speed” a that increases — k as we move to infinity in X.

What are the 1-periodic orbits?

Want [e?z] = [z] in C"/G.

& e?z=g.zforsomegeG.

&z is an e@-eigenvector of some g € G.

Given an e”-eigenvector z € C" of g € G we get a 1-periodic orbit in S:

xg(t) = ez

If G acts freely on C"\ {0} (so C"/G isolated) then from z we recover
g uniquely, since z has no stabiliser. Thus orbits in X \ {0} are uniquely
labeled by elements of G. Only the conjugacy class

{hgh=! : h € G} € Conj(G) matters since identify [z] = [h- 2] in X.



Hamiltonian orbits in Y

Key. Diagonal C*-action on X = C"/G lifts to Y (uses Y crepant). Can

pick Kahler form on Y so that the Sl-action is Hamiltonian, h: Y — R.

Floer theory. Pick H, : X — R increasing at infinity as kK — oc.

Example 1: Hy = (k+¢)-h

Example 2: Hyx = ck(h) - h for a cut-off ¢, growing from 0 to k + .

S Symplectic cohomology SH*(Y) = lim HF*(Hy), where:

Floer complex: generators are the 1-periodic orbits of Hy.

Differential counts cylinders u: R x S' — Y connecting such

o.u+Jo,u=—VH orbits and satisfying a certain elliptic PDE (Floer's equation).

For C"/G isolated, away from the exceptional divisor £ = 7~1(0),

Y \ E = X\ 0 so we have the "same” 1-periodic orbits x, arising in
slices S 2 $2"71/G as for X. (When not isolated 3 several lifts of x; to
Y, related to eigenvectors z € Sing(X) having non-trivial stabilisers)

‘McLean—R. (mimicking R.2010): SH*(Y) = 0 by a grading trick. ‘

Compare: SH*(C") = 0 because the only 1-periodic orbit 0 for
H=(k+ 8)%”2”2 has Conley-Zehnder index — —oo as k — oo.




Positive Symplectic Cohomology SH}

Aim. Only care about orbits in S-slices, ignore constant orbits over 0.

We want to kill the Morse subcomplex of orbits living over 0.

McLean-R. Build a new filtration allowing generalisation of Viterbo '96:

Use Hi = ck(h) - h, have SES: 0— CF*(Hg) — CF*(Hx)— CF}(Hk) —0,
o= HY(Y) = SH*(Y) = SHI(Y) = H*TY{(Y) — -

For our resolution, SH*(Y) = 0 so

SHITHY) =2 H*(Y)

McLean-R. Our filtration also yields a Morse-Bott spectral sequence (like
Morse-Bott spectral sequence in exact case in Kwon - van Koert '16) :
Og,» 1= moduli space of 1-orbits associated to eigenvectors [z] € C"/G
with eigenvalue e/, for each conjugacy class g € Conj(G). Then

@ H*(Og.a)[—1g.al = SHL(Y)
geConj(G),a>0

where (g 5 € Z is a grading shift (Conley-Zehnder index of Og ,).
We believe the generators of SH(Y') to be precisely the maxima x, of
Morse-Bott submfds Oy , for 0 < a < 27 minimal for each g € Conj(G).

(Proved a slightly weaker statement).



Example: A;-singularity C?/ &/ and Y = T*CP!

Slices= RP? = §3/ £ | and H*(RP?) = K[0] & K[—3] (for char(K) = 0)
Any initial point works, so

O_toddr =RP* O evenn = RP.
Morse-Bott spectral sequence ®H*(Og, a)[—tig,a] = SHI(Y):

P

Explanation: (0),(2) = Morse Complex of exceptional divisor £ = P*.
O = 1-orbits which lift from C2/ 4 / to C? (Conj.Class +1)

C = 1-orbits which don't lift (Conj.Class —1I)

Thus SH{ (Y) is generated by:

o half-great circle of age 1 in 1% slice RP3, in SH1(Y) = H?(Y).
For (—1)~1 € Aut(C?) have evals €™ e™ so age = 27/2m = 1.

o great circle of age 0 in 2" slice RP3, in SH;*(Y) = HO(Y)
Age grading: for /=1 € Aut(C?) have evals €%, % so age = 0/27 = 0.

<77



S!-Equivariant Symplectic Cohomology ESH*

Want to avoid using H*(Y) in the argument [used it in the example].
Ordinary SH*: is defined over the Novikov field K. Think C((t)).
Sl-Equivariant SH*: over K[[u]]-module F = K((u))/uK[[u]], |u] = 2.
Typical element: k,u=P+--- -+ kou®. Differential § =9+ udq+u?dp+- - -
Again ESH*(Y) =0 = ESH:(Y)[1] = EH*(Y;K) = H*(Y;K) ® F.
= ESH{(Y) = ®F[—d;] supported in degrees d; € {—1,0,...,2n — 2}.
Key: Now take EH*(Og,,) not the ordinary H*(Og,,).
EXAMPLE (continued): C2/ 4 /. Each Og, = RP3 contributes
H% (Og,a) = H*(RP3/St) = H*(53/S1) = H*(CP!) = K[0] & K[-2]
E;-page of the spectral sequence ®EH*(Og,2) = ESHI(Y):

-3 5 -7 -9 -1

-1 -3 -5 -7 -9 -11 -13
Miracle: no differentials since all generators are in odd degrees!
General story: each (’)gy,-,,/S:l is a finite quotient of CPX some k. For
char(K) = 0, EH*(Og,,) = H*~}(CP¥) always in odd degrees, so:

ESHL(Y) = &H*(CP%*)[~1 — ig..]




The Gysin sequence relating SH* and ESH*

Example (continued): C2?/ £ [, we find ESH* but need to recover SH .
ESH; | =K[-l]eK[1]eK{3]e- - = K[-1]eK[-1]u'®- - = F[-1]
ESH |, = K[+1]oK[3]eK[5]®- - = K[+1]@K[+1]u"'®--- = F[+1]
The Symplectic Gysin sequence (Bourgeois-Oancea 2013):

= SHI(Y) = ESH(Y) S ESH P (Y) = SHTH (YY) — -+

Remark. Classical Gysin sequence for S'-bundle 7 : E — M

s HA(E) T H(M) D8 H o (M) T He 1 (E) = -
which for M = LY X1 5% (and E = LY x §° ~ LY') becomes
o —> H(LY) — EH.(LY) — EH._>(LY) — H_1(LY) — - -

Recall ESH(Y) = ®F[-d;]. Thus:

0 — SHY(Y) - @F[—d;] = OF[—d;] — SHY*(Y) — 0
But F = F always surjective. So SH$*(Y) = 0 (so H°d(Y) = 0) and
H?K(Y) 22 SH3K71(Y') = ker u of dimg =tk ESH2*71(Y') =#Conj,(G)

(the last equality is a non-trivial Conley-Zehnder index calculation).
In the example: SH*(Y) = K[-1] & K[+1] = H*(Y) & H(Y).



Thank you for listening



