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Abstract. Generalizing the Moret-Bailly pencil of supersingular abelian surfaces
to higher dimensions, we construct for each field of characteristic p > 0 a smooth
projective variety with trivial dualizing sheaf that does not lift to characteristic
zero. Our approach heavily relies on local unipotent group schemes, the Beauville–
Bogomolov Decomposition for Kähler manifolds with c1 = 0, and equivariant
deformation theory in mixed characteristics.

Contents

Introduction 1
1. Families of algebraic group schemes 4
2. Families of abelian varieties 6
3. Moret-Bailly families 8
4. The Picard scheme and the Albanese map 11
5. Non-existence of projective liftings 13
6. Cohomology and lattice points 15
7. Cohomology and weights 18
8. Non-existence of formal liftings 22
9. Non-existence of liftings to Witt vectors 25
References 28

Introduction

Every compact Kähler manifold V with Chern class c1 = 0 has unobstructed
deformations, although the obstruction group H2(V,ΘV ) is usually non-zero. This
foundational fact relies on the T 1-Lifting Theorem (confer [9], [64], [63], [39], [52]).
It holds, in particular, for complex tori, hyperkähler manifolds, and Calabi–Yau
manifolds. In fact, the Beauville–Bogomolov Decomposition Theorem asserts that
a compact Kähler manifold V with c1 = 0 admits a finite étale covering V ′ → V
that splits into a product V ′ = V1× . . .× Vr where the factors belong to these three
classes ([8], [6]).

Over fields k of characteristic p > 0, much less is known for smooth proper
scheme Y that have c1 = 0, in the sense that the dualizing sheaf ωY is numerically
trivial. Again we have three particular classes: The abelian varieties take over the
role of complex tori. Copying the definition in characteristic zero, one may call Y

2010 Mathematics Subject Classification. 14J32, 14K05, 14L15, 14D10. Keywords: Moret-Bailly
family, abelian varieties, group schemes, Calabi–Yau manifolds.

1



MORET-BAILLY FAMILIES 2

a hyperkähler manifold if it is simply-connected, and there is some σ ∈ H0(Y,Ω2
Y )

whose adjoint map σ : ΘY → Ω1
Y/k is bijective. Similarly, Y is a Calabi–Yau manifold

if it is simply-connected with hi(OY ) = 0 for 1 < i < dim(Y ).
Under strong additional assumptions, analogues of the T 1-Lifting Theorem ([22],

[56]) and the Decomposition Theorem [51] hold true. In light of the liftability of
abelian varieties ([38], [46]) and K3-surfaces [15], it is natural to wonder whether any
such Y admits a lifting to characteristic zero. This, however, turns out to be false
already for Calabi–Yau threefolds. The first example was given by Hirokado [33] in
characteristic p = 3. The second author [57] found further examples in characteristic
p = 2, 3 using quotients of the Moret-Bailly pencil of supersingular abelian surfaces
[43]. Further examples in dimension three at certain bounded sets of primes where
constructed by Schoen [55], Hirokado, Ito and Saito ([34] and [35]), Cynk and van
Straten [13], and Cynk and Schütt [14]. Finally, Achinger and Zdanowicz ([2], [66])
produced for each prime p ≥ 5 a non-liftable Calabi–Yau manifold of dimension 2p,
based on the failure of Kodaira Vanishing as observed by Totaro [65].

The goal of this paper is to generalize the Moret-Bailly pencil to higher dimen-
sions, and establish further non-liftability results: Let A = E1 × . . . × Eg be a
product of supersingular elliptic curves. Roughly speaking, the embeddings of the
local unipotent group scheme αp = Ga[F ] into the abelian variety A are param-
eterized by the projectivization Pn = P(a) of the Lie algebra a = Lie(A), where

n + 1 = g. In fact, any inclusion OPn(−d) ⊂ O⊕(n+1)
Pn that is locally a direct sum-

mand corresponds to a family H ⊂ A×Pn of such finite local group schemes. Setting
X = A × Pn, we then form the family of quotients Y = X/H, which comes with a
radical surjection ε : X → Y and an induced fibration ϕ : Y → Pn.

We call the fibrations ϕ : Y → Pn and also the smooth proper schemes Y Moret-
Bailly families, since they are higher-dimensional analogs of the famous construction
of a non-isotrivial family of abelian surfaces over the projective line [43]; such families
were already mentioned by Grothendieck in [31], Remark 4.6.

The dimension of Y is 2n+ 1 = 2g − 1. It is easy to compute the Betti numbers
bi(Y ), but the cohomological invariants hi(OY ) remain mysterious. Using a result of
Achinger [1] on the splitting type of the Frobenius push-forward on toric varieties,
one may express hi(OY ) via lattice point counts. It turns out that the canonical
projection ψ : Y → A(p) = A/A[F ] is the Albanese map, and the dualizing sheaf ωY
is the pullback of OPn(m), for the integer m = d(p− 1)− g. In particular, we have
c1 = 0 if and only if d(p− 1) = g, and in this case ωY = OY . More generally, ωY is
anti-nef, which means that (ωY ·C) ≤ 0 for every integral curve C ⊂ Y , if and only
if d(p− 1) ≤ g. The first main result of this paper is:

Theorem A. (See Thm. 5.1.) Suppose d(p − 1) ≤ g and p ≥ 3. Then the Moret-
Bailly family Y does not projectively lift to characteristic zero.

In the boundary case d(p − 1) = g, this apparently gives the first examples of
non-liftable manifolds with c1 = 0 that do not belong the class of abelian varieties,
hyperkähler manifolds, Calabi–Yau manifolds, or products thereof. To establish
the result, we assume that a projective lifting Y → Spec(R) exists, and use the
existence of relative Hilbert schemes HilbY/R to show that properties of the Albanese
map V → AlbV/C for the resulting complex fiber V = Y ⊗R C would contradict a
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recent result of Cao [12]. In the case where d(p − 1) = g, the contradiction could
also be derived from the Beauville–Bogomolov Decomposition Theorem for Kähler
manifolds with c1 = 0. 1

We strongly believe that Moret-Bailly families do not even formally lift to char-
acteristic zero. So far we are not able to show this, but we can prove the following,
which takes into account the sign involution on Y , viewed as a family of abelian
varieties parameterized by Pn:

Theorem B. (See Thm. 8.2) Suppose that d = 1, p − 1 ≤ g and p ≥ 3. Then Y
together with its sign involution does not formally lift to characteristic zero.

We show that any formal lifting Y to characteristic zero, in which the sign in-
volution extends, admits an ample sheaf. Then Grothendieck’s Existence Theorem
gives a contradiction to Theorem A. This argument relies on Rim’s equivariant de-
formation theory [54] and its generalization to mixed characteristics [58], and a
computation of weights in the groups H2(Y,OY ) and H1(Y,ΘY ) for the action of
G = {±1} coming from the sign involution on A. In the first version of the ar-
ticle, we overlooked some contribution to the weights, which led to an unjustified
stronger assertion. It turns out that extending the sign involution to infinitesimal
deformations Y of Y is actually the same as extending the morphism ϕ : Y → Pn
(see Proposition 8.4).

In the last section of this article, we consider the possibility of lifting Moret-Bailly
families to the ring W2(k) of Witt vectors of length two. The third main result is
the following:

Theorem C. (see Thm. 9.1) Fix n ≥ 2 and d ≥ 1. If n 6≡ 2 modulo 4, and the
ground field k is perfect, then the Moret-Bailly family Y does not lift to W2(k) for
almost all primes p > 0.

Note that in contrast to the previous results, here there are no assumption on
the dualizing sheaf ωY . Of course there still may be deformations some finite flat
extensions of W2(k). In the special case n = 3, we actually can show that Y does
not lift to W2(k) for all primes p ≥ 7.

To prove Theorem C, we construct certain ample sheaves on the Moret-Bailly fam-
ily Y that violate the conclusion of the Kodaira vanishing theorem. By the results
of Deligne and Illusie [16], this ensures non-liftability to W2(k). The computation
relies on the Hirzebruch–Riemann–Roch Theorem, together with an analysis of the
Todd class td(ΘY ) and properties of the Bernoulli numbers Bi ∈ Q.

The paper is organized as follows: In Section 1 we collect some facts on families of
algebraic group schemes in characteristic p > 0 and discuss the four-term complex
that describes certain infinitesimal quotients. In Section 2 we apply this to families
of abelian varieties. The Moret-Bailly families ϕ : Y → Pn are introduced in Section
3, where we compute the dualizing sheaf and Betti numbers. Section 4 contains a
description of the Picard scheme and the Albanese map. Fibers of the Albanese

1In a first version of this paper, we considered only the case d(p − 1) = g. Ludvig Olsson
discovered that our result could be extended to the situation where the dual of ωY is nef, if one
avails oneself of the result of Cao. We are very grateful to him for sharing his insight with us and
allowing us to make use of it in this paper.
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map play a crucial role in Section 5, where we prove that Moret-Bailly families
with c1 = 0 do not projectively lift to characteristic zero. Here the main ingredient
are relative Hilbert schemes, and the Beauville–Bogomolov decomposition over the
complex numbers. In Section 6 we express the cohomology groups H i(Y,OY ) in
terms of cohomology on Pn for coefficient sheaves that involve Frobenius pullbacks
and exterior powers. This is used in Section 7 to compute weights in H2(Y,OY ) and
H1(Y,ΘY ), which are the crucial obstruction groups for infinitesimal deformations.
Section 8 contains the proof that Moret-Bailly families Y with c1 = 0, together
with the sign involution, do not admit a formal lift to characteristic zero, by using
equivariant deformation theory in mixed characteristics. In Section 9 we show that
there are ample invertible sheaves on Y which violate the conclusion of the Kodaira
vanishing theorem when n, d, p satisfy certain numerical conditions.

Acknowledgement. We wish to thank the referee for careful reading and valuable
suggestions, in particular for pointing out a mistake in the first version of the proof
for Proposition 7.4. The second author is grateful for the hospitality during his visit
at Pembroke College Oxford, where much of the work was carried out. The research
was supported by the Deutsche Forschungsgemeinschaft via the grant SCHR 671/6-1
Enriques-Mannigfaltigkeiten. It was also conducted in the framework of the research
training group GRK 2240: Algebro-geometric Methods in Algebra, Arithmetic and
Topology. We like to thank Laurent Moret-Bailly for useful remarks on the literature,
and Emilian Zdanowicz for pointing out the results in [2] and [66]. Last but not
least, we are grateful to Ludvig Olsson for his remarks and for his contribution to
this paper (see the discussion above).

1. Families of algebraic group schemes

Let S be a base scheme. A family of algebraic group schemes is a scheme X,
together with a morphism X → S that is flat and of finite presentation, endowed
with the structure of a relative group scheme. Here we could allow algebraic spaces
as well. However, for the sake of exposition we stay in the realm of schemes, which
is sufficient for our applications.

Let us assume that the sheaf of Kähler differentials Ω1
X/S is locally free. Then

the tangent sheaf ΘX/S = Hom(Ω1
X/S,OX) is locally free as well. The sheaf of Lie

algebras LieX/S is the pullback of ΘX/S along the neutral section e : S → X. This is a
locally free sheaf, endowed with a Lie bracket, such that the fibers g = LieX/S ⊗κ(a),
a ∈ S become Lie algebras over the residue fields κ(a).

Now suppose that S has characteristic p > 0. Then the sheaf of Lie algebras
LieX/S acquires the p-map as additional structure, such that the g = LieX/S ⊗κ(a)
become restricted Lie algebras over κ(a). Recall that the map

(1) Hom(X, Y ) −→ Hom(LieX/S,LieY/S)

is bijective provided that X has height at most one, according to [18], Exposé
VIIA, Theorem 7.2. Note that the hom set on the right comprises OS-linear maps
compatible with Lie bracket and p-map, and that height at most one means that
the relative Frobenius F : X → X(p) is trivial. Here X(p) is the pullback of X
along the absolute Frobenius map FS : S → S, and the morphism F comes from
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the commutative diagram

X
FX−−−→ Xy y

S −−−→
FS

S

of absolute Frobenius maps. Moreover, each sheaf H of restricted Lie algebras that
is locally free of finite rank arises from some family of algebraic group scheme H of
height at most one. In fact, H is the relative spectrum of the sheaf of algebras

(2) A = Hom(U [p](H ),OS),

where U [p](H ) is the quotient of the sheaf U(H ) of universal enveloping algebras
by some sheaf of ideals defined via the p-map, as explained in [18], Exposé VIIA,
Section 5, compare also [17], Chapter II, §7, No. 4.

Let H ⊂ LieX/S be a subsheaf that is locally a direct summand, and assume that
H is stable under both Lie bracket and p-map. Let H → S be the corresponding
family of group schemes of height at most one, with LieH/S = H . We now consider
the inclusion H ⊂ X and form the resulting quotient Y = X/H. Such a quotient
exists as an algebraic space. It is actually a scheme, because the projection X → Y
is a finite universal homeomorphism ([49], Theorem 6.2.2). If H is normal, Y inherits
the structure of a family of algebraic groups.

Proposition 1.1. The structure morphism Y → S is flat and of finite presentation.
Moreover, it is smooth provided that X → S is smooth.

Proof. The projection ε : X → Y is faithfully flat and of finite presentation, because
it is a torsor with respect to H×Y . The assertion now follows from fppf descent. �

In the special case H = LieX/S the group scheme H coincides with the kernel
X[F ] of the relative Frobenius map. In the general case, we thus have an S-morphism
X/H → X(p).

We now assume that H = X[F ], and furthermore that X is smooth. Then the
same holds for Y , and the homomorphism X → X(p) is an epimorphism, such that
X/H = X(p). In turn we obtain an exact sequence 0 → H → LieX/S → LieY/S of
families of restricted Lie algebras. By assumption, the inclusion on the left is locally
a direct summand, so the cokernel K = LieX/S /H is locally free. Since forming
the quotient Y = X/H commutes with base-change, the inclusion K ⊂ LieY/S is
locally a direct summand. Let K ⊂ Y be the corresponding family of group schemes
of height at most one. The isomorphism theorem ensures Y/K = X/X[F ] = X(p).
This gives a commutative diagram:

0 H LieX/S LieY/S

0 H (p) LieX(p)/S LieY (p)/S

The two diagonal maps vanish, hence the vertical map factors over H (p) and we
obtain the four-term complex

(3) 0 −→H −→ LieX/S −→ LieY/S −→H (p) −→ 0.
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Sequences like this already appear in Ekedahl’s work on foliations of smooth alge-
braic schemes ([21], Corollary 3.4).

Theorem 1.2. The above complex of restricted Lie algebras is exact.

Proof. By construction, the complex is exact at all terms, with the possible exception
of H (p). Our task is thus to verify that LieY/S → H (p) is surjective. By the
Nakayama Lemma, it suffices to do so after tensoring with κ(a), for a ∈ S. Since
the formation of quotients commutes with base-change, so does the formation of
the complex. It thus suffices to treat the case that S itself is the spectrum of a
field. Now the terms become finite-dimensional vector spaces. The outer terms have
the same dimension, and the same holds for the inner terms. In turn, the rank of
LieY/S →H (p) coincides with the dimension of H (p), so the map in question must
be surjective. �

2. Families of abelian varieties

We keep the assumption of the preceding section, and assume now that ψ : X → S
is a family of abelian varieties of relative dimension g ≥ 0. According to [3], Theorem
7.3 the relative Picard functor PicX/S is representable by an algebraic space, and
P = Pic0

X/S is called the family of dual abelian varieties. The sheaf of Lie algebras is

given by LieP/S = R1ψ∗(OX), with trivial bracket. Note that by results of Raynaud,
any family of abelian varieties has schematic total space, but is not necessarily
projective ([23], Theorem 1.9 and [53], Chapter VII, 4.2, compare also the discussion
in [41], Section 4).

Let X → Y be a homomorphism between two families of abelian varieties. It must
be flat, by the fiber-wise criterion for flatness ([28], Theorem 11.3.10). Suppose also
that dim(Xs) = dim(Ys) for all points s ∈ S. Then the kernel H ⊂ X is a family of
finite group schemes, and the Cartier dual Hom(H,Gm) is another family of finite
group schemes. As explained in [47], Corollary 1.3, this sits in an exact sequence

(4) 0 −→ Hom(H,Gm) −→ Pic0
Y/S −→ Pic0

X/S −→ 0.

Note that this can also be seen with the identification Pic0
X/S = Ext1(X,Gm) ex-

plained in [32], Exposé VII, and the long exact Ext sequence.
Now suppose that the base scheme S has characteristic p > 0. Let H ⊂ LieX/S be

a subsheaf that is locally a direct summand, and stable under the p-map, and H ⊂ X
the corresponding family of group schemes of height at most one. Then the quotient
Y = X/H is again a family of g-dimensional abelian varieties, and the projection
X → Y induces an exact sequence (4). Likewise, 0 → H ′ → Y → X(p) → 0 with
H ′ = X[F ]/H gives a short exact sequence

(5) 0 −→ Hom(H ′,Gm) −→ Pic0
X(p)/S −→ Pic0

Y/S −→ 0.

Write ϕ : Y → S and ψ : X → S for the structure morphisms.

Proposition 2.1. Suppose the p-map LieX/S → LieX/S factors over the subsheaf
H . Then we have a four-term exact sequence

0 −→ K −→ R1ψ∗(OX)(p) −→ R1ϕ∗(OY ) −→ K (p) −→ 0,
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with the sheaf K = Hom(LieX/S /H ,OS). Moreover, the sequence is natural with
respect to the inclusion H ⊂ X.

Proof. Consider the family H ′ = X[F ]/H of group schemes of height at most one.
Its Cartier dual K = Hom(H ′,Gm) is a family of finite group schemes. The latter
have height at most one, by our assumption on the p-map on LieX/S. We see
from (2) that H ′ and K are the Frobenius kernels for the respective vector schemes
Spec(Sym•(H ′∨)) and Spec(Sym•(K ∨)), where H ′ = LieH′/S and K = LieK/S.

By Lemma 2.2 below, the sheaf of Lie algebras K coincides with the linear dual
of H ′ = LieX/S /H . Our assertion in now is a consequence of Theorem 1.2, applied
to the short exact sequence (5). The four-term sequence is natural with respect to
H ⊂ X, because the same holds for the two short exact sequences (4) and (5). �

The preceding proof relies on the following observations: Let (LocLib/S) be the
category of locally free sheaves of finite rank, and (Grp/S) be the category of families
of algebraic group schemes. Consider the functors

E 7−→ V and E 7−→ V ∗,

where V = Spec(Sym•(E ∨)) and V ∗ = Spec(Sym•(E )) are the vector bundles with
LieV/S = E and LieV ∗/S = E ∨, with trivial Lie brackets and p-maps. Note that
we follow Grothendieck’s convention from [26], Section 9.6. The Frobenius kernels
G = V [F ] and G∗ = V ∗[F ] are families of finite local group schemes.

Lemma 2.2. The contravariant functors E 7→ G∗ and E 7→ Hom(G,Gm) are nat-
urally isomorphic. In particular, there is an identification

LieHom(G,Gm)/S = Hom(LieG/S,OS)

of locally free sheaves that is natural in G.

Proof. The natural identification arises as follows: Let T = Spec(A) be an affine
S-scheme, and consider the resulting A-module E = Γ(T,ET ), which is finitely
generated and projective. According to (1), the group of A-valued points in the
Cartier dual Hom(G,Gm) is the set of linear maps

E = LieG/S ⊗A −→ LieGm/S ⊗A = A

that are compatible with p-maps. On the left-hand side, the p-map vanishes, whereas
on the right hand side it is nothing but λ 7→ λp. So these linear maps can be seen
as vectors in the dual HomA(E,A) annihilated by the relative Frobenius map. The
latter coincide with the A-valued points of the Frobenius kernel G∗ = V ∗[F ]. �

The following property of families of abelian varieties ϕ : Y → S will be crucial
for later computations:

Proposition 2.3. For all s ≥ 0, the higher direct image sheaves Rsϕ∗(OY ) are
locally free, their formation commutes with base-change, and the canonical maps
ΛsR1ϕ∗(OY )→ Rsϕ∗(OY ) are bijective. Moreover, the Leray–Serre spectral sequence

Er,s
2 = Hr(S,Rsϕ∗(OY )) =⇒ Hr+s(Y,OY )

has trivial differentials on the Ei-page provided p− 1 does not divide i− 1.
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Proof. The first assertion is [7], Proposition 2.5.2. For the second assertion, note that
the differentials on the i-th page are certain additive maps di : Er,s

i → Er+i,s−i+1
i ,

which are natural with respect to the family of abelian varieties Y . In particular, for
each integer n the multiplication on Y induces an endomorphism n∗ on ΛsR1ϕ∗(OY ).
The latter is multiplication by ns. To check this it suffices to treat the case where
S = Spec(R) is affine and s = 1. Then the families of abelian varieties form an
additive category, and Y 7→ H1(Y,OY ) is a contravariant functor into the additive
category of all R-modules, with the property H1(OY1×Y2) = H1(OY1) ⊕ H1(OY2).
Now recall that any functor F : C → C ′ between additive categories that respects
products also respects the Z-module structure on hom sets ([37], Proposition 8.2.15),
and thus n∗ = n.

Now suppose that there is an element a ∈ Er,s
i whose image b ∈ Er+i,s−i+1

i is
non-zero. The latter can be seen as a basis vector inside an Fp-vector space. Recall
that the multiplicative group F×p is cyclic of order p − 1. Choose an integer n that

generates F×p . Since p− 1 - i− 1 we have ni−1 6≡ 1 modulo p. One gets

nsb = nsdi(a) = di(n
sa) = ns−i+1di(a) = ns−i+1b

from the naturality of the Leray–Serre spectral sequence applied to n∗. Comparing
coefficients gives n1−i ≡ 1 modulo p, contradiction. �

3. Moret-Bailly families

Let k be a ground field of characteristic p > 0. Recall that an abelian variety A
of dimension g ≥ 1 is called superspecial if the Lie algebra g = Lie(A) has trivial
p-map. For g = 1 this means that A = E is a supersingular elliptic curve. Moreover,
the products A = E1×. . .×Eg of supersingular elliptic curves are superspecial. Note
that if k is algebraically closed, the converse holds ([50], Theorem 2). If moreover
g ≥ 2, the isomorphism class of A does not depend on the factors ([60], Theorem
3.5). We need the following well-known existence result:

Lemma 3.1. In each dimension g ≥ 1 there is a superspecial abelian variety A.

Proof. Using the three Weierstraß equations

y2 + xy = x3 +
36

1728− j
x+

1

1728− j
and y2 + y = x3 and y2 = x3 + x,

one sees that each invariant j ∈ k is attained by some elliptic curve (compare [62],
Example on page 36). So it suffices to show that there are supersingular j-values
in the prime field k = Fp. For p = 2 this is j = 0. Suppose now p ≥ 3. Recall
that an elliptic curve in Legendre form E : y2 = x(x − 1)(x − λ) is supersingular

if and only if λ is a root of the Hasse polynomial P (T ) =
∑m

i=0

(
m
i

)2
T i, where

m = (p − 1)/2. One may view the spectrum of k[λ] as the coarse moduli space for
elliptic curves E with level structure (Z/2Z)2

k ⊂ E. The group G = GL2(F2) acts
freely via the level structures, and the ring of invariants k[λ]G = k[j] is the coarse
moduli space for the Deligne–Mumford stack M1,1. According to [11], Theorem 1
the Hasse polynomial has at least one root over k if and only if p 6≡ 1 modulo 4;
then a supersingular E over Fp already exists with level structure, and can be put
in Legendre form. Suppose now p ≡ 1 modulo 4, and consider the subgroup H ⊂ G
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generated interchanging the 2-division points with coordinate x = 0, 1. This is given
by the change of coordinates x = −x′ + 1, and induces λ 7→ 1 − λ on the coarse
moduli space. By loc. cit. the Hasse polynomial viewed as element in the ring of
invariants k[λ]H = k[λ − λ2] acquires a root, which gives the desired supersingular
j-value. �

Fix some integers n, d ≥ 1 and choose a superspecial abelian variety A of dimen-
sion g = n + 1. In turn, every non-zero vector in g = Lie(A) gives an inclusion
αp ⊂ A. Choose an identification g = kn+1. Set X = A × Pn, and view this as the
constant family of abelian varieties over Pn = Proj k[T0, . . . , Tn] = P(g∨). Choose
some homogeneous polynomials Q0, . . . , Qn of degree d ≥ 1 without common zero
on the projective space, and consider the resulting inclusion

OS(−d) ⊂ O⊕n+1
Pn = g⊗k OPn = LieX/Pn .

Let H ⊂ X be the family of height-one group schemes with LieH/S = OS(−d), and
form the resulting quotient Y = X/H. This is smooth and proper, of dimension
dim(Y ) = 2n + 1, and with h0(OY ) = 1. The inclusion H ⊂ A[p] × Pn induces a
finite morphism Y → (A/A[F ])× Pn, hence Y is projective. Write

ϕ : Y = X/H = (A× Pn)/H −→ Pn

for the structure morphism, which is a family of supersingular abelian varieties of
dimension g = n+ 1, and ε : X → Y for the quotient map.

We call Y a Moret-Bailly family, because the above generalizes the pencils in [43],
Part 2 to arbitrary dimensions (where the case n = 1 and d = 1 is considered). Note
that the construction Y = YA,q depends on the superspecial abelian variety A and
the finite flat morphism q : Pn → Pn defined by the homogeneous polynomials Qi,
but we usually neglect this in notation.

The cokernel Ed for the inclusion OPn(−d) ⊂ g⊗OPn is locally free and sits in the
short exact sequence

(6) 0 −→ OPn(−d) −→ O⊕n+1
Pn −→ Ed −→ 0,

thus has det(Ed) = OPn(d). Note that for Qi = Ti this becomes the Euler se-
quence (compare [48], page 6), and E1 = ΘPn/k(−1). In general, we have Ed =
q∗(ΘPn/k(−1)), where q : Pn → Pn is the morphism of degree deg(q) = dn defined
by the homogeneous polynomials Qi.

Note that the Frobenius pullback Epd = E (p)
d is obtained by taking the p-powers

Qp
0, . . . , Q

p
n. To simplify notation, we write E−d = Hom(Ed,OPn) for the dual sheaves,

and also set E−pd = E (p)
−d .

Proposition 3.2. The sheaf of Lie algebras and the first direct image are given by

LieY/Pn = Ed ⊕ OPn(−dp) and R1ϕ∗(OY ) = OPn(d)⊕ E−pd.

Moreover, the p-map in LieY/Pn is trivial on the first summand, and sends the second
summand to the first, for all such splittings.

Proof. By Theorem 1.2, the sheaf of Lie algebras is an extension of OPn(−pd) by
Ed. All such extensions split: We have Ext1(OPn(−pd),Ed) = H1(Pn,Ed(pd)), and
tensoring (6) with OPn(pd) yields an exact sequence

H1(Pn, g⊗k OPn(pd)) −→ H1(Pn,Ed(pd)) −→ H2(Pn,OPn(pd− d)).
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The outer terms vanish, because the invertible sheaves OPn(pd) and OPn(pd− d) are
ample. Thus LieY/Pn splits.

Next we verify the assertion on the p-map. By construction, Ed is a quotient for
LieX/S, whereas OPn(−pd) is a subsheaf of LieX(p)/S. Since X = A× Pn comes from
a superspecial abelian variety A, the p-maps vanish on these sheaves of Lie algebras,
and the assertion follows.

It remains to analyze the first direct image. The coherent sheaf

K = Hom(O⊕n+1
X /OPn(−d),OPn) = Hom(Ed,OPn)

is nothing but E−d, and its Frobenius pullback becomes K (p) = E−pd. According to
Proposition 2.1, we have a four term exact sequence

0 −→ E−d −→ O⊕n+1
Pn −→ R1ϕ∗(OY ) −→ E−pd −→ 0.

The inclusion in the left is locally a direct summand, so its cokernel is isomorphic
to OPn(d), which follows by taking determinants. Thus the direct image R1ϕ∗(OY )
is an extension of E−pd by OPn(d). As in the preceding paragraph, one verifies that
all such extensions split. �

This computation has the following consequence:

Corollary 3.3. For each rational point a ∈ Pn, there are only finitely many other
rational points b ∈ Pn such that ϕ−1(a) ' ϕ−1(b). Moreover, any field of definition
F for the generic fiber ϕ−1(η) has trdeg(F ) = n.

Proof. We may assume that k is algebraically closed. Choose some odd prime l 6= p,
and some symplectic level structure (Z/lZ)2g → A. This descents to a family of
symplectic level structures for Y . Let Ag,l be the Artin stack of g-dimensional
abelian varieties endowed with such a structure. This is actually an algebraic space
([23], Chapter IV, Corollary 2 on page 131) that is separated and of finite type. Our
Moret-Bailly family corresponds to a morphism h : Pn → Ag,l. It suffices to check
that h is quasi-finite, because every abelian variety has only finitely many such level
structures. Suppose it is not quasi-finite. Then there is an integral curve C ⊂ Pn
that maps to a closed point. Then the restriction YC = Y ×Pn C is isomorphic to
BC = B × C for some abelian variety B. Passing to the sheaf of Lie algebras we
get (Ed ⊕ OPn(−dp))C ' O⊕n+1

C as coherent sheaves, in contradiction to the Krull–
Schmidt Theorem for coherent sheaves ([4], Theorem 1). The assertion on the field
of definition is proven in an analogous way. �

To simplify notation, we now write OY (m) for the preimages under the structure
morphism ϕ : Y → Pn of the invertible sheaves OPn(m).

Corollary 3.4. The dualizing sheaf takes the form ωY = OY (m) for the integer
m = d(p− 1)− (n+ 1). In particular, c1 = 0 holds if and only if d(p− 1) = n+ 1,
and in this case we actually have ωY = OY .

Proof. Since Y is smooth, the dualizing sheaf is ωY = det(Ω1
Y/k). We have a short

exact sequence 0 → ϕ∗(Ω1
Pn/k) → Ω1

Y/k → Ω1
Y/Pn → 0. The cokernel is isomorphic

to the preimage of the dual for LieY/Pn , because ϕ : Y → Pn is a family of smooth
algebraic group schemes. The sheaf of Lie algebras equals Ed ⊕ OPn(−pd), and we
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have det(Ed) = OPn(d). Furthermore det(Ω1
Pn) = OPn(−n − 1). Combining all this

we obtain ωY = OY (m) for the integer m = −n− 1− d+ pd. �

It follows that the Kodaira dimension takes the values Kod(Y ) ∈ {−∞, 0, n}
depending on the sign of the integer m = d(p−1)−(n+1). Moreover, in the canonical
model Z = Proj

⊕
t≥0H

0(Y, ω⊗t) is given by the respective schemes Z = ∅,P0,Pn.
Analogous statements hold for the anticanonical models.

It is easy to determine the Betti numbers bi ≥ 0, defined as the ranks of the l-adic
cohomology groups H i(Ȳ ,Zl(i)) = lim←−ν≥0

H i(Ȳ , µ⊗ilν ), where Ȳ = Y ⊗ kalg is the

base-change to some algebraic closure, and l > 0 is a prime different from p.

Proposition 3.5. The l-adic cohomology groups H i(Ȳ ,Zl(i)) are free of rank bi =∑
j

(
2n+2
i−j

)
, where the sum runs over all even j ≥ 0. In particular, we have b1 = 2n+2

and b2 = 2n2 + 3n+ 2 and b2n+1 = 22n+1.

Proof. We may assume that k is algebraically closed. The quotient map ε : X → Y
is a finite universal homeomorphism, so the l-adic cohomology groups for Y = X/H
and X = A × Pn coincide. Taking cohomology with coefficients in R = Z/lνZ, we
have H•(Pn) = R[h]/(hn+1) and H•(A) = Λ•H1(A). These R-modules are free,
where the generator h has degree two, and H1(A) is of rank 2n+ 2. In turn,

H i(X) =
⊕
j

Hj(Pn)⊗R H i−j(A)

by the Künneth Formula ([5], Exposé XVII, Theorem 5.4.3) and the assertion on
H i(Y,Zl(i)) is a direct consequence. The values b1 and b2 follow immediately. In
middle degree, we get b2n+1 =

∑
s

(
2n+2
s

)
, where the sum runs over all odd s. This

sum is half of (1 + 1)2n+2 − (1− 1)2n+2 = 22n+2. �

Note that since b2n+1 6= 0, the method introduced by Hirokado [33] to establish
non-liftability apparently does not apply.

4. The Picard scheme and the Albanese map

Keep the notation from the previous section, such that Y = (A × Pn)/H is a
Moret-Bailly family formed with some superspecial abelian variety A of dimension
g = n+ 1 and some homogeneous polynomials Q0, . . . , Qn of degree d ≥ 1, without
common zero on Pn. Let ϕ : Y → Pn be the structure morphism. We now examine
the Picard scheme for Y . Recall that its Lie algebra is the cohomology group
H1(Y,OY ).

Proposition 4.1. The Picard scheme PicY/k has dimension n+ 1, and furthermore

h1(OY ) =
(
n+d
d

)
. In particular, the Picard scheme is smooth if and only if d = 1.

Proof. We may assume that k is algebraically closed. To compute the dimension
d ≥ 0 of the Picard scheme, choose a prime l 6= p that does not divide the order
of the torsion part in NS(Y ). The Kummer sequence 0 → µl → Gm → Gm → 0
implies that 2d = b1. According to Proposition 3.5, we have b1 = 2n+ 2.

The Leray–Serre spectral sequence for ϕ : Y → Pn gives an exact sequence

0 −→ H1(Pn,OPn)→ H1(Y,OY ) −→ H0(Pn, R1ϕ∗(OY )) −→ H2(Pn,OPn).
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The outer terms vanish, and we merely have to compute the global sections of
R1ϕ∗(OY ) = OPn(d)⊕ E−pd. The first summand contributes h0(OPn(d)) =

(
n+d
d

)
. It

remains to check that the sheaf E−pd has no non-zero global sections. Dualizing the
short exact sequence 0→ OPn(−pd)→ O⊕n+1

Pn → Epd → 0, we get an exact sequence

0 −→ H0(Pn,E−pd) −→ H0(Pn,O⊕n+1
Pn ) −→ H0(Pn,OPn(pd)).

The map on the right is given by the homogeneous polynomials Qp
0, . . . , Q

p
n. These

are linearly independent, so the map must be injective. It follows thatH0(Pn,E−pd) =

0. This shows h1(OY ) =
(
n+d
d

)
. �

SetX = A×Pn. The familyH ⊂ X of finite group schemes of height one sits inside
the constant family X[F ] = A[F ]× Pn. In turn, we get an induced homomorphism
Y → A(p) × Pn between families of abelian varieties, and write ψ : Y → A(p) for the
composition with the projection.

Proposition 4.2. The morphism ψ : Y → A(p) is flat, and every geometric fiber
is non-reduced, with reduction isomorphic to the projective n-space. Moreover, the
canonical map OA(p) → ψ∗(OY ) is bijective.

Proof. The quotient map ε : X → Y if faithfully flat, and so is the composition
ψ ◦ ε : X = A× Pn → A(p). By descent, ψ : Y → A(p) must be flat.

The fiber Z = ψ−1(0) over the origin is the family (A[F ] × Pn)/H of height-
one group schemes, with LieZ/Pn = Ed. We claim that h0(OZ) = 1. The univer-
sal enveloping algebra is U(Ed) = Sym•(Ed), and the restricted quotient becomes

U [p](Ed) = Sym•(Ed)/E
(p)
d Sym•(Ed). According to (2), Z is the relative spectrum of

the corresponding sheaf of Hopf algebras

A = Hom(U [p](Ed),OPn) ⊂Hom(Sym•(Ed),OPn).

The term on the right is the product of the coherent sheaves Hom(Symi(Ed),OPn),
and the term on the left is already contained in the corresponding sum. The sum-
mands are divided powers Γi(F ) = Symi(F∨)∨, for the dual sheaf F = E ∨d . It
thus suffices to verify that the divided powers have no non-zero global sections for
i ≥ 1. We proceed by induction. The case i = 1 was already treated in the proof for
Proposition 4.1. Now suppose i ≥ 2, and that the assertion is true for i−1. The sur-
jection O⊕n+1

Pn → Ed induces a canonical surjection Symi−1(Ed)⊗O⊕n+1
Pn → Symi(Ed).

Dualizing the latter gives an inclusion Γi(F ) ⊂ Γi−1(F )⊗O⊕n+1
Pn , which completes

the induction. Note that the inclusion is a piece from the Eagon–Northcott complex
[20]. Summing up, this establishes h0(OZ) = 1.

Now consider the fiber over a geometric point b̄ : Spec(Ω)→ A(p), with image b ∈
A(p). Making a base-change, it suffices to treat the case that k = Ω is algebraically
closed and that b ∈ A(p) is rational. Then b = a(p) for some rational point a ∈ A,
and ψ−1(b) = ((a+A[F ])× Pn)/H. This is isomorphic to ψ−1(0) = (A[F ]× Pn)/H
via translation by a, so the fiber is non-reduced, with reduction isomorphic to Pn.

It remains to compute ψ∗(OY ). We just saw that the function b 7→ h0(OYb) = 1 is
constant on the reduced scheme A(p). It follows that the direct image sheaf is locally
free of rank one, hence the canonical map OA(p) → ψ∗(OY ) is bijective. �

As explained by Serre [59], there is a morphism Y → V to some abelian variety
V such that every other such morphism Y → V ′ arises via composition with some
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unique V → V ′. Note that the latter usually does not respect the origin. This
V = AlbY/k is called the Albanese variety, and Y → AlbY/k is the Albanese map.
See [41] for a relative theory.

Proposition 4.3. The morphism ψ : Y → A(p) is the Albanese map.

Proof. Let f : Y → B be a morphism into another abelian variety. We have to show
that this map factors uniquely over ψ : Y → A(p). The composition f ◦ ε : X → B
factors over the projection pr1 : X = A × Pn → A. This gives a commutative
diagram

X
pr1−−−→ A

ε

y yh
Y −−−→

f
B.

Replacing f by the composition of a translation of B with f , we may assume that
h : A → B respects origins, hence is a homomorphism. For each rational point
a ∈ Pn, the fiber Ha ⊂ Xa = A is a copy of αp whose schematic image in Y and
hence also in B is a rational point b ∈ B. The inclusion OPn(−d) ⊂ O⊕n+1

Pn defining
the family of subgroup schemes H ⊂ X is locally a direct summand, hence the
canonical map

⋃
aHa → A from the disjoint union has schematic image A[F ]. In

the commutative diagram ⋃
aHa H A

Y B

can pr1

0 h

f

the composition h ◦pr1 ◦ can factors over the origin 0 ∈ B, and the schematic image
of pr1 ◦ can is A[F ]. Thus h : A→ B factors over A/A[F ] = A(p). The factorization
is unique, because the composition X → A → A/A[F ] is faithfully flat, hence an
epimorphism. �

5. Non-existence of projective liftings

We keep the assumptions of the preceding section, and furthermore assume that
n ≥ 2 and d(p − 1) ≤ n + 1. These assumptions on n, d, p are made only in this
section. In this situation our Moret-Bailly family Y = (A × Pn)/H has dimension
dim(Y ) = 2n+1 ≥ 5 and ωY is anti-nef. Recall that one says that Y projectively lifts
to characteristic zero if there is a local noetherian ring R with residue field k = R/mR

such that the canonical map Z → R is injective, together with a projective flat
morphism Y→ Spec(R) whose closed fiber is isomorphic to Y . Note that one may
assume that R is also complete and one-dimensional. The goal of this section is to
establish the following:

Theorem 5.1. The scheme Y does not projectively lift to characteristic zero.

The proof requires some preparation and is given at the end of this section. It
suffices to treat the case that k is algebraically closed. Seeking a contradiction, we
assume that Y projectively lifts. Then there is a complete discrete valuation ring R
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with residue field R/mR = k whose field of fractions F = Frac(R) has characteristic
zero, together with a proper flat morphism υ : Y → Spec(R) with closed fiber
Y = Y ⊗R k. Write V = Y ⊗R F for the generic fiber, which is a smooth proper
scheme with h0(OV ) = 1.

We start by examining the Picard scheme of V . The component of the origin
P = Pic0

V/F is an abelian variety. Consider the dual abelian variety Pic0
P/F . After

passing to a finite extension of R, we may assume that the structure morphism
Y→ Spec(R) admits a section. In particular, the generic fiber V contains a rational
point. Then there is a Poincaré sheaf P on V × P , and we may assume that it is
numerically trivial on the fibers of the first projection. As explained in [30], Theorem
3.3, the resulting

Ψ : V −→ Pic0
P/F , v 7−→ [P|{v} × P ]

is the Albanese map, and we write AlbV/F = Pic0
P/F .

According to Proposition 4.3, the composition of the quotient map with the pro-
jection A × Pn → A(p) induces the Albanese map ψ : Y → A(p), and the reduced
preimage of the origin

Z = ψ−1(0)red = Pnk .

is a copy of the projective n-space. We now exploit the existence of the relative
Hilbert scheme HilbY/R, which parameterizes flat families of closed subschemes [29],
and regard the closed subscheme Z ⊂ Y as a k-valued point ξ = [Z] in the relative
Hilbert scheme.

Proposition 5.2. The structure morphism HilbY/R → Spec(R) is smooth near ξ.

Proof. Let I ⊂ OY be the sheaf of ideal for the closed subscheme Z ⊂ Y . According
to [29], Corollary 5.4 it suffices to check that the obstruction group Ext1(I /I 2,OZ)
vanishes. Since the inclusion Z ⊂ Y is a regular embedding, the conormal sheaf
N = I /I 2 is locally free, and the obstruction group becomes H1(Z,N ∨).

To compute the sheaf N , we consider the commutative diagram

(7)

Z Y Spec(k)

Pn

Spec(k)

'
ϕ

where the arrows are either smooth or regular embeddings. The vertical part yields
a short exact sequence 0 → ϕ∗Ω1

Pn/k → Ω1
Y/k → Ω1

Y/Pn → 0. The kernel is locally a
direct summand, so the restriction

0 −→ ϕ∗Ω1
Pn/k|Z −→ Ω1

Y/k|Z −→ Ω1
Y/Pn|Z −→ 0,

remains exact. The horizontal part yields another short exact sequence

0 −→ I /I 2 −→ Ω1
Y/k|Z −→ Ω1

Z/k −→ 0.
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Using the commutativity of (7), we see that the inclusion of ϕ∗Ω1
Pn/k|Z splits the

above extension, so the projection I /I 2 → Ω1
Y/Pn|Z is bijective. With the identi-

fication Z = Pn and Proposition 3.2 we conclude N ∨ = Ed ⊕ OPn(−pd).
One now easily checks that H1(Z,N ∨) = 0. Indeed, the short exact sequence

0→ OPn(−d)→ O⊕n+1
Pn → Ed → 0 yields an exact sequence

H1(Pn,O⊕n+1
Pn ) −→ H1(Pn,Ed)→ H2(Pn,OPn(−d))

The term on the left vanishes. This also holds for the term on the right for n 6= 2.
Since n = d(p − 1) ≥ d this also remains true for n = 2. Furthermore, we have
H1(Pn,OPn(−pd)) = 0, because n ≥ 2. �

By Hensel’s Lemma, the relative Hilbert scheme admits an R-valued point pass-
ing through ξ ∈ HilbY/R. Let Z ⊂ Y be the corresponding flat family of closed
subschemes, with closed fiber Z⊗R k = Z = Pnk .

Proposition 5.3. The generic fiber Z ⊗R F ⊂ Y ⊗R F = V is isomorphic to PnF ,
and must be contained in some fiber of the Albanese map Ψ : V → AlbV/F .

Proof. Using H1(Pn,ΘPn) = 0 we inductively construct compatible isomorphisms
Pn ⊗ R/mn+1

R → Z ⊗R R/mn+1
R . Grothendieck’s Existence Theorem gives PnR ' Z.

Since every morphism from the projective line to an abelian variety is constant, the
scheme ZF must be contained in some fiber of Ψ : V → AlbV/F . �

Proof of Theorem 5.1: Note first that by applying the Specialization Theorem
([5], Exposé XVI, Corollary 2.2) to the smooth proper morphism Y→ Spec(R), we
may conclude that the Betti numbers of the closed and generic fiber coincide. In
combination with Proposition 3.5 this shows that b1(V ) = 2(n + 1). In turn, the
abelian variety Pic0

V/F has dimension n + 1, and the same holds for the Albanese
variety AlbV/F . Applying [44], Corollary 8 to the dual of the relative dualizing sheaf
of Y, we also see that the dualizing sheaf ωV of V is nef. The main result of [12] now
implies that the Albanese map Ψ : V → AlbV/F is smooth. In particular, the fibres
of Ψ are equidimensional of dimension n = 2n+1−(n+1). By Proposition 5.3, there
is a closed point λ ∈ AlbV/F such that the fiber Vλ = Ψ−1(λ) of the Albanese map Ψ
contains the generic fiber Z⊗R F of the family of subschemes Z ⊂ Y. Furthermore,
by the same proposition, we have Z⊗RF ' PnF . The inclusion Z⊗RF ⊂ Vλ must be
a connected component, because dim(PnF ) = dim(Vλ) = n and Vλ is smooth. Finally,
the conormal bundle of Z⊗R F in V is trivial, because Ψ is flat (since it is smooth).
Using Corollary 3.4, we thus obtain an isomorphism

ωPnF ' ωV |PnF ' O(d(p− 1)− n− 1).

This is a contradiction, since ωPnF ' O(−n− 1). �

6. Cohomology and lattice points

We now assume that the polynomials Q0, . . . , Qn ∈ k[T0, . . . , Tn] used to define
our Moret-Bailly family Y = (A × Pn)/H have degree d = 1. After applying
an automorphism of the projective n-space, we reduce to the situation Qi = Ti.
Tensoring the Euler sequence

0 −→ OPn(−1) −→ O⊕n+1
Pn −→ E1 −→ 1
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with OPn(1) shows E1 = ΘPn(−1), and the dual becomes E−1 = Ω1
Pn(1). We now use

the Bott Formula

hs(Ωr
Pn(l)) =


(
n+l−r
n

)(
l−1
r

)
if s = 0 and 0 ≤ r ≤ n;(

r−l
r

)(−l−1
n−r

)
if s = n and 0 ≤ r ≤ n;

1 if 0 ≤ r = s ≤ n and l = 0;

0 else

to understand the groupsH i(Y,OY ) better (compare [10], Section 4. For an algebraic
proof, see [19], Section 2.3.2 or [36], Section 4). Note that the binomial coefficient(
x
n

)
= x(x− 1) . . . (x− r+ 1)/n! is defined for natural numbers n and ring elements

x ∈ R whenever the denominator n! is invertible.
Our computation crucially relies on the splitting type of the Frobenius push-

forward F∗(OPn), which indeed splits by the Horrocks Criterion (see [48], Section
2.3). Understanding the splitting type involves seemingly innocent lattice point
counts: For each integer t and l, define multiplicities µt,l ≥ 0 as the number of
lattice points (l0, . . . , ln) ∈ Zn+1 contained in the polytope Pt,l ⊂ Rn+1 defined by

(8) l0 + . . .+ ln = t− pl and 0 ≤ l0, . . . , ln ≤ p− 1.

This is the intersection of an affine hyperplane with a hypercube. Clearly, the
polytope is non-empty if and only if 0 ≤ t − pl ≤ (n + 1)(p − 1), and we have the
recursion formula

(9) µt+p,l+1 = µt,l.

Note that the µt,l ≥ 0 also depends on n and p, but we neglect this dependence in
notation. Applying a result of Achinger ([1], Theorem 2.1) to the toric variety Pn,
we get:

Proposition 6.1. The Frobenius push-forward F∗(OPn(t)) splits as a sum of invert-
ible sheaves, and the summand OPn(l) appears with multiplicity µt,l ≥ 0. In other
words, the splitting type is of the form

(a, . . . , a︸ ︷︷ ︸
µt,a

, · · · , b, . . . , b︸ ︷︷ ︸
µt,b

)

starting with a = d(t− (n+ 1)(p− 1))/peand ending with b = bt/pc .

In preparation for our analysis of H i(Y,OY ), we now express the cohomological
invariants of certain locally free sheaves on Pn in terms of lattice points and binomial
coefficients:

Proposition 6.2. The cohomological invariants of the locally free sheaf Fr,t =
Λr(F ∗(Ω1

Pn(1)))⊗ OPn(t) are given by the formula

hs(Fr,t) =


∑

l µt,l
(
n+l
n

)(
l+r−1
r

)
if s = 0;∑

l µt,l
(−l
r

)(−r−l−1
n−r

)
if s = n;

µt,−r if s = r;

0 else.

In particular, we have h0(Fr,t) = 0 for 0 ≤ t ≤ p− 1, and hs(F0,0) = 0 for s ≥ 1.
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Proof. Set F = Fr,t. We have Hs(Pn,F ) = Hs(Pn, F∗F ) because the Frobenius
map is affine, and the projection formula gives F∗F = Ωr

Pn(r) ⊗ F∗(OPn(t)). Now
combine the Bott formula for hs(Ωr

Pn(l)) and Achinger’s description of F∗(OPn(t))
to get the general formula for hs(F ). In the special case s = 0 this reduces to

h0(Fr,t) =
∑
l

µt,l

(
n+ l

n

)(
r + l − 1

r

)
.

The second binomial coefficient vanishes for l ≤ 0. For l ≥ 1 and t ≤ p − 1 the
multiplicity µt,l is zero, because the polytope Pt,l ⊂ Rn+1 in (8) becomes empty.
Finally, we have F0,0 = OPn and thus hs(F0,0) = 0 in all degrees s ≥ 1. �

We now can express the cohomology groups of our Moret-Bailly family as follows:

Proposition 6.3. Suppose that p ≥ n+ 1. For every degree i ≥ 0, the Leray–Serre
spectral sequence for ϕ : Y → Pn gives a natural identification

(10) H i(Y,OY ) =

{
Hj(Pn,Λj(E−p)) if i = 2j is even;

Hj(Pn,Λj(E−p)⊗ OPn(1)) if i = 2j + 1 is odd.

Moreover, the dimension of these vector spaces are given by the formula

hi(OY ) =

{
µ0,−j if i = 2j is even;

µ1,−j if i = 2j + 1 is odd,

where µt,l ≥ 0 is the number of lattice points in the polytope Pt,l ⊂ Rn+1 as in (8).

Proof. The assertion indeed holds for i = 0, because ϕ∗(OY ) = OPn = Λ0(E−p), and
the only lattice point in P0,0 has coordinates l0 = . . . = ln = 0. Suppose from now
on that i ≥ 1.

The Leray-Serre spectral sequence is Ei,j
2 = H i(Pn, Rjϕ∗OY )⇒ H i+j(Y,OY ). For

dimension reasons, the differentials dr : Ei,j
r → Ei+r,j−r+1

r vanish on the Er-pages
whenever r ≥ n + 1. Since p − 1 ≥ n, they must also vanish on the pages with
2 ≤ r ≤ n, according to Proposition 2.3. In turn, the associated graded on the
abutment is

grH i(Y,OY ) =
⊕
r+s=i

Hs(Pn,Λr(R1ϕ∗(OY )).

In our situation R1ϕ∗(OY ) = OPn(1) ⊕ E−p = F ∗(Ω1(1)) ⊕ OPn(1) by Proposition
3.2, which shows that Λr(R1ϕ∗(OY )) = Fr,0⊕Fr−1,1, in the notation of Proposition
6.2. Here we set F−1,1 = 0 for convenience. Thus

(11) hi(OY ) =
i∑

s=0

hs(Fi−s,0) +
i∑

s=0

hs(Fi−s−1,1).

The summands for s = 0 vanish by Proposition 6.2. Furthermore, for 1 ≤ s ≤ n− 1
we have

s 6= i− s⇒ hs(Fi−s,0) = 0 and s 6= i− s− 1⇒ hs(Fi−s−1,1) = 0.
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In the boundary case i = n, the last summands hn(F0,0) and hn(F−1,1) vanish, the
former by 6.2, the latter because F−1,1 = 0. In turn, the sum (11) simplifies to

hi(OY ) =

{
hj(Fj,0) if i = 2j is even;

hj(Fj,1) if i = 2j + 1 is odd.

The formula for the vector space dimensions now follows from Proposition 6.2. We
also see that the filtration on the abutment H i(Y,OY ) has merely one step, which
gives the natural identification (10) of groups. �

Because of the relevance for the Picard scheme, we record:

Corollary 6.4. For every p > 0 and every n ≥ 0 we have h1(OY ) = n+ 1, whereas
h2(OY ) equals the number of lattice points (l0, . . . , ln) satisfying l0 + . . .+ ln = p and
0 ≤ l0, . . . , ln ≤ p− 1.

Proof. One easily checks that terms H i(Pn, ϕ∗(OY )), i ≥ 1 and also the term
H3(Pn, R1ϕ∗(OY )) on the E2-page for the Leray–Serre spectral sequence with respect
to ϕ : Y → Pn vanish. In turn, the formula for h1(OY ) and h2(OY ) of the Propo-
sition hold regardless to the assumption p ≥ n + 1. In particular, h1(OY ) = n + 1,
because the only lattice points in the polytope P1,0 ⊂ Rn+1 are the standard basis
vectors. �

We now consider the case that gives varieties with c1 = 0, which means

n = p− 2, dim(Y ) = 2n+ 1 = 2p− 3 and ωY = OY .

With computer algebra [42], we computed the cohomological invariants for the first
six primes in the following table:

p n dim(Y ) h0(OY ), . . . , hn(OY )

2 0 1 1

3 1 3 1, 2

5 3 7 1, 4, 52, 68

7 5 11 1, 6, 786, 1251, 6891, 7872

11 9 19 1, 10, 167950, 293830, 18480520, 25109950,
251849140, 296659645, 859743835, 905642810

13 11 23 1, 12, 2496132, 4457256, 825038490, 1149834280, 27258578260,
33480335274, 223425722070, 250522227132, 616161367152,
639330337978

Note that the running time for hi(OY ) at the prime p = 13 and in degree i = 12
was about three days.

7. Cohomology and weights

The goal of this section is gain further control on the cohomology of the Moret-
Bailly family Y = (A×Pn)/H, in particular for H2(Y,OY ) and H1(Y,ΘY ), by using
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automorphisms of the superspecial abelian variety A and their induced representa-
tions on cohomology. This is best formulated with the machinery of weights, and
requires some preparation. Fix some integer l ≥ 1, and consider

G = µl = Gm[l] = SpecZ[T ]/(T l − 1),

viewed as a family of finite diagonalizable group schemes over the ground ring R = Z.
Let S be a scheme endowed with trivial G-action. Recall that by [18], Exposé I,
Proposition 4.7.3, a G-linearization for a quasicoherent sheaf F on S is nothing
but a weight decomposition F =

⊕
w Fw, where w runs over the character group

Z/lZ = Hom(G,Gm). Such characters are also known as weights. A weight w is
called trivial if Fw = 0. We say that the sheaf F is pure of weight w0 if all other
weights w 6= w0 are trivial.

For each ring A, the group elements ζ ∈ G(A) ⊂ A× act on Fw ⊗R A via multi-
plication by λ = w(ζ). Note that for every base-change a : Spec(k) → S for some
field k containing a primitive l-th root of unity ζ, the weight decomposition for F
becomes the eigenspace decomposition on the vector space V = F (a) for the au-
tomorphism ζ : V → V with respect to the eigenvalues λ = w(ζ). Also note that
G-linearizations for the sheaf F correspond to G-actions on the finite S-scheme
stemming from the sheaf of dual numbers A = OS ⊕ F , or the vector S-scheme
coming from A = Sym•(F ).

Now assume we are over a ground field k of characteristic p > 0. Since µl is

already defined over Fp we have a canonical identification µ
(p)
l = µl, and the relative

Frobenius map µl → µ
(p)
l = µl given by ζ 7→ ζp induces multiplication by p on

the character group. In turn, the Frobenius pullback F (p) has two canonical G-

linearizations: One stemming from µ
(p)
l = µl with (F (p))w = (Fw)(p), the other via

the Frobenius map, such that (F (p))pw = (Fw)(p). It turns out that the latter is
more important for us.

In what follows we assume that G = µl acts on an abelian variety A of dimension
g ≥ 1 such that there is a µl-equivariant principal polarization A→ P , for the dual
abelian variety P = Pic0

A/k with the induced µl-action. Note that the latter indeed

can be achieved by passing to B = (A ⊕ P )⊕4 and making a finite field extension
([40], Lemma 3.2). Furthermore, we assume that the induced representation on
Lie(A) is pure of weight w0 ∈ Z/lZ. Using the equivariant bijections H1(A,OA) =
Lie(P )→ Lie(A) we immediately obtain:

Lemma 7.1. The induced µl-representation on H1(A,OA) is also pure of weight
w = w0.

Now suppose additionally that A is superspecial, and consider the Moret-Bailly
family Y = (A × Pn)/H formed with the homogeneous polynomials Qi = Ti of
degree d = 1, as in Section 6. Since the induced action of G = µl on Lie(A) is pure,
each copy αp ⊂ A is normalized by G, and we get induced actions on the quotients
A/αp.

Consider the diagonal G-action on X = A×Pn, with trivial action on the second
factor. This also can be seen as an action of the relative group scheme G×Pn = µl,Pn
that normalizes the action of the family H ⊂ X of height-one group schemes with
LieH/Pn = OPn(−1), and thus induces a G-action on our Moret-Bailly family Y =
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X/H. The structure morphism ϕ : Y → Pn is equivariant, with trivial G-action on
the base. By Proposition 1.2 we have a four-term exact sequence

0 −→ OPn(−1) −→ Lie(A)⊗k OPn −→ LieY/k −→ OPn(−p) −→ 0

The cokernel for the inclusion on the left is the sheaf E1, and the above yields
the short exact sequence 0 → E1 → LieY/k → OPn(−p) → 0 of sheaves with G-

linearizations. We saw in the proof for Proposition 3.2 that Ext1(OPn(−p),E1) =
0. By [18], Exposé I, Proposition 4.7.4 we may choose a splitting that respects
linearizations. In turn, LieY/Pn = E1 ⊕ OPn(−p) as sheaves with G-linearization.

Lemma 7.2. In the above setting, the summand E1 is pure of weight w = w0,
whereas OPn(−p) is pure of weight pw0.

Proof. The sheaf Lie(A) ⊗k OPn is pure of weight w = w0, hence the same holds
for the subsheaf OPn(−1) and the quotient sheaf E1. The relative Frobenius map
A → A(p) becomes G-equivariant, provided that we take the induced G-action via

the Frobenius map µl → µ
(p)
l = µl. In turn, the OPn(−p) ⊂ Lie(A(p))⊗k OPn is pure

of weight w = pw0. �

We now make a similar analysis for the higher direct images Riϕ∗(OY ), which also
come with induced G-linearizations. To understand their weight decompositions, it
suffices to treat the case i = 1, according to Proposition 2.3. Now we use the
canonical projection Y = (A × Pn)/H → A/A[F ] × Pn = A(p) × Pn. This map
becomes G-equivariant if the right-hand side is endowed with the µl-action coming
from the Frobenius map.

We already saw in Proposition 3.2 that we have an exact sequence of coherent
sheaves 0→ OPn(1)→ R1ϕ∗(OY )→ E−p → 0, and that all such extension split. As
above, we see that there is a direct sum decomposition R1ϕ∗(OY ) = OPn(1) ⊕ E−p
of sheaves with G-linearizations.

Lemma 7.3. In the above setting, the summand OPn(1) is pure of weight w = pw0,
whereas E−p is pure of weight p2w0.

Proof. The Lie algebra a = Lie(A) is pure of weight w = w0. According to Lemma
7.1, the same holds for H1(A,OA). In turn, the Frobenius pullback H1(A,OA)(p) is
pure of weight w = pw0, since we use the action stemming from the Frobenius map

µl → µ
(p)
l . We now proceed as for Lemma 7.2. �

The G-action on the Moret-Bailly family Y induces G-representations on Hodge
groups Hs(Y,Ωr

Y ) and the tangent cohomology Hs(Y,ΘY ). Since the G-action re-
spects the morphism ϕ : Y → Pn, we also have induced representations on the
groups Hs(Y, ϕ∗ΘPn) and Hs(Y,ΘY/Pn). We now compute the weights in some rele-
vant cases:

Proposition 7.4. Suppose we have (p, n) 6= (2, 1). With respect to the induced
G-representation, the following holds:

(i) The group H2(Y,OY ) is pure of weight w = p2w0.
(ii) For the cohomology group H1(Y,ΘY/Pn) the only possible non-trivial weights

are of the form w = mw0 with coefficient m ∈ {p+ 1, p2 + 1, p2 + p}.
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(iii) For H1(Y, ϕ∗ΘY ) the only possible non-trivial weights are of the form w =
mw0 with m ∈ {p, p2}.

Proof. According to Proposition 6.3, the Leray–Serre spectral sequence for the mor-
phism ϕ : Y → Pn induces a canonical identification H2(Y,OY ) = H1(Pn,E−p). By
Lemma 7.3, the sheaf E−p is pure of weight w = p2w0, and assertion (i) follows.

Next we compute the weights inH1(Y,ΘY/Pn). The projection formula for ΘY/Pn =
ϕ∗ LieY/Pn gives Riϕ∗(ΘY/Pn) = LieY/Pn ⊗Riϕ∗(OY ), and the Leray–Serre spectral
sequence yields an exact sequence

0 −→ H1(Pn,LieY/Pn) −→ H1(Y,ΘY/Pn) −→ H0(Pn,LieY/Pn ⊗R1ϕ∗(OY )).

Recall from Proposition 3.2 that

(12) LieY/Pn = E1 ⊕ OPn(−p) and R1ϕ∗(OY ) = OPn(1)⊕ E−p.

One easily computes Hr(Pn,E1) = 0 for all r ≥ 1 using the short exact sequence
0→ OPn(−1)→ O⊕n+1

Pn → E1 → 0. Furthermore, H1(Pn,OPn(−p)) is non-zero only
if n = 1 and p = 2, which was excluded. In turn, it suffices to understand the
possible weights in H0(Pn,F ) for the sheaf F = LieY/Pn ⊗R1ϕ∗(OY ). For this we
compute the weights occurring in each of the summands

(13) E1 ⊗ OPn(1), OPn(−p)⊗ OPn(1), E1 ⊗ E−p and OPn(−p)⊗ E−p

inside F . According to Lemma 7.2 and Lemma 7.3, these are pure of weight w =
mw0, where the coefficient m is an integer of the form 1 + p and p + p and 1 + p2

and p + p2, respectively. The second case does not contribute, because the global
sections for OPn(1− p) vanish. Assertion (ii) follows.

It remains to understand the weights inH1(Y, ϕ∗ΘPn). Now the projection formula
gives Riϕ∗(ϕ

∗ΘPn) = ΘPn⊗Riϕ∗(OY ), and the Leray–Serre spectral sequence yields
an exact sequence

0 −→ H1(Pn,ΘPn) −→ H1(Y, ϕ∗ΘPn) −→ H0(Pn,ΘPn ⊗R1ϕ∗(OY )).

From the Euler sequence 0 → OPn → O⊕n+1
Pn (1) → ΘPn → 0 one easily infers that

the term on the left vanishes. As above, it suffices to understand the weights in
in H0(Pn,F ) for the coherent sheaf F = ΘPn ⊗ R1ϕ∗(OY ). This is the sum of
ΘPn ⊗ OPn(1) and ΘPn ⊗ E−p. Now the summands are pure of weight w = mw0

with m = 0 + p and m = 0 + p2, which gives (iii). �

We now deduce a crucial fact that can be formulated without the machinery of
weights:

Corollary 7.5. Suppose that p 6= 2. Then the sign involution on the superspecial
abelian variety A induces an action of the multiplicative group G = {±1} on our
Moret-Bailly family Y = (A × Pn)/H, and the induced representation on the coho-
mology groups H2(Y,OY ) and H1(Y, ϕ∗ΘY ) are multiplication by λ = −1, whereas
on H1(Y,ΘY/Pn) it is multiplication by λ = 1.

Proof. We may assume that k is algebraically closed, and regard the abstract group
G = {±1} as the diagonalizable group scheme G = µl with l = 2. Write A =
E1 × . . . × Eg as a product of supersingular elliptic curve, and use the canonical
identification Ei = PicEi/k to obtain an equivariant principal polarization.
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The induced G-representation on Lie(A) is multiplication by λ = −1. This is pure
of weight w0 = 1, seen as an element of the character group Z/2Z. As discussed
above, we get an induced action on Y , such that the quotient map ε : A×Pn → Y is
equivariant. According to Proposition 7.4, the induced representation on H2(Y,OY )
is pure of weight w = p2w0 = 1, because p ≡ 1 modulo l. Similarly, H1(Y, ϕ∗ΘY )
has weight w = 1. In contrast, the only possible non-zero weights on H1(Y,ΘY/Pn)
are w = mw0, with coefficient m ≡ 0 modulo l. In turn, H1(Y,ΘY/Pn) is pure of
weight w = 0. �

8. Non-existence of formal liftings

We continue to study our Moret–Bailly families Y = (A×Pn)/H over the ground
field k of characteristic p > 0, formed with a superspecial abelian variety A of
dimension g = n + 1, and the homogeneous polynomials Qi = Ti of degree d = 1.
The sign involution a 7→ −a on the abelian variety A induces an action of the cyclic
group G = {±1} on the total space Y . For simplicity, the inclusion G ⊂ Aut(Y/k)
is also called the sign involution. We now regard this G-action on Y as additional
structure, and seek to understand its behavior under deformations.

Let R be a complete local noetherian ring with residue field R/mR = k, and
Y → Spf(R) be a proper flat morphism of formal schemes with closed fiber Y =
Y ⊗R k. We say that this morphism is projectively algebraizable if there is an
invertible sheaf on Y whose restriction to Y is ample. According to Grothendieck’s
Existence Theorem, the flat formal R-scheme Y then is the formal completion of
some flat projective R-scheme ([27], Theorem 5.4.5).

Proposition 8.1. Suppose that p ≥ 3. If the sign involution G ⊂ Aut(Y ) extends
to some G ⊂ Aut(Y/R), then Y→ Spf(R) is projectively algebraizable.

The proof for Proposition 8.1 requires a bit of preparation and will be given below.
Let us first apply the result: We say that the proper scheme Y together with the sign
involution formally lifts to characteristic zero if we may choose some Y → Spf(R)
and G ⊂ Aut(Y/R) as above, where furthermore the canonical map Z → R is
injective. Note that we may assume that R is integral and one-dimensional, by
passing to the residue class ring for some suitable prime ideal.

Also note that A, like any abelian variety, projectively lifts to characteristic zero,
but for g ≥ 2 there are formal liftings A → Spf(R) to characteristic zero that are
not algebraizable. The situation for Moret-Bailly families is completely different.
From the above result, using Corollary 3.4 and Theorem 5.1, we immediately get:

Theorem 8.2. Suppose that p ≥ 3 and p−1 ≤ g. Then the Moret-Bailly family Y =
(A× Pn)/H together with the sign involution does not formally lift to characteristic
zero.

We now prepare for the proof of Proposition 8.1. Recall that a G-linearized
invertible sheaf on Y = (A × Pn)/H is an invertible sheaf L , together with a
G-linearization, that is, a G-action on the line bundle L = Spec(Sym•(L ∨)) such
that the structure morphism L→ Y is equivariant. Write Pic(Y,G) for the abelian
group of isomorphism classes for G-linearized invertible sheaves. This can also be
viewed as the equivariant cohomology group H1(Y,G; O×Y ), or the Picard group of
the quotient stack [Y/G].
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Now let Y→ Spf(R) be any formal deformation of the Moret-Bailly family Y over
some complete local noetherian ring R with residue field R/mR = k, and suppose
that the sign involution extends to some G ⊂ Aut(Y/R).

Proposition 8.3. The restriction map Pic(Y, G)→ Pic(Y,G) is surjective.

Proof. Refining the descending chain mj
R, we get a descending chain of ideals ai with

length(ai/ai+1) = 1, such that R = lim←−Ri, where Ri = R/ai. Setting Yi = Y⊗R Ri,
we get an increasing sequence Y = Y0 ⊂ Y1 ⊂ . . ., where each Yi is a proper flat Ri-
scheme, and the comparison maps Yi−1 → Yi⊗RiRi−1 are isomorphisms. In fact, the
formal scheme Y is nothing but the resulting inverse system (Yi)i≥0 of R-schemes.

Let L0 be a G-linearized invertible sheaf on Y0 = Y . We show by induction on
i ≥ 0 that it extends to Yi. This is obvious for i = 0. Suppose now that we have a
linearized extension Li on Yi. The ideal sheaf I for the closed embedding Yi ⊂ Yi+1

has square zero, and is isomorphic to OY by flatness. In turn, we have a short exact
sequence 0→ OY → O×Yi+1

→ O×Yi → 1, which gives an exact sequence

0 −→ H1(Y,OY ) −→ Pic(Yi+1) −→ Pic(Yi)
∂−→ H2(Y,OY ).

By naturality of cohomology, this sequence is equivariant with respect to the in-
duced G-actions. The isomorphism class of Li is G-invariant, so Corollary 7.5 gives
∂(Li) = −∂(Li). With p 6= 2 we infer that the obstruction ∂(Li) vanishes, hence
Li extends to some invertible sheaf on Yi+1.

It remains to choose an extension that admits a linearization. To achieve this
we use the results form [58], discussed in more details in the proof for Proposition
8.4 below. Let L be the set of isomorphism classes for pairs (L ′, ϕ′), where L ′

is invertible on Yi+1 and ϕ′ : Li → L ′|Yi is an isomorphism, and define T =
H1(Y,OY ). Then L carries the structure of an T -torsor with group of operators G,
giving a cohomology class [L] ∈ H1(G, T ). This cohomology group vanishes because
|G| = 2 is relatively prime to the characteristic p ≥ 3. In turn, we can choose a
lifting Li+1 whose isomorphism class is G-fixed. The group of automorphisms of
Li+1 restricting to the identify on Li is the vector space V = Hom(Li+1,OY ) =
Hom(L0,OY ). According to [58], Theorem 1.2 the obstruction against the existence
of a G-linearization lies in the cohomology group H2(G, ai/ai+1 ⊗k V ), which again
vanishes. Summing up, the linearized sheaf Li extends to Yi+1. �

Proof for Proposition 8.1. Suppose there is a formal lifting Y → Spf(R) to
characteristic zero, such that the sign involution extends to some G ⊂ Aut(Y/R).
Choose a very ample invertible sheaf L on Y . Replacing L by L ⊗ σ∗(L ), where
σ ∈ G is the generator, we may assume that the isomorphism class is G-invariant.
According to [25], Theorem 5.2.1 there is a spectral sequence

Hr(G,Hs(Y,O×Y )) =⇒ Hr+s(Y,G,O×Y ).

The resulting five term exact sequence shows that the obstruction for the existence
of a G-linearization on L lies in the elementary abelian group H2(G, k×) = k×/k2×.
Thus OY (1) = L ⊗2 can be endowed with a G-linearization, and is very ample.

By Proposition 8.3 there is some invertible sheaf OY(1) restricting to OY (1).
According to Grothendieck’s Existence Theorem, Y is the formal completion of
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some flat projective R-scheme ([27], Theorem 5.4.5). In turn, our Moret–Bailly
family Y admits a projective lift to characteristic zero. �

Recall that the Moret–Bailly family Y = (A × Pn)/H comes with an induced
morphism ϕ : Y → Pn. It turns out that extending the sign involution is essentially
the same as extending this morphism. Let Y→ Spf(R) be any formal deformation of
the Moret-Bailly family Y over some complete local noetherian ring R with residue
field R/mR = k

Proposition 8.4. Suppose p ≥ 3. Then the following two conditions are equivalent:

(i) The morphism ϕ : Y → Pn extends to a morphism Y→ PnR.
(ii) The sign involution G ⊂ Aut(Y/k) extends to an inclusion G ⊂ Aut(Y/R).

Proof. We start with the implication (i)⇒(ii). Suppose that ϕ : Y → Pn extends to
a morphism, which we likewise call ϕ : Y → PnR. In order to extend the action of
G = {±1}, we use Rim’s results about equivariant structures on versal deformations
[54], in the form obtained in [58]. Choose a Cohen ring Λ with residue field k. Recall
that this a complete discrete valuation ring with maximal ideal mΛ = pΛ. Let (ArtΛ)
be the category of local Artin rings A over Λ with residue field k, and F → (ArtΛ)op

be the category fibered in groupoids whose fiber category over A comprises the pairs
ξ = (X,α), where X is a proper flat scheme over PnR, and α : Y → X ⊗R k is an
isomorphism. This is a deformation category in the sense of Talpo and Vistoli
[61]. To conform with [58], the symbol A, which otherwise denotes our superspecial
abelian variety, is here also used for local Artin rings; this should not cause any
confusion.

Using the notation from the proof of Proposition 8.3, we writeR = lim←−Ri. We now
show by induction on i ≥ 0 that there are compatible inclusions G ⊂ Aut(Yi/PnRi).
For i = 0 we choose the given action on Y0 = Y . Now suppose that we already
have the action on Yi. Using the notation from [58], set A = Ri and A′ = Ri+1.
Write ξ ∈ F (A) for the given family Yi = Y⊗RA over PnA, and Lif(ξ, A′) for the set
of isomorphism classes [f ] of all cartesian morphisms f : ξ → ξ′ over the inclusion
Spec(A) ⊂ Spec(A′), in the fibered category F . This set comes with a G-action,
namely σ · [f ] = [f ◦ σ−1]. The family Yi+1 = Y ⊗R A′ yields an element ξi+1 in
L = Lif(ξ, A′), which thus is non-empty. Furthermore, it carries the structure of a
torsor for the tangent space T = H1(Y,ΘY/Pn) for the deformation category. It is
also endowed with G as group of operators, meaning that the action

(14) L× T −→ L, ([f ], t) 7−→ [f ] · t
satisfies σ([f ] · t) = σ[f ] · σt.

Now write f : ξ → ξ′ for the lifting corresponding to Yi+1, and let σ ∈ G be
the generator. Since σ : Yi → Yi is compatible with the morphism ϕ : Yi → PnRi ,
the new class [f ◦ σ−1] differs from the old class by some element t ∈ T , in other
word σ[f ] = [f ] · t. Applying the involution to this equation, and using that it acts
trivially on T by our weight computation in Proposition 7.5, we get

[f ] = σ([f ] · t) = σ[f ] · σt = σ[f ] · t = [f ] · 2t.
This ensures 2t = 0, and hence t = 0 since we are in characteristic p 6= 2. In other
words, [f ] ∈ L is G-fixed.
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Consequently, the object ξ′ ∈ F (A′) corresponding to Yi+1 = Y ⊗R A′ has G-
fixed isomorphism class. By loc. cit., Theorem 3.3 the obstruction for extending the
G-action from Yi to Yi+1 lies in H2(G, ai/ai+1 ⊗k Autξ0(ξk[ε])). This group vanishes
because p 6= 2, and we conclude that the action on Yi extends to an action on Yi+1

over PnRi+1
.

We now establish the reverse implication (ii)⇒(i). Suppose that we have G ⊂
Aut(Y/R). By induction on i ≥ 0, we show that Yi → Spec(Ri) factors over PnRi in
a compatible way, such that G acts over PnRi .

Suppose we already have a factorization Yi → PnRi . This morphism must be flat,
by the fiber-wise criterion for flatness ([28], Theorem 11.3.10). The obstruction to
extend Yi over PnRi+1

is an element α ∈ H2(Y,ΘY/Pn). The short exact sequence
0→ ΘY/Pn → ΘY → ϕ∗ΘPn → 0 induces an exact sequence

H1(Y, ϕ∗ΘPn) −→ H2(Y,ΘY/Pn) −→ H2(Y,ΘY ).

Since Yi+1 extends Yi over Ri+1, the image of α in H2(Y,ΘY ) vanishes, hence our
obstruction belongs to the image of H1(Y, ϕ∗ΘPn). Let σ ∈ G be the generator. By
the weight computation in Corollary 7.5, we must have σ∗(α) = −α. On the other
hand, the functoriality of the obstruction gives σ∗(α) = α. Using p 6= 2 we conclude
that the obstruction vanishes, thus we have an extension Yi+1 → PnRi+1

.
It remains to check that the G-action on Yi+1 is over PnRi+1

. In light of the

implication (i)⇒(ii), it suffices to check that there is at most extension of G ⊂
Aut(Yi/Ri) to G ⊂ Aut(Yi+1/Ri+1). As explained in [58], page 412 any two such
extension differ by a homomorphism of G into the vector space of automorphisms of
Yi+1 restricting to the identity on Yi. Using p 6= 2, we see that such homomorphisms
are trivial. �

9. Non-existence of liftings to Witt vectors

Fix integers n, d ≥ 1 and form the Moret–Bailly family Y with some superspecial
abelian variety A of dimension g = n + 1 over a field k of characteristic p > 0,
as in Section 3. Recall that it comes with two morphisms ϕ : Y → Pn and ψ :
Y → A(p). Finally, recall that dim(Y ) = 2n + 1 and that ωY = ϕ∗OPn(m), where
m = d(p− 1)− (n+ 1). Here ωY = det(Ω1

Y/k) is the dualizing sheaf of Y .
We suspect that regardless of the values of n, d the scheme Y does not lift to

characteristic zero, and perhaps also not to the ring W2(k) of Witt vectors of length
two. Regarding Y = Yn,d,p also in dependence of the prime p = char(k), we will
show:

Theorem 9.1. Fix n ≥ 2 and d ≥ 1. Suppose that n 6≡ 2 modulo 4 and that the
ground field k is perfect. Then the Moret–Bailly family Y does not lift over the ring
W2(k), for almost all primes p > 0.

This is an application of the Deligne–Illusie result on Kodaira–Nakano–Akizuki
Vanishing in positive characteristics, together with a Hirzebruch–Riemann–Roch
computation of certain Euler characteristics based on our knowledge of the tangent
sheaf ΘY . The proof requires some preparations and is given towards the end of the
section.
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Recall that the Chow ring with rational coefficients of the projective space is a
truncated polynomial ring CH•(Pn) = Q[h]/(hn+1), where h ∈ CH1(Pn) is the class
of the invertible sheaf OPn(1). Consider the formal power series

Q(x) =

(
−dx

1− edx

)−1( −dpx
1− edpx

)(
x

1− e−x

)n+1

∈ Q[[x]].

It induces an element Q(h) ∈ CH•(Pn), which appears in the following computation:

Proposition 9.2. Let E and F be coherent sheaves on A(p) and Pn, respectively.
Then the coherent sheaf M = ψ∗(E ) ⊗ ϕ∗(F ) on the Moret–Bailly family Y has
Euler characteristic

χ(M ) = pg−1χ(E )

∫
Pn

ch(F )Q(h).

Proof. We have χ(M ) =
∫
Y

ch(M ) td(ΘY ) according to Hirzebruch–Riemann–Roch,
where ch(M ) is the Chern character of M , and td(ΘY ) is the Todd class of the tan-
gent sheaf ([24], Corollary 15.2.2). Recall that Todd classes are multiplicative in
short exact sequences, hence td(ΘY ) = td(ΘY/Pn) td(ϕ∗ΘPn). Using the decomposi-
tion ΘY/Pn = ϕ∗(Ed ⊕ OPn(−dp)) from Proposition 3.2 and the exact sequences

0→ OPn(−d)→ O⊕n+1
Pn → Ed → 0 and 0→ OPn → O⊕n+1

Pn (1)→ ΘPn → 0,

we infer that the Todd class td(ΘY ) ∈ CH•(Y ) is the pullback of

Q(h) = td(L ⊗−d)−1 td(L ⊗−dp) td(L )n+1 ∈ CH•(Pn)

with respect to ϕ : Y → Pn. Here L = OPn(1), with first Chern class h ∈ CH2(Pn)
and Todd class td(L ) = h/(1− e−h).

The morphism ϕ : Y → Pn factors over the morphism ψ×ϕ : Y → A(p)×Pn to the
product, which is locally free of rank pg−1, and we have M = (ψ×ϕ)∗(pr∗1 E⊗pr∗2 F ).
The projection formula thus gives∫

Y

ch(M )ψ∗(Q(h)) = pg−1

∫
A(p)×Pn

ch(pr∗1 E ⊗ pr∗2 F ) pr∗2(Q(h)).

Since Chern characters are natural, and multiplicative in tensor products, the above
can be written as

pg−1

∫
A(p)×Pn

pr∗1(ch(E )) · pr∗2(ch(F )Q(h)).

By the functoriality of proper push-forwards and the projection formula, this coin-
cides with

pg−1

∫
Pn

pr2∗(pr∗1(ch(E ))) · ch(F )Q(h).

We now use that the Todd class for the tangent sheaf of any abelian variety is
the unit element in the Chow group. Together with the compatibility of proper
push-forwards with flat pull-backs ([24], Proposition 1.7) applied to the the diagram

A(p) × Pn pr1−−−→ A(p)

pr2

y yf
Pn −−−→

g
Spec(k),
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we see pr2∗(pr∗1(ch(E ))) = g∗f∗(ch(E ) td(ΘA(p))) = χ(E ) in the Chow group CH•(Pn).
This yields the desired formula for the Euler characteristic of M . �

Suppose now that E is an ample invertible sheaf on A(p), and let s ≥ 1 be
an integer. Since ψ × ϕ : Y → A(p) × Pn is finite, the invertible sheaf L =
ψ∗(E )⊗ ϕ∗(OPn(s)) on the Moret-Bailly family Y is ample.

Proposition 9.3. In the above setting, fix the integers n ≥ 2, d ≥ 1 and some
s > (n + d + 1)/2. Furthermore assume n 6≡ 2 modulo 4. Then the invertible sheaf
M = L ⊗ ωY has Euler characteristic χ(M ) < 0 for almost all primes p > 0.

Proof. We have M = ψ∗(E ) ⊗ ϕ∗(F ) with F = OPn(d(p − 1) − (n + 1) + s), by
Proposition 3.4. Hence Proposition 9.2 gives

χ(M ) = pg−1χ(E )

∫
Pn
Q(h)e(dp−d−n−1+s)h.

The factor χ(E ) is strictly positive, by Hirzebruch–Riemann–Roch or [45], Section
16. Consequently, to determine the sign of χ(M ) we merely have to understand the
sign of the integrand in top degree n, that is, the sign of the coefficient at xn in the
formal power series(

−dx
1− edx

)−1( −dpx
1− edpx

)(
x

1− e−x

)n+1

e(dp−d−n−1+s)x.

This series can be rewritten as

(15)

(
−dx

1− edx

)−1(
x

1− e−x

)n+1

e−(d+n+1−s)h ·
(

dpx

1− e−dpx

)
,

where the prime p > 0 only enters through the last factor. We temporarily regard
p as another indeterminate, and the above expression as element

∑
λi(p)x

i in the
ring Q[p][[x]]. It appears difficult to find a closed formula for the polynomial λn(p).
However, it is possible to determine the sign of the leading coefficient:

Recall that the formal power series x/(1− e−x) = 1 + x/2 +
∑∞

i=2Bix
i/i! can be

expressed in terms of the Bernoulli numbers Bi ∈ Q. We follow the convention that
B1 = 1/2. Since n ≥ 2, the last factor in (15) becomes

1 +
dp

2
x+ . . .+

(dp)n−1Bn−1

(n− 1)!
xn−1 +

(dp)nBn

n!
xn + . . . ,

while the product of the first three factors in (15) starts with(
1− dx

2
+ . . .

)−1 (
1 +

x

2
+ . . .

)n+1
(

1− (d+ n+ 1− s)x
1!

+ . . .

)
.

This equals 1 + 2s−d−n−1
2

x modulo x2. The coefficient of xn in the power series (15)
thus takes the form

(16) λn(p) =
Bn(dp)n

n!
+

(2s− d− n− 1)Bn−1(dp)n−1

2(n− 1)!
+ lower degree.

By assumption, 2s− d−n− 1 > 0. The signs of the Bernoulli numbers are given by

sign(B2j) = (−1)j−1 and B2j+1 = 0,
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for every j ≥ 1. Note that the former can be deduced from the formula B2j =
(−1)j−12(2j)!

(2π)2j
ζ(2j) involving the Riemann Zeta function ζ(z). It follows that the degree

of λn(p) depends on the parity of n ≥ 2. However, for both n = 2j even and
n = 2j+ 1 odd, the sign of the leading term in (16) equals (−1)j−1. In other words,
for n 6≡ 2 modulo 4 this sign is always negative. Regarding the symbol p again as
a prime number, we conclude that λn(p) < 0 for all sufficiently large primes p� 0,
and then χ(M ) < 0. �

Proof for Theorem 9.1. Seeking a contradiction, we assume that there are infin-
itely many primes p > 0 for which the Moret–Bailly family Y lifts to the ring of
truncated Witt vectors W2(k), with fixed integers n ≥ 2 and d ≥ 1. Choose some
s > (n + d + 1)/2. By Proposition 9.3 we find some sufficiently large p ≥ dim(Y )
so that there is an ample invertible sheaf L on Y with χ(L ⊗ ωY ) < 0. Conse-
quently hi(L ⊗ ωY ) > 0 for some odd degree i. On the other hand, the Deligne–
Illusie form of Kodaira–Akizuki–Nakano Vanishing ([16], Corollary 2.8) ensures that
hj(L ⊗ ωY ) = 0 for all j > 0, contradiction. �

Of course, for fixed values of n ≥ 1 one may compute the coefficient λn(p) in the
formal power series (15), either by hand or with computer algebra, as a polynomial
in d, p, s. For n = 1 we have λ1(p) = d(p − 1)/2 + s − 1, which is always positive.
For n = 3 and s = 1 we obtain

λ3(p) = −d
3 + 2d2

24
p2 +

d3 + 3d2 + 2d

12
p− d3 + 2d2 + 2d

24
.

The zero of the derivative λ′3(p) is the rational number r = (d3 +3d2 +2d)/(d3 +2d2),
which for all d ≥ 1 satisfies r < 2. Arguing as above, we obtain:

Proposition 9.4. For n = 3 and d ≥ 1, the Moret–Bailly family Y over a perfect
field of characteristic p ≥ 7 = dim(Y ) does not lift to the ring of Witt vectors W2(k)
of length two.

References

[1] P. Achinger: A characterization of toric varieties in characteristic p. Int. Math. Res. Not.
IMRN 2015, 6879–6892.

[2] P. Achinger, M. Zdanowicz: Non-liftable Calabi-Yau varieties in characteristic p ≥ 5
Preprint, arXiv:1710.08202.

[3] M. Artin: Algebraization of formal moduli I. In: D. Spencer, S. Iyanaga (eds.), Global
Analysis, pp. 21–71. Univ. Tokyo Press, Tokyo, 1969.

[4] M. Atiyah: On the Krull–Schmidt theorem with application to sheaves. Bull. Soc. Math.
France 84 (1956), 307–317.

[5] M. Artin, A. Grothendieck, J.-L. Verdier (eds.): Théorie des topos et cohomologie étale
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