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Abstract. We coin the term T -trivial varieties to denote smooth proper schemes
over ground fields k whose tangent sheaf is free. Over the complex numbers, this
are precisely the abelian varieties. However, Igusa observed that in characteristic
p ≤ 3 certain bielliptic surfaces are T -trivial. We show that T -trivial varieties X
separably dominated by abelian varieties A can exist only for p ≤ 3. Furthermore,
we prove that every T -trivial variety, after passing to a finite étale covering, is
fibered in T -trivial varieties with Betti number b1 = 0. We also show that if some
n-dimensional T -trivial X lifts to characteristic zero and p ≥ 2n+2 holds, it admits
a finite étale covering by an abelian variety. Along the way, we establish several
results about the automorphism group of abelian varieties, and the existence of
relative Albanese maps.
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Introduction

Let k be a ground field of characteristic p ≥ 0, and X be a smooth proper scheme
with h0(OX) = 1, of dimension n ≥ 0. Recall that the term K-trivial variety of-
ten refers to those X where he dualizing sheaf ωX = det(Ω1

X/k) is isomorphic to
the structure sheaf. In this paper we are interested in the much stronger condi-
tion, where the sheaf of Kähler differentials Ω1

X/k or equivalently the tangent sheaf

ΘX/k = Hom(Ω1
X/k,OX) itself are isomorphic to O⊕nX , in other words, these locally

free sheaves are free. We find it convenient to coin the term T -trivial varieties for
such X.

To simplify exposition, we assume that k is algebraically closed in the following
discussion. For every abelian variety A, the group law gives an identification of the
tangent sheaf with Lie(A) ⊗k OA, and consequently such schemes are T -trivial. In
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characteristic zero, the theory of Albanese maps easily shows that every T -trivial
variety arises in this way. However, Igusa [35] noted that for p ≤ 3 certain bielliptic
surfaces X = (E × E ′)/G become T -trivial. Building on this, Li [43] conjectured
that the T -trivial varieties in characteristic p ≥ 5 are precisely the T -trivial varieties.
Our paper is concerned with the following natural questions:

(i) Suppose a T -trivial variety X that is not an abelian variety arises as a
quotient X = A/G of an abelian variety. Does this imply p ≤ 3?

(ii) What can be said about the Albanese map X → AlbX/k for T -trivial vari-
eties X in characteristic p > 0?

(iii) Suppose a T -trivial variety X in characteristic p > 0 admits a lifting to
characteristic zero. Does this imply that X is an abelian variety?

In their important work [46], Mehta and Srinivas answered (iii) affirmatively,
under the assumption that X is ordinary and projective. This was refined by Joshi
[37], who checked in characteristic p ≥ 5 that every T -trivial surface is an abelian
surface, and by Li [43], who established that for p ≥ 3 that every ordinary T -trivial
variety is an abelian variety.

Roughly speaking, our contributions are as follows: First, we establish that (i)
indeed is true. Second, we show that every T -trivial variety X admits a finite étale
covering X̃ where the fibers of the Albanese map are T -trivial varieties with Betti
number b1 = 0. Third, we show that (iii) holds if characteristic and dimension
satisfy p ≥ 2 dim(X) + 2.

Let us now describe these results in more detail. Our first main results clarifies
if and in which ways Igusa’s construction X = (E × E ′)/G might be carried out at
other primes or in higher dimensions.

Theorem A. (See Thm. 3.8) Let X be a T -trivial variety that is not an abelian
variety, but has a finite surjection A→ X from an abelian variety, with k(X) ⊂ k(A)
separable. Then the following holds:

(i) The characteristic satisfies p ≤ 3.
(ii) The abelian variety A is not simple and contains a point of order p.

(iii) For p = 3 the T -trivial variety X is not ordinary, and the abelian variety A
has a supersingular quotient.

Indeed, for Igusa’s bielliptic surface X = (E ×E ′)/G one needs on A = E ×E ′ a
point of order p, and for p = 3 it turns out that the factor E must be supersingular.
Our result also answers a question of Joshi ([37], Section 6). Furthermore, one
obtains a new proof for Li’s Theorem mentioned above ([43], Theorem 4.2).

Note that quotients X = A/G as above are sometimes called hyperelliptic varieties
[41]. Over the complex numbers, their classification problem boils down to under-
stand discontinuous groups of affine transformations inside the semidirect product
Cn o GLn(C), a topic that received considerable attention in dimension three ([60],
[13], [14], [15], [3]).

The proof for the above theorem relies on a statement on automorphism groups
of abelian varieties, which seems to be of independent interest:

Theorem B. (See Thm. 2.1) Let A be an abelian variety in characteristic p > 0.
Suppose the kernel of Aut(A) → GL(Lie(A)) contains a non-trivial element h of
finite order. Then the following holds:
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(i) The characteristic must be p ≤ 3.
(ii) The order of h ∈ Aut(A) is a p-power.

(iii) For p = 3 the abelian variety A/Ker(id− h) is supersingular.

This can be seen as a variant of Minkowski’s Theorem ([47], Section 1), which
states that an integral matrix H ∈ Matn(Z) with H ≡ E modulo some integer r ≥ 3
is already the identity matrix, and Serre’s result ([24], Appendix), which asserts that
an automorphism h ∈ Aut(A) that is the identity on the group scheme A[r] for some
r ≥ 3 is already the identity. Our proof relies on the Weil Conjectures for abelian
varieties over prime fields, and number-theoretical properties of the eigenvalues of
Frobenius, the so-called Weil numbers.

Our third main results implies that if Li’s Conjecture fails, it must fail in a spec-
tacular way:

Theorem C. (See Thm. 5.1) For every T -trivial variety X, there is a finite étale
covering X ′ → X such that the fibers of the Albanese map X ′ → AlbX′/k′ are T -
trivial varieties with Betti number b1 = 0.

The T -trivial varieties with b1 = 0 would be extremely remote from the situation
over the complex numbers, and from any Igusa-type construction in positive char-
acteristics as well. Except for singletons, we have no clue so far whether or not such
bizarre objects exist.

For the proof for the above result we use the theory of relative Albanese map. It
is now high time to dismiss the assumption that the ground field k is algebraically
closed. Recall that a smooth proper scheme P with h0(OP ) = 1 is called para-
abelian variety if, for some field extension k ⊂ k′, the base-change P ′ = P ⊗ k′ can
be endowed with a group law, and thus becomes an abelian variety. This notion was
developed in [42] and [57], and actually goes back to Grothendieck [25]. It turns out
that G = Aut0

P/k is an abelian variety, acting freely and transitively on P . Summing
up, para-abelian varieties allow for an intrinsic way to handle torsors with respect
to abelian varieties. In connection to T -trivial varieties, which in the first place have
no distinguished point, it is indeed preferable to work with para-abelian varieties
instead of abelian varieties.

For proper flat morphism f : X → S of finite presentation, the relative Albanese
variety is a family of para-abelian varieties AlbX/S, and the relative Albanese map
is a universal arrow X → AlbX/S to such families. Their existence depends on
particular properties of PicX/S, which do not always hold ([42], Theorem 10.2). In
Corollary 4.3, we provide a new unconditional statement in characteristic zero. For
T -trivial varieties X with p > 0, we seek to form the relative Albanese variety with
respect to the absolute Albanese map, but in this setting existence is unclear. The
following work-around, which relies on the Weil Extension Theorem, seems to be of
independent interest:

Theorem D. (See Thm. 4.6) Suppose that S is normal, and that the generic fiber
Xη contains a rational point. After removing a closed set Z ⊂ S of codimension at
least two, Pη = AlbXη/κ(η) extends to a family of abelian varieties P over S, and the
Albanese map gη : Xη → Pη extends to a morphism g : X → P .

Our last main result connects the theory of T -trivial varieties with lifting proper-
ties. Suppose X is smooth and projective over an algebraically closed ground field of
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characteristic p ≥ 0. For k = C it follows from Yau’s proof of the Calabi Conjecture
that X admits a finite étale covering by an abelian variety if and only the Chern
classes c1 and c2 vanish. It is unclear to what extend the reverse implication holds
true for p > 0. We show:

Theorem E. (See Thm. 6.1) In the above situation, suppose the following holds:

(i) For some ` 6= p, the `-adic Chern classes c1 and c2 both vanish.
(ii) The scheme X projectively lifts to characteristic zero.

(iii) Characteristic and dimension satisfy p ≥ 2n+ 2.

Then there is a finite étale covering A→ X by some abelian variety A.

Note that condition (i) automatically holds if X is T -trivial. In dimension n = 2,
we see that every T -trivial surface in characteristic p ≥ 7 arises from an abelian
surface. Note that this already actually holds for p ≥ 5, by the Bombieri–Mumford
generalization of the Bagnera–de Francis classification for bielliptic surface ([7], Sec-
tion 3).

The paper is organized as follows: In Section 1 we collect generalities on Weil
restriction, free sheaves, abelian varieties, `-adic cohomology, and algebraic funda-
mental groups. Section 2 contains results on automorphisms of abelian varieties
that act trivially on the Lie algebra. We introduce the notion of T -trivial varieties
X and establish their basic properties in Section 3. There we also establish some
structure results if it is dominated by some abelian variety. In Section 4 the theory
of relative Albanese maps is developed further. This is used in Section 5 to obtain
a splitting result where T -trivial varieties with b1 = 0 appear. In the final Section
6, we connect the theory of T -trivial varieties with liftings to characteristic zero.

Acknowledgement. Both authors are grateful for the hospitality during their mu-
tual visits at the Heinrich Heine University Düsseldorf and Pembroke College Oxford.
The research was supported by the Deutsche Forschungsgemeinschaft via the grant
SCHR 671/10-1 Varieties with Free Tangent Sheaf. It was also conducted in the
framework of the research training group GRK 2240: Algebro-Geometric Methods
in Algebra, Arithmetic and Topology.

1. Generalities

In this section we collect some general facts on Weil restriction, free sheaves,
abelian varieties, `-adic cohomology and algebraic fundamental groups that are rel-
evant throughout, and perhaps of independent interest. For simplicity, we work over
a ground field k, of characteristic p ≥ 0.

Let us start with Weil restrictions. Suppose k0 ⊂ k is a subfield such that the
degree of the extension is finite. For each scheme or algebraic space X over k, the
functor

(Aff/k0) −→ (Set), R0 7−→ X(R0 ⊗k0 k)

is called Weil restriction X0 = Resk/k0(X). It is representable by an algebraic
space ([36], Theorem 6.5.2), which we denote by the same symbol. Note that X0

is schematic provided that X has the AF-property, which means that every finite
set of points admits a common affine neighborhood. In any case, Weil restriction
is right adjoint to base-change, such that Hom(Y,Resk/k0(X)) = Hom(Y ⊗k0 k,X).
The following property is most useful (loc. cit., Theorem 6.1.5):
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Lemma 1.1. Suppose k0 ⊂ k is separable, with Galois closure k′. Then

(1) Resk/k0(X)⊗k0 k′ =
∏
ι:k→k′

(X ⊗k k′),

where the product runs over all k0-embeddings ι : k → k′.

If k0 ⊂ k is already Galois, the indices ι become the elements from the Galois
group. In any case, the ι form a set of cardinality [k : k0], according to [8], Chapter
V, §6, No. 3, Corollary to Proposition 1, giving the dimension formula

dim(X0) = [k : k0] · dim(X).

Moreover, X0 = Resk/k0(X) is the quotient of (1) by the canonical action of G′ =
Gal(k′/k0), which is free. Furthermore, we see by descent that if X is smooth and
proper with h0(OX) = 1, the same holds for the Weil restriction X0 = Resk/k0(X).
Also note that the identification (1) is natural: Given f : X → Y , the induced
morphism f0 = Resk/k0(f) on Weil restrictions has the property

(2) f0 ⊗k0 k′ =
∏
ι:k→k′

(f ⊗k k′)

We next turn to free sheaves. Recall that a locally free sheaf E of rank r ≥ 0 on
a scheme X is called free if it is isomorphic to

⊕r
i=1 OX . The following categorical

observation is useful:

Lemma 1.2. Suppose h0(OX) = 1. Then the functor V 7→ V ⊗kOX from the abelian
category finite-dimensional k-vector spaces V to the abelian category of quasicoherent
sheaves E on X is exact and fully faithful, and its essential image is the category of
free sheaves of finite rank.

Proof. The statement on the essential image is obvious. The functor is fully faithful,
because both Hom(kn, km) and Hom(O⊕nX ,O⊕mX ) are given by m× n-matrices (ϕij)
with entries from Hom(k, k) = k = Γ(X,OX) = Hom(OX ,OX). The functor is exact
since the structure map X → Spec(k) is flat. �

It follows that all short exact sequences 0→ E ′ → E → E ′′ → 0 with free sheaves
of finite rank are split. Moreover, a map ϕ : E → F of free sheaves of finite rank
is injective or surjective provided that corresponding property holds after tensoring
with the residue field of some point a ∈ X. The following useful observation is
essentially contained in [51], Lemma 4.2:

Proposition 1.3. Suppose h0(OX) = 1, and let E be quasicoherent sheaf on X. If
for some field extension k ⊂ k′, the base-change E ′ = E ⊗k′ to X ′ = X⊗k′ becomes
free of rank r ≥ 0, the same already holds for E .

Proof. We have h0(E ) = dimk′ H
0(X ′,E ′) = dimk′ H

0(X ′,OX′) · r = r. Choose a
basis s1, . . . , sr ∈ H0(X,E ), and consider the resulting homomorphism of quasico-
herent sheaves

kr ⊗k OX
s1,...,sr−→ H0(X,E )⊗k OX

can−→ E .

The map on the left is bijective by construction, and the map on the right becomes
bijective after base-change to k′. It follows that both maps are bijective, hence E is
free of rank r. �
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Let us also record:

Proposition 1.4. Suppose h0(OX) = 1. Let E be locally free sheaf of finite rank on
X that is globally generated, and assume that there is a scheme X ′ with h0(OX′) = 1,
and a surjection f : X ′ → X such that the pullback E ′ = f ∗(E ) is free. Then E is
free.

Proof. Set r = rank(E ) and V = H0(X,E ). The canonical map V ⊗k OX → E
is surjective, and the same holds for its pullback to X ′. By Lemma 1.2, there is a
vector subspace U ⊂ V such that the pullback of ϕ : U ⊗k OX → E is bijective. We
may regard s = det(ϕ) as a section for the invertible sheaf L = det(E ), and the
task is to verify that is has no zeros. Let a ∈ X be a point and a′ ∈ X ′ be some
preimage. By construction s(a′) = s(a)⊗κ(a′) does not vanish, hence s(a) 6= 0. �

We next turn to abelian varieties A in positive characteristics p > 0. Then Lie(A)
is a restricted Lie algebra, having zero brackets [x, y] = 0 and some p-map x 7→ x[p].
One says that A is superspecial if Lie(A) is isomorphic to kg, the restricted Lie
algebra where both bracket and p-map are zero. In dimension g = 1, this are
precisely the supersingular elliptic curves. Also note that up to twists, there is but
one superspecial abelian variety in each dimension g ≥ 2, namely the product of
supersingular elliptic curves, a result attributed to Deligne ([59], Theorem 3.5, see
also [52], Theorem 6.2). One calls A supersingular if and only if it is isogeneous to
such a product E1× . . .×Eg of supersingular elliptic curves. This condition can be
rephrased in terms of Dieudonné modules, and holds over k if and only if it holds
over kalg ([53], Theorem 4.2 and [63], Theorem 1.2). The following observation will
be useful:

Lemma 1.5. For the g-dimensional abelian variety A, the following are equivalent:

(i) There is a non-zero supersingular quotient A/N .
(ii) Some abelian subvariety in A⊗ kalg has a non-zero supersingular quotient.

Under these equivalent conditions, the map Hg(A(p),OA(p)) → Hg(A,OA) induced
by the relative Frobenius F : A→ A(p) is zero.

Proof. The implications (i)⇒(ii) is trivial. For the converse, let k ⊂ k′ be any field
extension, set A′ = A ⊗ k′, and consider the ordered set of abelian subvarieties
N ′λ ⊂ A′, λ ∈ L such that A′/N ′λ is supersingular. For any two members N ′λ and
N ′µ, the abelian variety (N ′λ ∩ N ′µ)0

red belongs to the family, because the class of
supersingular abelian varieties are stable under products and subvarieties. In turn,
our collection contains a smallest member N ′0 ⊂ A′. Obviously, this is stable under
the action of G = Aut(k′/k).

For k′ = kalg, the Poincaré Irreducibility Theorem easily implies that A′/N ′0 is
non-zero. Via Galois descent we see that the base-change to the perfect closure kperf

admits a non-zero supersingular quotient.
Changing notation, we find a finite purely inseparable field extension k ⊂ k′ with a

non-zero supersingular quotient f ′ : A⊗k′ → B′. The corresponding homomorphism
f : A → Resk′/k(B

′) factors over the abelian variety Ā = Im(f). Pulling back we
obtain

A⊗ k′ −→ Ā⊗ k′ −→ Resk′/k(B)⊗ k′ −→ B.
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The map from Ā⊗k′ to B is surjective, because A⊗k′ → B is surjective, whereas the
map to Resk′/k(B)⊗k′ is a closed embedding, because this holds for Ā→ Resk′/k(B).
Using that the kernel for the adjunction Resk′/k(B)⊗k′ → B is affine ([17], Appendix
A, Proposition 5.11), we conclude that Ā⊗ k′ → B is an isogeny, and infer that Ā
is supersingular.

For the remaining statement, suppose that B = A/N is a supersingular quotient.
Passing to a further quotient, we may assume that B is supersingular elliptic curve,
so the canonical map H1(B(p),OB(p)) → H1(B,OB) induced by the relative Frobe-
nius, which is identical to the Verschiebung on Pic0

B/k = B, vanishes. The cup

product ΛgH1(A,OA) → Hg(A,OA) is bijective (see for example [56], Proposition
2.3). Passing to the Stein factorization for the projection A → B, we may further-
more assume that the canonical map H1(B,OB)→ H1(A,OA) is injective, and the
same for Frobenius pullbacks. Choose a non-zero ε1 ∈ H1(B(p),OB(p)) and extend
it to a basis ε1, . . . , εg ∈ H1(A(p),OA(p)). The relative Frobenius vanishes on the
generator ε1 ∪ . . . ∪ εg of Hg(A(p),OA(p)), because it vanishes the first factor. �

If the equivalent conditions of Lemma 1.5 hold, we say that A has a supersin-
gular quotient. This property played a crucial role in [54], where the term has a
supersingular factor was used.

Over finite ground fields k = Fq, supersingularity can be characterized in terms
of Frobenius eigenvalues: Write q = pν , and let Φ : A → A be the ν-th power
of the absolute Frobenius map. Fix a prime ` 6= p and consider the induced Q`-
linear endomorphisms on H i(A⊗kalg,Q`). For each embedding Q` ⊂ C the resulting
eigenvalues α1, . . . , α2g ∈ C are algebraic integers and have absolute value |αj| = pi/2,
according to [19], Corollary 3.3.9. An algebraic integer α ∈ C all whose conjugates
α′ have |α′| = pi/2 are called Weil numbers of weight i. Those of the particular
simple form α = ζ · pi/2 for some root of unity ζ are called supersingular. By [62],
Theorem 2.9 the abelian variety A is a supersingular if and only if the Weil numbers
α1, . . . , α2g ∈ C are supersingular.

We next come to `-adic cohomology, where ` > 0 is a fixed prime that is invertible
in the ground field k. Let X be a scheme, for the sake of exposition assumed to
be proper. Recall that µ`ν = µX,`ν , ν ≥ 0 denotes the sheaf of `ν-th roots of unity
on the site (Et/X) of étale X-schemes, endowed with the étale topology. The étale
cohomology groups H i(X,µ⊗j`ν ), ν ≥ 0 form an inverse system of Z`-modules, and
one defines the `-adic cohomology as

H i(X,Z`(j)) = lim←−
ν

H i(X,µ⊗j`ν ) and H i(X,Q`(j)) = H i(X,Z`(j))⊗Z` Q`.

To discard arithmetical contributions, one frequently considers the cohomology
groups H i(X ⊗ kalg,Z`(j)) and H i(X ⊗ kalg,Q`(j)), which are finitely generated.
The resulting Betti numbers are

bi(X) = dimQ` H
i(X ⊗ kalg,Q`(j))

Here both ` and j are irrelevant, the latter because H i(X ⊗ kalg,Z`(j)) is ob-
tained from H i(X ⊗ kalg,Z`) by tensoring with the invertible Z`-module Z`(j) =
lim←−ν(µ`ν (k

alg)⊗j). Also note that in all this one might use ksep instead of kalg.
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Although not via cycle class maps, cohomology in degree one has the following
well-known significance:

Lemma 1.6. Suppose X is geometrically normal with h0(OX) = 1. Then the first
Betti number is given by b1(X) = 2 dim(PicX/k).

Proof. First note that the Kummer sequence 0 → µ`ν → Gm
`ν→ Gm → 0 yields an

exact sequence

(3) 0 −→ k×/k×`
ν −→ H1(X,Z/`νZ(1)) −→ Pic(X)[`ν ] −→ 0.

Next recall that the connected component P = PicτX/k is a group scheme of finite
type. It is actually proper (see for example [42], Proposition 2.3) hence an extension
of a finite group scheme G by an abelian variety A. We thus have exact sequences
0→ A[`ν ]→ P [`ν ]→ G[`ν ] of group schemes, and obtain exact sequences

0 −→ lim←−
ν

A[`ν ](k) −→ lim←−
ν

P [`ν ](k) −→ lim←−
ν

G[`ν ](k)

of groups, where the terms on the right are finite. To proceed, we may assume that
k is algebraically closed. Then the term on the left is a free Z` module of rank
2 dim(A). The term in the middle can be identified with H i(X,Z`(1)) by (3), and
the assertion follows. �

Suppose now that X is connected. Let a : Spec(Ω)→ X be a geometric point, and
π1(X, a) be the ensuing algebraic fundamental group, introduced by Grothendieck
([30], Exposé V, Section 7) as automorphism group of the fiber functor V 7→ V (Ω),
which sends a finite étale covering V to its fiber with respect to a. This functor
indeed yields an equivalence between the category of finite étale coverings V → X
and the category of finite sets endowed with a continuous π1(X, a)-action.

An abelian sheaf Fν on the étale site (Et/X) is called `ν-local system if it is a
twisted form of the constant sheaf (Z/`νZ)⊕rX , for some rank r ≥ 0. An `-adic
local system is an inverse system F = (Fν), where the entries are `ν-local systems,
and the transition maps yield identifications Fν = Fµ ⊗ (Z/`νZ)X whenever µ ≥
ν. Our geometric point a : Spec(Ω) → X yields the monodromy representation
π1(X, a) → GL(Fν | Ω). This actually gives an equivalence between the additive
category of `ν-local systems of rank r ≥ 0 and the additive category of continuous
representations π1(X, a) → GLr(Z/`νZ). For `-adic local systems F = (Fν), one
obtains an equivalence to the additive category of continuous representations

π1(X, a) −→ lim←−
ν

GLr(Z/`νZ) = GLr(Z`).

Localizing the category of `-adic sheaves by tensoring the Hom sets with Q`, one
obtains an equivalence to the category of continuous representations in GLr(Q`). By
abuse of notation, we also writes Q`,X for the `-adic local system (Z/`νZ)X , ν ≥ 0
in the localized category.

For each smooth proper morphism f : X → Y and each `ν-local system Fν on
X, the higher direct images Rif∗(Fν) are `ν-local systems on Y . Moreover, for each
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cartesian diagram
X ′ −−−→ X

f ′

y yf
Y ′ −−−→ Y

the Proper Base-Change Theorem yields an identificationRif∗(Fν)|Y ′ = Rif ′∗(Fν |X ′),
with likewise statements for `-adic local systems F = (Fν).

Finally, suppose that X is proper over the ground field k, with h0(OX) = 1.
Choose an algebraic closure kalg, fix a closed point x0 on the base-change X ⊗ kalg,
and set S = Spec(k). The structure morphism X → S induces a short exact
sequence

(4) 1 −→ π1(X ⊗ kalg, x0) −→ π1(X, x0) −→ π1(S, x0) −→ 1,

where the term on the right becomes the Galois group Gal(ksep/k) = Aut(kalg/k).
To simplify notation we set

Πalg = π1(X ⊗ kalg, x0) and Π = π1(X ⊗ kalg, x0) and Γ = π1(S, x0).

Conjugacy defines a homomorphism Γ → Out(Πalg). As explained in [12], Chapter
IV, Section 6, the isomorphism classes of extensions with such an outer representa-
tion become a principal homogeneous space with respect to the cohomology group
H2(Γ, Z(Πalg)), formed with respect to the center.

Recall that the open subgroups H ⊂ Π are precisely the closed subgroups of finite
index. By Galois theory, the transitive Π-set Π/H for such subgroups correspond
to the finite étale covering X ′ → X with connected total space. Moreover,

Γ/H and
⋃

Πalg·σ·H

Πalg/(Πalg ∩ σHσ−1)

correspond to the étale k-algebra k′ = H0(X ′,OX′) and the base-change X ′ ⊗ kalg,
respectively. The kernel N ⊂ Π for the permutation representation on Π/H is the
largest normal subgroup contained in H, which is also open, and gives the Galois
closure X ′′ for X ′. Set k′ = H0(X ′,OX′) and k′′ = H0(X ′′,OX′′). Note that we may
easily have h0(OX′′) > h0(OX′), compare the discussion [18], Section 2.8. To get rid
of such constant field extensions one may use the following observation:

Lemma 1.7. The canonical morphism X ′′ → X⊗k k′′ is a finite étale Galois cover-
ing, the k′′-vector spaces H0(X ′′,OX′′) and H0(X ⊗ k′′,OX⊗k′′) are one-dimensional

Proof. Both schemes are étale over X, hence the morphism is étale by [29], Propo-
sition 17.3.4. Let N ⊂ Π be the open normal subgroup corresponding to the com-
posite map X ′′ → X, and Γ′′ ⊂ Γ be its image. Then X ⊗ k′′ corresponds to the
subgroup Π′′ = Π×Γ Γ′′ of Π, and X ′′ → X ⊗k k′′ corresponds to N ⊂ Π′′. The first
statement follows. The statement on H0(X ′′,OX′′) is trivial, and the statement on
H0(X ⊗ k′′,OX⊗k′′) follows from h0(OX) = 1. �

2. Automorphisms of abelian varieties

The goal of this section is to establish several results on automorphisms of abelian
varieties, which will play a crucial role in the next section, and appears to be of
independent interest.
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Let k be a ground field of characteristic p ≥ 0, and A be an abelian variety of
dimension g ≥ 0. It comes with an associative algebra End(A), and its unit group
Aut(A) is a countable group. Each element fixes the neutral element e ∈ A, and
thus stabilizes all infinitesimal neighborhood Spec(OA,e/m

n+1). According to [45],
Lemma in Section 3 the resulting linear representations

Aut(A) −→ GL(OA,e/m
n+1)

are injective for n ≥ 0 sufficiently large. Moreover, the kernels of the above maps
define a series of normal subgroups. Throughout, we are interested in the case n = 1,
where the above can also be seen as the canonical map Aut(A)→ GL(Lie(A)). Our
first main result reveals that the torsion inside the kernel is rather restricted:

Theorem 2.1. Suppose p > 0, and that the kernel of Aut(A) → GL(Lie(A)) con-
tains a non-trivial element h of finite order. Then the following holds:

(i) The characteristic must be p ≤ 3.
(ii) The order of h ∈ Aut(A) is a p-power.

(iii) For p = 3 the abelian variety A/Ker(h− id) must be supersingular.

Proof. The key idea is to understand the case where the ground field is a prime field,
and then reduce to this situation via standard arguments. We proceed in three steps.

Step 1: Suppose that k = Fp is the prime field. First note that A(p) = A and that
the relative and absolute Frobenius maps for A coincide. We thus have a short exact

sequence 0→ A[F ]→ A
F→ A→ 0. Also note that this sequence is functorial. Thus

F belongs to the center of the associative algebra End(A), and every endomorphism
stabilizes the Frobenius kernel A[F ].

Replacing our group element h ∈ Aut(A) of finite order by a suitable power, we
may assume that r = ord(h) is prime. The difference id − h induces the zero map
on Lie(A). In light of the Demazure–Gabriel Correspondence ([20], Chapter II, §7,
Theorem 3.5), this actually means A[F ] ⊂ Ker(id− h). The Isomorphism Theorem
gives an endomorphism f : A→ A with id− h = f ◦ F , or equivalently

h = id− f ◦ F.

Fix a complex embedding Qalg
` ⊂ C and consider the effect of f and F on the vector

space V = H1(A⊗ kalg,Q`)⊗C, which has dimension 2g. Since f and F commute,
there is a basis e1, . . . , e2g ∈ V such that the resulting matrices for f ∗ and F ∗ are
both lower triangular ([8], Chapter VII, §5, No. 9, Proposition 19). Let α1, . . . , α2g

and β1, . . . , β2g be the matrix entries on the diagonal for f ∗ and F ∗, respectively.
In turn, the matrix for h∗ is lower triangular as well, and 1 − αiβi are its diagonal
entries. These are the eigenvalues for h∗, all of which are r-th roots of unity. If all
of them are trivial, then h∗ is the identity, because it is diagonalizable, and hence h
is the identity ([49], Section 18, Theorem 3), contradiction.

Fix an index 1 ≤ d ≤ 2g for which the r-th root of unity ζ = 1− αdβd primitive.
Since the characteristic polynomial for h∗ belongs to Z[T ], all conjugates of ζ appear
among the 1− αiβi. Choose indices i1, . . . , ir−1 so that

{1− αi1βi1 , . . . , 1− αir−1βir−1} = {ζ1, . . . , ζr−1}.
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Using this and the cyclotomic polynomial P (T ) = T r−1 + . . . + 1 =
∏r−1

j=1(T − ζj)
for substitutions, we obtain

r = P (1) =
r−1∏
j=1

(1− ζj) =
r−1∏
j=1

αij ·
r−1∏
j=1

βij .

Now recall that the βij are Weil numbers, having |βij | = p1/2. Taking absolute

values from the above equation gives r = sp(r−1)/2, with the factor s =
∏r−1

j=1 |αij |.
Each α = αij is an algebraic integer, so the same holds for the conjugate ᾱ and the

absolute value |α| = (α · ᾱ)1/2. Consequently, the real number s = rp(1−r)/2 is also
an algebraic integer.

In the special case r = 2 the factor becomes s = 2p−1/2, which is a root for
T 2 − 4/p ∈ Q[T ]. This polynomial is irreducible regardless of p, hence must be
the minimal polynomial for s. The latter is an algebraic integer, so 4/p must be
an integer, and thus p = 2 = r. In the general case r ≥ 3 our algebraic integer
s = rp(1−r)/2 already belongs to Q, and thus is contained in Z. From the uniqueness
of prime factorization, we infer r = p and s = 1 and (r−1)/2 = 1. The latter ensure
p = r = 3. This establishes (i) and (ii).

It remains to verify (iii). Set N = Ker(h − id) and A′ = A/N . Recall that by
[62], Theorem 2.9 we have to verify that, with respect to all complex embeddings
Q` ⊂ C, the eigenvalues of Frobenius on H1(A′⊗ kalg,Q`)⊗C take the form ξ · p1/2

for some root of unity ξ ∈ C×, and thus are supersingular Weil numbers.
Let us first reduce to the case that N is finite. Write q : A → A/N = A′ for the

quotient map. Since the commutative group schemes of finite type form an abelian
category, there is a unique monomorphism i : A′ → A such that i ◦ q = h− id. Our
h ∈ Aut(A) induces by construction an automorphism h′ ∈ Aut(A′) of finite order,
which satisfies the equation q ◦ (h − id) = (h′ − id) ◦ q. We claim that h′ − id has
a finite kernel. Suppose this is not the case. To produce a contradiction, we may
replace k by its algebraic closure. Using the surjectivity of q : A → A′, we find a
closed point a ∈ A such that q(a) has infinite order and belongs to Ker(h′ − id).
Then (h − id)(a) ∈ N , and thus (h − id)2(a) = 0. On the other hand, the gcd of
(T − 1)2 and T r − 1 in Q[T ] is T − 1, so there is an integer m ≥ 1 and polynomials
Q(T ), R(T ) ∈ Z[T ] such that Q(T ) · (T − 1)2 + R(T ) · (T r − 1) = m(T − 1). We
conclude

m · (h− id)(a) = (h− id)(m · a) = (i ◦ q)(m · a) = i(m · q(a)) = 0.

Since i is a closed immersion, we see that q(a) ∈ A is a torsion point, contradiction.
We may thus replace A (resp. h) by A′ (resp. h′) and suppose that N is finite.

From 0 = (h − id) ◦ (hp−1 + hp−2 + . . . + id) we infer that the all eigenvalues
ζi = 1 − αiβi for h∗ are primitive p-th roots of unity. Now we can exploit p = 3:
For every complex embedding Q` ⊂ C we have ζi = e±2πi/3. Set ω = e2πi/6. Using
−e2πi/3 = ω−1 and −e−2πi/3 = ω and ω−1 + ω = 1 we compute

|1− ζi|2 = (1− e2πi/3)(1− e−2πi/3) = 3,

and see 1 − ζi = ω±1 · p1/2. In particular |1 − ζi| = p1/2, which coincides with
|βi| = p1/2. From αiβi = 1 − ζi we get |αi| = 1. Since this applies to all complex
embeddings, the αi ∈ C are algebraic integers all whose conjugates lie on the unit
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circle, so they actually must be roots of unity ([61], Chapter I, Lemma 1.6). Setting
ξi = α−1

i ω±1, we get βi = (1− ζi)/αi = ξi · p1/2, as desired.

Step 2: Suppose that the ground field k is finite. Let k0 = Fp be the prime field.
Then k0 ⊂ k is a finite Galois extension, with cyclic G = Gal(k/k0), say of order
m ≥ 1. We now form the Weil restriction A0 = Resk/k0(A), which comes with an
induced automorphism h0 = Resk/k0(h). By Lemma 1.1 we have

(5) A0 ⊗k0 k =
∏
σ∈G

Aσ and h0 ⊗k0 k =
∏
σ∈G

hσ,

where Aσ denotes the abelian variety A⊗k k, with base-change via σ : k → k. This
shows that A0 is para-abelian of dimension g0 = mg. Using the image e0 ∈ A0 of the
origin e ∈ A, it becomes an abelian variety, with h0 ∈ Aut(A0). Then h0 6= id, while
the induced action on Lie(A0) is trivial, because this holds after base-change to k.
Using step 1 with h0 ∈ Aut(A0), we immediate see p ≤ 3. Furthermore, the order of
h0 must be a p-power, so by (5) this also holds for h. Finally, A′0 = A0/Ker(h0− id)
is supersingular, which carries over to

A′0 ⊗k0 k =
∏
σ∈G

Aσ/Ker(h− id).

Then each factor, and in particular A/Ker(h− id), is supersingular.

Step 3: Now the ground field k is general. Let Rλ ⊂ k, λ ∈ L be the ordered
set of all subrings that are finitely generated over the prime field Fp. By [28],
Theorem 8.8.2, we find some member R = Rλ such that A and h arise from a family
of abelian varieties A → Spec(R) and some relative automorphism h : A → A,
which we denote by the same letter. Set r = ord(hη). Since the generic fiber Aη is
schematically dense, we actually have hr = idA. Localizing further, we may assume
that Ker(hi− idA), 0 ≤ i ≤ r−1 are flat. This ensures that for all s ∈ S the element
hs ∈ Aut(As) also has order r. Moreover, the quotient B = A/Ker(h− idA) exists
as an algebraic space (see for example [42], Lemma 1.1), which is actually a family
of abelian varieties.

The closed points s ∈ S are Zariski dense, because S is a Jacobson space, and
the residue fields κ(s) must by finite, by Hilbert’s Nullstellensatz. Applying step 2
with hs ∈ Aut(As), we see that the characteristic satisfies p ≤ 3, that the common
order r is a p-power, and that the closed fiber Bs is supersingular. In turn, for the
finite flat group scheme B[p] the closed fibers are geometrically connected. By [28],
Theorem 9.7.7 the generic fiber is geometrically connected as well, which implies
that Bη is supersingular. �

We next study automorphisms of the smooth proper scheme P obtained from the
abelian variety A by forgetting the group law, and express various phenomena in
terms of group cohomology. First note that

Aut(P ) = A(k) o Aut(A),

where the semidirect product is formed with respect to the canonical action of
Aut(A) on the abelian group A(k). We actually have AutP/k = AoAutA/k as group
schemes. Note that the group law for Aut(P ) and its action on P are given by

(a, h) · (a′, h′) = (a+ h(a′), hh′) and (a, h) · x = a+ h(x).
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We now fix some element h ∈ Aut(A) of finite order. Each a ∈ A(k) gives an element
g = (a, h) from Aut(P ). Then r = ord(h) divides ord(g), and one immediately
computes

gi = (a+ h(a) + . . .+ hi−1(a), hi) and g · x = x⇐⇒ a = x− h(x).

This shows:

Lemma 2.2. The element g = (a, h) from Aut(P ) has order r = ord(h) if and only
if a ∈ Ker(id + h + . . . + hr−1). In this situation, the scheme of fixed points for
g : P → P is empty if and only if a 6∈ Im(id− h).

More precisely, g : P → P has no rational fixed point if and only if a is not the
image of id− h : A(k)→ A(k).

Consider the cyclic group G = Z/rZ, and recall that for each G-module M the
first group cohomology can be expressed as

H1(G,M) = Ker(1 + σ + . . .+ σr−1)/ Im(1− σ),

where σ : M →M is the effect of the canonical generator in G. Using the G-module
M = A(k), we rephrase and refine the above lemma as follows:

Proposition 2.3. The map (a, h) 7→ [a] gives a bijection between the set of A(k)-
conjugacy classes in

(6) {g ∈ Aut(P ) | ord(g) = r, and g = (a, h) for some a ∈ A(k)},
and the cohomology group H1(G,A(k)). Moreover, the automorphism g : P → P
has no rational fixed points if and only if [a] 6= 0.

Proof. By Lemma 2.2, for each element g = (a, h) from the set (6) the entry a
belongs to the kernel of 1 + h+ . . .+ hr−1, and thus gives a cohomology class [a] ∈
H1(G,A(k)). Moreover, each cohomology class arises in this way. The conjugacy
action in question is given by (b, id) · (a, h) · (b, id)−1 = (b+a−h(b), h), which shows
that the map (a, h) 7→ [a] becomes injective when passing to A(k)-conjugacy classes.
The statement on the fixed points also follows from the lemma. �

Corollary 2.4. Suppose k is algebraically closed. Then each g = (a, h) of order
r = ord(h) is conjugate in Aut(P ) to some g′ = (a′, h) where a′ ∈ A(k) is annihilated
by an r-power.

Proof. Set M = A(k), which is a divisible group. Let M ′ be the torsion submodule,
and M ′′ = M/M ′. This gives a short exact sequence 0 → M ′ → M → M ′′ → 0 of
G-modules, and thus an exact sequence

H1(G,M ′) −→ H1(G,M) −→ H1(G,M ′′).

The torsion-free divisible group M ′′ carries a unique structure of a vector space over
Q, necessarily respected by the G-action. Thus H1(G,M) vanishes, because it is
both a Q-vector space and annihilated by |G| = r. Let M ′

0 ⊂ M ′ be the subgroup
of elements annihilated by some r-power, and M ′

1 = M ′/M ′
0. Arguing as above we

see that H1(G,M ′
0)→ H1(G,M ′) is surjective, and the statement follows from the

proposition. �

The following assertion will be useful as well:
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Proposition 2.5. The addition map of commutative group schemes

Ker(id + h+ . . .+ hr−1)×Ker(id− h) −→ A

is surjective, and its kernel is isomorphic to a subgroup scheme inside A[r].

Proof. Set N = Ker(id + h + . . . + hr−1) and N ′ = Ker(id − h). The kernel of the
the addition map is isomorphic to N ∩ N ′. This intersection is h-stable, and the
induced map satisfies h = id and id + h+ . . .+ hr−1 = 0, hence r · id = 0, and thus
N ∩N ′ ⊂ A[r].

For the first assertion it suffices to verify dim(A) ≤ dim(N) + dim(N ′), in light
of the preceding paragraph. Set B = Im(id + h + . . . + hr−1). From the relation
(id + h + . . . + hr−1)(id − h) = 0 we see B ⊂ N ′. This gives dim(A) − dim(N) =
dim(B) ≤ dim(N ′), as desired. �

The following consequence will be important in the next section:

Proposition 2.6. Suppose g = (a, h) has order r = ord(h), and that the fixed
scheme for g : P → P is empty. Then the abelian variety A is not simple, and the
finite group scheme A[r] is disconnected.

Proof. We have r ≥ 2 because g has no fixed points. Thus h 6= id, and furthermore
the abelian variety A′ = Im(id − h) does not contain a by Lemma 2.2. Thus
0 $ A′ $ A, hence A is not simple.

Seeking a contradiction, we assume that A[r] is connected. It is then a local Artin
scheme with residue field k, so we may also assume that k is algebraically closed.
Being successive extensions, the kernels A[rν ], ν ≥ 0 are connected as well. By
Proposition 2.4 we may assume that some of these kernels contain a. Thus a = 0,
hence g = (0, h) fixes the origin 0 ∈ P , contradiction. �

3. T -trivial varieties

Let k be a ground field of characteristic p ≥ 0. Recall that a locally free sheaf
E of rank n ≥ 0 on some scheme X is called free if it is isomorphic to

⊕n
i=1 OX .

The central topic of this paper are smooth schemes with free tangent sheaf. In
the literature, one often finds the locution “trivial tangent bundle”. We find the
following terminology useful:

Definition 3.1. A T -trivial variety is a smooth proper scheme X with h0(OX) = 1
such that the tangent sheaf ΘX/k = Hom(Ω1

X/k,OX) is free.

Equivalently, the sheaf of Kähler differentials Ω1
X/k is free. Note that T -trivial

varieties are very special cases of K-trivial varieties, where ωX = det(Ω1
X/k) is iso-

morphic to the structure sheaf. Abelian varieties A have ΘA/k = Lie(A)⊗k OA, and
are thus examples of T -trivial varieties. Let us collect some basic property:

Proposition 3.2. (i) If X and Y are T -trivial, so is their product X × Y .
(ii) If f : X → Y is a finite étale covering of a T -trivial variety Y , then

every irreducible component X ′ ⊂ X is a T -trivial variety over the field of
constants k′ = Γ(X ′,OX′).

(iii) Let k ⊂ k′ be a field extension. Then X is T -trivial if and only if the
base-change X ′ = X ⊗ k′ is T -trivial.
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(iv) The Weil restriction X0 = Resk/k0(X) of a T -trivial variety X over k along
a finite separable extension k0 ⊂ k is a T -trivial variety over k0.

Proof. The first statement follows from Ω1
(X×Y )/k = pr∗1(Ω1

X/k)⊗ pr∗2(Ω1
Y/k). For (ii)

it suffices to treat the case that X is irreducible. Since X is smooth over k, the finite
extension k ⊂ k′ must be separable. The structure maps X → Spec(k′)→ Spec(k)
induces an exact sequence Ω1

k′/k ⊗k OX → Ω1
X/k → Ω1

X/k′ → 0, where the term on

the left vanishes. In the exact sequence f ∗(Ω1
Y/k) → Ω1

X/k → Ω1
X/Y → 0, the term

on the right vanishes, and the other terms are locally free of the same rank. Thus
the arrow on the left is bijective, so Ω1

X/k′ is free, and (ii) follows.

Statement (iii) follows from Lemma 1.3. It remains to check (iv). In light of (iii)
it suffices to verify that X0 ⊗k0 k is T -trivial. This indeed follows from Lemma 1.1,
together with (i). �

As for abelian varieties, morphisms between T -trivial varieties have remarkable
rigidity properties. Let h : X → Z be a surjective morphism between T -trivial
varieties, with Stein factorization Y = Spech∗(OX). The resulting morphisms are
denoted by

X Y Z.g

h

f

Proposition 3.3. Suppose in the above setting that the function field extension
k(Z) ⊂ k(X) is separable. Then the following holds:

(i) The morphisms h and g are smooth, and f is étale.
(ii) The scheme Y and all fibers g−1(y), y ∈ Y are T -trivial varieties.

(iii) If X and Z have the same dimension, then h : X → Z is étale.
(iv) The canonical sequence 0 → h∗(Ω1

Z/k) → Ω1
X/k → Ω1

X/Y → 0 is split exact,
and all terms are free.

Proof. Set m = dim(X) and n = dim(Z), and consider the exact sequence

h∗(Ω1
Z/k) −→ Ω1

X/k −→ Ω1
X/Z −→ 0.

By assumption, the terms on the left are free, and the map on the left is injective
at the generic point of X. According to Lemma 1.2, the term on the right is free,
the map on the left is injective, and the short exact sequence splits, which already
gives (iv). Furthermore, rank(Ω1

X/Z) = m−n. It then follows from [33], Chapter III,
Proposition 10.4 that h : X → Z is smooth. If X and Z have the same dimension,
the generic fiber is zero-dimensional, hence h is finite, and thus étale, giving (iii).

The smoothness of h ensures that the Stein factorization f : Y → Z is étale ([27],
Remark 7.8.10). So in the exact sequence f ∗(Ω1

Z/k)→ Ω1
Y/k → Ω1

Y/Z → 0, the term

on the right vanishes, and the map on the left is injective ([29], Theorem 17.11.1).
Thus Ω1

Y/k is free, and it follows that Y is a T -trivial variety. Using that Ω1
X/Y is

free, we infer that the g−1(y) are T -trivial varieties, which gives (ii). Applying the
preceding paragraph with g : X → Y instead of h : X → Z, we see that the former
is smooth, which establishes (i). �
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A para-abelian variety is a smooth proper scheme P such that for some field
extension k ⊂ k′, the base-change P ′ = P ⊗ k′ admits the structure of an abelian
variety. Such P are T -trivial according to Proposition 3.2. As explained in [42],
Section 5 the subgroup scheme G ⊂ AutP/k that acts trivial on PicτP/k is an abelian
variety, and its action on P is free and transitive. Moreover, we have an identification
PicτP/k = PicτG/k. The Serre–Lang Theorem on abelian varieties ([49], Section 18)
takes the following form:

Proposition 3.4. Let P be a para-abelian variety, and Q → P be a finite étale
covering with connected total space. Then Q is a para-abelian variety over the field
k′ = H0(Q,OQ).

For every proper scheme X with h0(OX) = 1, there is morphisms f : X → P to a
para-abelian variety P that is universal for morphisms to para-abelian varieties ([42],
Corollary 10.5). Note that PicτP/k coincides with the maximal abelian subvariety in
PicτX/k. One calls P = AlbX/k the Albanese variety, and f the Albanese map. Its
formation functorial, stable under base-change, and equivariant for the action of the
group scheme AutX/k. The following observation is due to Mehta and Srinivas ([46],
Lemma 1.4):

Proposition 3.5. Let X be a T -trivial variety and P = AlbX/k be its Albanese
variety. Then the Albanese map h : X → P is smooth and OP → h∗(OX) is
bijective.

Proof. The map H0(P,Ω1
P/k) → H0(X,Ω1

X/k) is injective ([34], Lemma 1 or [46],

Lemma 1.3), hence the Albanese map is surjective, with separable function field
extension. So by Proposition 3.3 the map h : X → P must be smooth, and its
Stein factorization f : Q → P is étale. Using Proposition 3.4 we infer that Q is
para-abelian. From the universal property of the Albanese variety one sees that f
admits a section s : P → Q. Thus the field extension k(P ) ⊂ k(Q) is an equality,
and it follows that f : Q→ P is an isomorphism. �

The discrepancy between T -trivial varieties and para-abelian varieties now can be
seen as a question about Betti numbers:

Proposition 3.6. For each T -trivial variety X we have b1(X) ≤ 2 dim(X). More-
over, equality holds if and only if X is para-abelian.

Proof. The Albanese map h : X → P is smooth, according to the proposition, hence
dim(X) ≥ dim(P ). The group scheme Pic0

X/k is proper ([42], Proposition 2.3), and
thus dim(P ) = dim(PicX/k). Finally, we have 2 dim(PicX/k) = b1(X) by Lemma 1.6.
Thus

b1(X) = 2 dim(P ) ≤ 2 dim(X).

The outer terms are equal if and only if X and P have the same dimension. In
this case, the Albanese map h : X → P is étale, by Proposition 3.3, and thus an
isomorphism, in light of Proposition 3.5. �

Corollary 3.7. In characteristic zero, every T -trivial variety is para-abelian.

Proof. Hodge theory gives H1(X(C),Z)⊗C = H1,0(X)⊕H0,1(X), where the sum-
mands on the right have the same dimension. Using h0(Ω1

X/k) = dim(X) one gets

b1(X) = 2 dim(X), and the assertion follows from the Proposition. �
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Let X be an n-dimensional K-trivial variety. Serre duality ensures hn(OX) = 1,
and the relative Frobenius map F : X → X(p) yields a linear map

F ∗ : Hn(X(p),OX(p)) −→ Hn(X,OX)

between one-dimensional vector spaces. Choosing a non-zero vector a ∈ Hn(X,OX)
yields via F ∗(a(p)) = λa some scalar λ ∈ k, whose class modulo k×p−1 does not
depend on the vector. If λ 6= 0, it is customary to call X ordinary. Note that
there are several other, more refined versions, involving sheaves of cocycles and
coboundaries in the de Rham complex Ω•X/k. For T -trivial varieties, however, all
these notions coincide, and are also equivalent to the condition that X is Frobenius
split, that is, OX(p) → F∗(OX) admits a retraction ([46], Lemma 1.1).

Let X be a T -trivial variety. Mehta and Srinivas suggested that the collection of
all finite étale coverings Xλ → X, λ ∈ L with connected total space should contain
abelian varieties, at least if k is algebraically closed ([46], page 191). Our second
main result pertains to this, where we also take into account the possible fields of
constants kλ = H0(Xλ,OXλ) over general ground fields:

Theorem 3.8. Let X be a T -trivial variety that is not para-abelian, but has a
finite surjection f : P → X where P is para-abelian over its fields of constants
k′ = H0(P,OP ), and k(X) ⊂ k(P ) is separable. Then the following holds:

(i) The characteristic satisfies p ≤ 3.
(ii) The abelian variety A = Aut0

P/k′ is not geometrically simple and the finite
group scheme A[p] is disconnected.

(iii) For p = 3 the T -trivial variety X is not ordinary, and the abelian variety A
has a supersingular quotient.

Proof. The base-change X ′ = X ⊗k k′ is a T -trivial variety over k′, and the induced
morphism f ′ : P → X ′ is finite and surjective, and respects the k′-structures. By
Lemma 1.7, we may replace X by X ⊗ k′ and k by k′, and thus may assume P is a
para-abelian variety over k. In light of Lemma 1.5, it now suffices to treat the case
that k is algebraically closed.

Choose a finite étale covering Q → P with connected total space such that the
composite map Q → X is Galois. Then Q is para-abelian, by the Serre–Lang
Theorem. Fix a rational point eQ ∈ Q, and write eP ∈ P for the image point. One
may regard the pairs (Q, eQ) and (P, eP ) as abelian varieties, and the morphism Q→
P as an isogeny. According to Lemma 1.5, we may replace P by Q, and thus may
assume that P → X is Galois. Write G = Aut(P/X) for the Galois group, such that
X = P/G. Using Grothendieck’s spectral sequence for equivariant cohomology ([23],
Theorem 5.2.1), we see that the canonical inclusion H0(X,Ω1

X/k) ⊂ H0(P,Ω1
P/k)

G

is an equality. From h0(Ω1
X/k) = h0(Ω1

P/k) we infer that the induced G-action on

H0(P,Ω1
P/k) is trivial.

Fix a rational point e ∈ P . The resulting map A → P is an isomorphism, so
one may regard A as the pair (P, e), and obtains Aut(P ) = A(k) o Aut(A). The
translational part N = G∩A(k) is normal in G, and the quotient P/N remains para-
abelian. So without restriction, we may assume that the projection G→ Aut(A) is
injective. Note that the group G is non-trivial, because X is not para-abelian.
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Fix a non-trivial element g ∈ G, and write g = (a, h) with a ∈ A(k) and h ∈
Aut(A). Let r ≥ 2 be the common order for g and h. Since g and the translation a
act trivially on H0(A,Ω1

A/k), the same holds for h. In turn, it also acts trivially on

the dual vector space H0(A,ΘA/k), and thus belongs to the kernel of the canonical
map Aut(A)→ GL(Lie(A)). By Theorem 2.1, we must have p ≤ 3, and r = ord(h)
is some p-power. Using Proposition 2.6, we see that A is not simple and contains a
point of order p. For p = 3 we also have a supersingular quotient, again by Theorem
2.1. �

Let us recall Igusa’s construction [35] of T -trivial surfaces, and observe that the
key features carry over to higher dimensions: Let E and E ′ be elliptic curves, h ∈
Aut(E) and a ∈ E ′(k) be group elements both of order p. The resulting diagonal
action of the cyclic group G = Cp on the abelian surface A = E×E ′ is free. It turns
out that the induced action on H0(A,Ω1

X/k) is trivial, and the quotient X = A/G
must be T -trivial. Note that this is a bielliptic surfaces, which have Betti numbers
are b1 = b2 = 2. Also note that for k = kalg, the possibilities for the group Aut(E)
are

C2, C4, C6, C3 o C4, and Qo C3,

formed with cyclic groups Ci and the quaternion group Q = {±1,±i,±j,±k}. We
see that Igusa’s construction is only possible in characteristic p ≤ 3, requires an
abelian variety A = E × E ′ that is not simple and contains a point of order p, and
for p = 3 has a supersingular quotient.

We also record the following consequence, which was already established by Li
([43], Theorem 0.3):

Corollary 3.9. Every ordinary T -trivial variety X in characteristic p ≥ 3 is para-
abelian.

Proof. We may assume that k is algebraically closed. According to the results of
Mehta and Srinivas ([46], Theorem 1), there is a finite étale covering A → X by
some abelian variety A, which must be ordinary ([46], Theorem 1 and Lemma 1.2).
Seeking a contradiction, we assume that X is not para-abelian. The theorem en-
sure the characteristic is p = 3, and the abelian variety A fails to be ordinary,
contradiction. �

4. Relative Albanese maps

In this section we investigate the existence of relative Albanese maps, and what
to do if they fail to exist. The results, which appears to be of independent interest,
will be used in the next section to reduce the study of general T -trivial varieties to
those with Betti number b1 = 0. Throughout this section, we work over a fixed base
scheme S.

The theory of relative Albanese maps was developed in [25], [11], [42] and [57].
Let us recall some basic facts. Suppose f : X → S is flat proper morphism of finite
presentation, and with OS = f∗(OX). Then the abelian sheaf R1f∗(Gm), formed with
respect to the fppf topology, is representable by an algebraic space PicX/S, and the
abelian subsheaf given by the numerically trivial invertible sheaves is representable
by an open subspace PicτX/S, which is of finite presentation over S. Note that the
formation of these algebraic spaces commutes with arbitrary base-change.



19

A family of para-abelian variety is a proper morphism P → S of finite presentation
all whose fibers are para-abelian, that is, admit the structure of an abelian variety
after some ground field extension. It then follows that the subgroup space G ⊂
AutP/S that fixes PicτP/S is a family of abelian varieties, that its action on P is free
and transitive, and that PicτP/S is dual to G.

A relative Albanese map is a morphism g : X → P to a family of para-abelian va-
rieties that is universal for arrows to families of para-abelian varieties. Equivalently,
the homomorphism PicτP/S → PicτX/S induces, for each s ∈ S, an identifications
of the abelian variety PicτP/S ⊗κ(s) with the maximal abelian subvariety PicαXs/κ(s)

inside PicτXs/κ(s), compare [42], Definition 8.1 and Theorem 10.2. If these conditions
hold, we also write P = AlbX/S. Note that despite uniqueness, the existence of
relative Albanese maps in specific situations is often unclear.

If S is integral, with generic point η ∈ S, we write Aη ⊂ PicτXη/κ(η) for the maximal
abelian subvariety, and A ⊂ PicτX/S for its schematic closure. It is unclear whether
this is a family of subgroup schemes, let alone a family of abelian varieties. We start
with some easy observations:

Lemma 4.1. Suppose S is integral and noetherian, and f : X → S is smooth.
Then the algebraic spaces PicτX/S and A are proper, and A is equi-dimensional over
S. Moreover, for each s ∈ S the following holds:

(i) The affinization Picaff
Xs/κ(s) of the group scheme PicτXs/κ(s) is finite.

(ii) The kernel of the affinization map is the maximal abelian subvariety PicαXs/κ(s).
(iii) We have PicαXs/κ(s) = (As)red as closed subschemes inside PicτXs/κ(s).

(iv) The fiber As is reduced provided that the group scheme Picaff
Xs/κ(s) is reduced.

Proof. The algebraic space PicτX/S is proper by [42], Proposition 2.3, and the same
holds for the closed subspace A. For the remaining statements it suffices to treat
the case that S is the spectrum of a complete local noetherian ring R, with closed
point s ∈ S and separably closed residue field.

To see (i) and (ii) we consider the group scheme G = PicτXs/κ(s), which is of finite
type over the residue field k = R/mR. By [20], Chapter III, Theorem 8.2 it sits in
a short exact sequence 0 → N → G → Gaff → 0 where Gaff = Spec Γ(G,OG) is the
affinization, and the kernel N is anti-affine, which means h0(ON) = 1. The latter
is an extension of an abelian variety N/H by some smooth connected affine group
scheme H, according to [10], Lemma 3.1.4. In our situation, G is proper, whence
Gaff is finite and H is trivial. This gives (i) and (ii).

Since A is irreducible, the closed fiber As must be connected, according to Hensel’s
Lemma ([29], Theorem 18.5.11). Since A contains the zero section of P , we thus get
(As)red ⊂ PicαXs/κ(s), by (i) and (ii). Set P = PicτX/S, suppose for the moment that
the function s 7→ dim(Ps) is constant, and write g ≥ 0 for the common value. With
Chevalley’s Semicontinuity Theorem ([28], Corollary 13.1.5) we get g ≥ dim(As) ≥
dim(Aη) = g, so A is equi-dimensional. Moreover, the inclusion (As)red ⊂ PicαXs/κ(s)

is an equality, because both schemes are g-dimensional, and the right hand side is
irreducible. This yields (iii). To see (iv), suppose that P aff

s is reduced. Then Pα
s is

a connected component of Ps, and thus the inclusion Pα
s ⊂ As must be an equality.

This gives (iv).
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It remains to check that s 7→ dim(Ps) is constant, which by Chevalley’s Semicon-
tinuity Theorem boils down to dim(Ps) ≤ dim(Pη). Fix a prime ` that does not
divide the order of the finite group scheme P aff

s and P aff
η , and also differs from the

characteristic p ≥ 0 of the residue field R/mR. Consider the infinitesimal neighbor-
hoods Xn = X⊗R/mn+1

R . The short exact sequence 0→ OX0 → O×Xn+1
→ O×Xn → 1

induces an exact sequence

H1(X0,OX0) −→ Pic(Xn+1) −→ Pic(Xn) −→ H2(X0,OX0)

Since ` is prime to the characteristic of the residue field R/mR, the map in the
middle induces a bijection on `-torsion elements. It then follows from Grothendieck’s
Existence Theorem ([26], Theorem 5.4.1) that the restriction map Pic(X)→ Pic(Xs)
indeed induces a bijection on `-torsion. So dimF` Pic(Xs)[`] ≤ dimF` Pic(Xη)[`]. In
turn, we have dim(Ps) ≤ dim(Pη). �

This already gives a sufficient condition for the existence of relative Albanese
maps:

Theorem 4.2. Suppose S is integral, normal and excellent, f : X → S is smooth,
and the fibers for the structure morphism A → S are reduced. Then the relative
Albanese map g : X → AlbX/S exists.

Proof. We first check that A→ S is a family of para-abelian varieties. Being the clo-
sure of the regular scheme Aη, the total space A contains no embedded components.
By Lemma 4.1, the structure morphism A → S is proper and equi-dimensional,
and the fiber-wise inclusions PicαXs/κ(s) ⊂ As are equalities. According to Kollár’s
generalization of Hironaka’s Flatness Lemma ([40], Corollary 11), the morphism
f : A→ S must be flat, and thus is a family of para-abelian varieties.

Obviously, the zero section e : S → PicτX/S factors over A. By [42], Proposition
4.3, there is a unique group law that turns A into a family of abelian varieties. The
inclusion A ⊂ PicτX/S respects the zero section. Using [50], Corollary 6.4 one infers
that it actually respects the group laws. We already observed that each As is the
maximal abelian subvariety inside PicτXs/κ(s), so by [42], Theorem 10.2 the relative
Albanese map g : X → AlbX/S exists. �

This basically settles the case of characteristic zero:

Corollary 4.3. Suppose S is a Q-scheme that is integral, normal and excellent, and
that f : X → S is smooth. Then the relative Albanese map g : X → AlbX/S exists.

Proof. By Cartier’s Theorem ([20], Chapter II, Theorem 1.1), group schemes of finite
type over the points s ∈ S are automatically reduced. Lemma 4.1 ensures that the
fiber As is reduced, so the theorem applies. �

Without the assumption on the characteristic, the conclusions holds true if for all
points s ∈ S we have H2(Xs,OXs) = 0, because then PicτXs/κ(s) and hence also its
affinization are smooth ([48], Lecture 27).

All the above results, however, are still insufficient for the applications we have
in mind. For lack of better existence criteria, we seek to weaken the very notion of
relative Albanese maps. Our first observation in this direction is:
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Lemma 4.4. Suppose S is integral and noetherian, and f : X → S is smooth. Then
the abelian variety Aη extends to a family of abelian varieties over some open set
U ⊂ X containing all points s ∈ S where OS,s is regular of dimension one.

Proof. Since Aη extends over some dense open subset, it suffices to treat the case
that S is the spectrum of a discrete valuation ring R, and s ∈ S is the closed point.
The task is to check that Aη has good reduction. For this we further may assume
that R is complete, with separably closed residue field ([9], Section 7.2, Theorem 1).

Fix a prime ` > 0 that does not divide the order of the finite group scheme
Picaff

Xη/κ(η), and also differs from the characteristic p ≥ 0 of the residue field R/mR.

The former ensures that the inclusion Aη[`] ⊂ PicτXη/κ(η)[`] is an equality. In light of

the Néron–Ogg–Shafarevich Criterion ([58], Theorem 1), our task is to verify that
the finite étale group scheme PicτXη/κ(η)[`] is constant. Equivalently, the F`-vector

space Pic(Xη)[`] has dimension 2g, where g ≥ 0 is the relative dimension of PicτX/S.
It thus suffices to verify that the restriction map Pic(X)[`]→ Pic(X0)[`] is surjective,
where X0 is the closed fiber. This indeed follows as in the proof for Lemma 4.1. �

According to [42], Corollary 10.6 there is an open neighborhood V of the generic
point η ∈ S such that XV → AlbXV /V exists. A necessary condition for V = S is
that the para-abelian variety Pη = AlbXη/κ(η) extends to a family of para-abelian
varieties P over S. In this situation, the Albanese map gη : Xη → Pη can be seen
as rational map g : X 99K P between integral noetherian schemes. Its domain of
definition Dom(g) is an open set in X, so its image U = f(Dom(g)) is an open set
in S. In fact, U comprises all s ∈ S where our the rational map induces a rational
map gs : Xs 99K Ps on the fiber. One then says that g is a U-rational map.

Proposition 4.5. Suppose that S is integral, normal and noetherian, f : X → S
is smooth, and that the Albanese variety Pη = AlbXη/κ(η) extends to a family of
para-abelian varieties P over S. Then the open set U = f(Dom(g)) contains every
codimension-one point s ∈ S, and the Albanese map gη : Xη → Pη extends to a
morphism gU : XU → PU .

Proof. For the statement on U , it suffices to treat the case that S is the spectrum of
a discrete valuation ring R, with closed point s ∈ S. Our task is to verify that the
inclusion Xη ⊂ Dom(g) is strict. For this we argue as in [9], Section 2.5, Proposition
5: Let Γ ⊂ X×P be the closure of the graph for the Albanese map gη : Xη → Pη. We
have to check that the projection pr1 : Γ→ X is an isomorphism. By fppf descent,
we may replace S by X, and assume that the structure morphism f : X → S has
a section. The induced section for P endows it with the structure of a family of
abelian varieties. This is actually the Néron model of Pη. Since X → S is smooth,
the Albanese map gη : Xη → Pη extends to a morphism over S = Spec(R).

For the remaining statement, we may assume that Dom(g) surjects onto the nor-
mal scheme S, such that g : X 99K P is an S-rational map. Each codimension-one
point ζ ∈ X either belongs to the generic fiber Xη, or maps to a codimension-one
point s ∈ S. By the previous paragraph, the rational map g : X 99K P is defined at
all such ζ ∈ X. By the Weil Extension Theorem ([9], Section 4.4, Theorem 1), the
S-rational map g is defined everywhere. �

Our main result on relative Albanese maps is a weak form of existence:
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Theorem 4.6. Suppose that S is integral and normal, f : X → S is smooth, and
that the generic fiber Xη contains a rational point. After removing a closed set
Z ⊂ S of codimension at least two, Pη = AlbXη/κ(η) extends to a family of abelian
varieties P over S, and the Albanese map gη : Xη → Pη extends to a morphism
g : X → P .

Proof. Let Gη = PicτAη/κ(η) be the dual for the abelian variety Aη = PicαXη/κ(η). By
Lemma 4.4 we may assume that it extends to a family of abelian varieties G → S.
Fix a rational point on Xη. The resulting rational point on the Albanese variety
yields an identification Pη = AlbXη/κ(η) with Gη. Thus Pη extends to a family
P → S. By Proposition 4.5, the Albanese map gη : Xη → Pη extends to a morphism
g : X → P , at least after removing a closed subset Z ⊂ S of codimension at least
two. �

Although it is unclear whether the above g : X → P enjoys a universal property,
it can serve as a useful substitute for the relative Albanese map, as we shall see in
the next section.

5. The first Betti number

Let k be a ground field of characteristic p ≥ 0. Throughout this section, X
denotes an n-dimensional T -trivial variety. To unravel its geometry, the chief tool is
the Albanese variety B = AlbX/k and the Albanese map f : X → B. Recall that the
former has dim(B) = 2b1(X), and that the latter is a family of T -trivial varieties,
usually of smaller dimension n′ < n. Our third main result is:

Theorem 5.1. Assumptions as above. Then there is a finite étale covering X ′ → X
whose total space is a T -trivial variety X ′ over the field k′ = H0(X ′,OX′) where the
fibers of the Albanese map X ′ → AlbX′/k′ are T -trivial varieties with Betti number
b1 = 0.

In characteristic zero, this is a consequence of the Beauville–Bogomolov Decom-
position for K-trivial varieties ([6] and [4]), and then actually X ′ = AlbX′/k. By the
result of Mehta and Srinivas ([46], Theorem 1), this carries over to positive charac-
teristics provided X is ordinary. Our theorem above raises the question whether or
not T -trivial varieties with b1 = 0 exists, besides the obvious example of the singleton
in dimension n = 0. And if so, for which primes p > 0 do they occur? At present,
we are unable to offer further insights on this. It also would be interesting to know
if one may choose X ′ without constant field extension.

The proof requires some preparation, and will be given at the end of the section.
We would like to use the relative Albanese variety AlbX/B over the absolute Albanese
variety B = AlbX/k. As discussed in the previous section, the unconditional exis-
tence of such a relative construction is in doubt. To circumvent this issue, consider
commutative diagrams

(7)

C ′ −−−→ Xy yf
C −−−→ B,
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where C and C ′ are regular curves, the vertical maps are surjective, and the hori-
zontal maps are finite. Let η ∈ C and η′ ∈ C ′ be the generic points. For simplicity,
we also assume h0(OC′) = 1. By Lemma 4.4, the abelian variety Gη dual to the
maximal abelian subvariety Aη = PicαXη/κ(η) extends to a family of abelian varieties
G→ C. Set

Gη′ = Gη ⊗κ(η) κ(η′) and GC′ = G×C C ′.
The commutative diagram (7) provides a κ(η′)-valued point for Xη, which gives an
identification AlbXη′/κ(η′) = Gη′ . By Theorem 4.6, the Albanese map Xη′ → Gη′

extends to a morphism XC′ → GC′ .

Proposition 5.2. The family G→ C of abelian varieties is isotrivial.

Proof. It suffices to treat the case that k is separably closed. To start with, we
also assume that k is algebraically closed. Consider the invertible sheaf ωG/C =
e∗(Ωg

G/C) on the smooth curve C, where e : C → G denotes the zero section and

g = dim(G/C). According to [22], Chapter V, Proposition 2.2 it suffices to verify
deg(ωG/C) ≤ 0. For this, we may replace C by any finite covering, and assume
C = C ′.

As observed above, the Albanese map gη : Xη → Gη extends to a morphism
g : X → G. This yields an exact sequence

(8) g∗(Ω1
G/C) −→ Ω1

XC/C
−→ Ω1

XC/G
−→ 0.

The term on the left is locally free, and the term in the middle is free, because
Ω1
X/B is free. Let d ≥ 0 be its rank. The generic fiber Xη is a T -trivial variety,

hence its Albanese map gη is smooth. So in (8) the map on the left is locally a
direct summand over Xη, and in particular injective. Pulling back along the section
s : C → X yields an inclusion e∗(Ω1

G/C) ⊂ O⊕dC , and thus deg(ωG/C) ≤ 0.
It remains to cope with the case that k is merely separably closed. Fix a prime

` ≥ 3 different from the characteristic p ≥ 0. Let D be the normalization of the
reduction for Calg = C ⊗ kalg. The canonical map D → Calg is a finite universal
homeomorphism. Using [30], Exposé IX, Theorem 4.10, we find a symplectic level
structure (Z/`Z)2g

C → G. According to [22], Corollary 2 for Theorem 6.7, the stack
Ag,` of g-dimensional abelian varieties with such a level structure is an algebraic
space. Let C → Ag,` be the classifying map for G. By the previous paragraph, it
factors over a singleton after base-change to kalg, so the same holds over k. �

Now back to the absolute Albanese variety B = AlbX/k. Fix a prime ` > 0
different from the characteristic p ≥ 0. Since the Albanese map f : X → B is
smooth and proper, the higher direct images Rif∗(Q`) are `-adic local systems, of
some rank di ≥ 0. Taking fibers over the geometric point a ∈ Xalg turns them into
representations π1(B, a) → GLdi(Q`), and the local system is isotrivial if and only
if the image of the representation is finite.

Proposition 5.3. The `-adic local system R1f∗(Q`) is isotrivial.

Proof. It suffices to treat the case that the ground field k is algebraically closed.
Let d ≥ 0 be the rank of the local system R1f∗(Q`). Our task is to show that the
corresponding representation π1(B, a) → GLd(Q`) has finite image. This is trivial
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for n = 0, because then d = 0, so we assume n ≥ 1. We now introduce particular
curves C and C ′ to form the diagram (7).

By Bertini’s Theorem together with the Lefschetz Theorem for algebraic funda-
mental groups ([38], Chapter I, Theorem 6.3 and [31], Exposé XII, Corollary 3.5),
there is a smooth curve C ⊂ B containing the image of a ∈ X such that the induced
map π1(C, a) → π1(B, a) is surjective. Choose an algebraic closure of the function
field κ(η) = k(C). Working with the resulting geometric point η̄ rather than a as
base point, we have to show that the composite map ρ : π1(C, η̄) → GLd(Q`) has
finite image.

By Proposition 5.2, the family g : G → C is isotrivial. Moreover, the projection
fC : XC → C is smooth. We thus find a finite branched covering C ′ → C such that
GC′ = G0 × C ′ for some abelian variety G0 over k, and that fC′ : XC′ → C ′ has a
section. Choose a section to get the diagram (7). Now the Albanese map Xη′ → Gη′

extends to a morphism XC′ → GC′ , and gC′ : GC′ → C ′ is given by the projection
G0 × C ′ → C ′.

To restate our findings in terms of fundamental groups, we lift the geometric
point η̄ to C ′. The Proper Base-Change Theorem ([2], Exposé XII, Theorem 5.1)
gives R1(fC)∗(Q`) = R1f∗(Ql)|C ′, so ρ : π1(C, η̄) → GLd(Q`) is the representation
corresponding to the local system R1(fC)∗(Q`). By Lemma 5.6, the local systems
R1(fC′)∗(Q`) and R1(gC′)∗(Q`) are isomorphic at the generic point η′, and by con-
struction G⊗κ(η) κ(η′) = G0 ⊗k κ(η′). Thus the diagram

(9)

π1(η′, η̄) π1(η, η̄) π1(C, η̄)

π1(S, η̄) GLd(Ql),

ρ

e

is commutative, where S = Spec(k). Of course, the latter is simply-connected and
the lower horizontal map is trivial. In the upper row, the map on the left is injective
with image of finite index, and the map on the right is surjective by [30], Exposé V,
Proposition 8.2. It follows that the representation ρ : π1(B, η̄)→ GLd(Q`) vanishes
on π1(η′, η̄), and thus has finite image. �

Proposition 5.4. Suppose that the `-adic local system R1f∗(Q`) is constant. Then
this system vanishes, and the fibers of the Albanese map f : X → AlbX/k are T -
trivial varieties with first Betti number b1 = 0.

Proof. It suffices to treat the case that k is algebraically closed. The Leray–Serre
spectral sequence for the Albanese map gives an exact sequence

H1(B,Q`) −→ H1(X,Q`) −→ H0(B,R1f∗(Q`)) −→ H2(B,Q`) −→ H2(X,Q`),

where B = AlbX/k. By assumption, the term in the middle is a Q`-vector space of
dimension d = rank(R1f∗(Q`)). The outer maps are injective by Lemma 5.5 below.
The map on the left is actually bijective, which follows from Lemma 1.6. Thus d = 0.
According to the Proper Base Change Theorem, all geometric fibers of f : X → B
have b1 = 0. �
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Proof for Theorem 5.1. Let X be an n-dimensional T -trivial variety, B = AlbX/k
its Albanese variety, and f : X → B be the Albanese map. In light of Lemma 1.7,
it suffices to treat the case that k is algebraically closed.

The case n = 0 is trivial, so we assume n ≥ 1. Consider the collection of all
finite étale cover Xλ → X, λ ∈ L with connected total space. Each Xλ is an n-
dimensional T -trivial variety, and thus has b1(Xλ) ≤ 2n. Replacing X by some Xµ

whose first Betti number attains the largest value, we may assume b1(X) = b1(Xλ)
for all λ ∈ L.

Set B = AlbX/k, and consider the Albanese map f : X → B and the ensuing local
system R1f∗(Q`). The latter is isotrivial, according to Proposition 5.3. Choose some
finite étale cover B′ → B on which it becomes constant. Without loss of generality
we may assume that B′ is connected. Then B′ can be seen as an abelian variety,
and X ′ = X ×B B′ is an n-dimensional T -trivial variety. Let pr2 : X ′ → B′ be the
induced projection, and f ′ : X ′ → AlbX′/k be the Albanese map. Then pr2 = g ◦ f ′
for some unique g : AlbX′/k → B′. Since pr2 and f ′ are smooth, the same holds for
g. By construction

dim(AlbX′/k) = 2b1(X ′) = 2b1(X) = dim(B) = dim(B′).

Thus the smooth proper morphism g : AlbX′/k → B′ is finite. Since both pr2 and
g are in Stein factorization, the same holds for g. Thus g yields an identification
AlbX′/k = B′. By construction, R1f ′∗(Q`) = R1f∗(Ql)|B′ is constant. The assertion
now follows from Proposition 5.4. �

The following two observations where used in the proof for Proposition 5.4:

Lemma 5.5. Let Z be a smooth proper scheme, and g : Y → Z be a proper surjective
morphism. Then the induced maps H i(Zalg,Q`)→ H i(Y alg,Q`) are injective, for all
i ≥ 0.

Proof. Without loss of generality we may assume k = kalg and h0(OZ) = 1. Set
n = dim(Z). Choose a closed point ζ in the generic fiber for g : Y → Z. By
functoriality of cohomology, we may replace Y be the closure of ζ, and thus may
assume that Y is integral and n-dimensional. Let α ∈ H i(B,Q`) be a non-zero class.
By Poincaré Duality there is a class β ∈ H2n−i(B,Q`) such that α ∪ β 6= 0. It thus
suffices to treat the case i = 2n.

Set Λ = Z/`νZ. Given an open set U in Y , we can consider cohomology with
compact support H2n

c (U,Λ). The inclusion map i : U → Y yields a short exact
sequence 0 → i!(ΛU) → ΛY → ΛD → 0, where D = Y r U . In the ensuing long
exact sequence

H2n−1(D,Λ)→ H2n(Y, i!Λ) −→ H2n(Y,Λ) −→ H2n(D,Λ),

the outer terms vanish for dimension reasons, and the second terms coincides with
H2n
c (U,Λ). This gives identification H2n(Y,Λ) = H2n

c (U,Λ), compatible with respect
to inclusions of open sets.

We now use the trace maps Trg : R2dg!ΛU(d) → ΛV constructed in [2], Exposé
XVIII, Theorem 2.9. These satisfy various naturality conditions, and are defined
for certain morphisms g : U → V between separated schemes of finite type. The
condition is that g|U0 is flat of relative dimension d on some open set U0, and the
fibers for g|U r U0 have dimension < d.
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For some dense open set V ⊂ Z the preimage U = f−1(V ) is smooth and g = f |U
is finite and flat. This yields a commutative diagram

H2n
c (U,Λ(n))

Λ

H2n
c (V,Λ(n))

Trg

of trace maps. Note that by [2], Exposé XVIII, Theorem 2.14 the diagonal arrows
are bijective, so the vertical map is bijective as well. The composition Trg ◦g∗ with
the canonical map g∗ : H2n

c (V,Λ(n))→ H2n
c (U,Λ(n)) is multiplication by deg(U/V ),

according to loc. cit., Theorem 2.9. Passing to the limit with respect to ν in Λ =
Z/`νZ and tensoring with Q`, we infer that g∗ : H2n(Z,Q`(n)) → H2n(Y,Q`(n)) is
a bijection of one-dimensional vector spaces over Q`. �

Lemma 5.6. Let Y be a geometrically normal proper scheme with h0(OY ) = 1, and
set P = AlbY/k and S = Spec(k). Write g : Y → S and h : P → S for the structure
maps, and f : Y → P for the Albanese map. Then f ∗ : R1h∗(Q`) → R1g∗(Q`) is a
bijection of `-adic local systems over S.

Proof. It suffices to treat the case that k is algebraically closed, and to verify that
f ∗ : H1(P,Z`)→ H1(Y,Z`) becomes bijective after tensoring with Q`, and we may
replace the coefficient sheaf Z` by the Tate twist Z`(1). Let A be the maximal abelian
subvariety in PicτY/k. One may identify A with the maximal abelian subvariety in
PicτP/k, compare [42], Definition 8.1 and Proposition 8.3. Arguing as in the proof for
Lemma 1.6, we obtain a commutative diagram

H1(Y,Z`)

lim←−ν A[`ν ]

H1(P,Z`)

f∗

where the maps from the left to the right are injective, with finite cokernel. Thus
f ∗ ⊗Q` is bijective. �

6. Liftability

Let k be a ground field of characteristic p ≥ 0, and X be a smooth proper scheme
with h0(OX) = 1, and of dimension n = dim(X). An important invariant are the
`-adic Chern classes

ci = ci(X) = c1(Ω1
X/k) ∈ H2i(X,Q`(i)),

where ` > 0 is a prime different from p. For k = C and c1 = 0, the Beauville–
Bogomolov Splitting Theorem tells us that there is a finite étale covering X ′ → X
such that X ′ = A×Y ×Z, where A is an abelian variety, Y is a hyperkähler manifold,
and Z is Calabi–Yau variety, at least if X is projective ([6] and [4]). This actually
holds for compact Kähler manifolds, and the arguments are entirely transcendental.
Under the additional assumption c2 = 0 we necessarily haveX ′ = A, which is already
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a direct consequence of Yau’s proof of the Calabi Conjecture (see the discussion in
[39]). Summing up, X admits a finite étale covering by some abelian variety if and
only if c1 = 0 and c2 = 0.

From now on we assume p > 0. If X admits a finite étale covering by some
para-abelian variety P , one of course has c1 = 0 and c2 = 0. We now seek to
understand to what extend the converse holds true. Let us say that X projectively
lifts to characteristic zero if there is a discrete valuation ring R with residue field
R/mR = k and field of fractions F = Frac(R) of characteristic zero, together with
scheme X and a projective flat morphism X→ Spec(R) with closed fiber X⊗Rk = X.

Theorem 6.1. In the above situation, suppose the following holds:

(i) For some ` 6= p, the `-adic Chern classes c1 and c2 both vanish.
(ii) The scheme X projectively lifts to characteristic zero.

(iii) Characteristic and dimension satisfy p ≥ 2n+ 2.
(iv) The ground field k is separably closed.

Then there is a finite étale covering A→ X by some abelian variety A.

The proof requires some preparation, and will be given at the end of the section.
To start with, we consider for each integer n ≥ 0 the expression

MN(n) = lim
t→∞

gcd
{ n∏
i=1

(`2i − 1) | ` ≥ t prime
}
.

Note that the integer sequence defining the limit is increasing, and actually stabilizes.
The eventual value turns out to be

(10) MN(n) = 23n+val2(n!) ·
∏

3≤`≤2n+1

`ν+val`(ν!),

where the product runs over all primes ` in the indicated range, ν = b 2n
`−1
c is a Gauß

bracket, and val`(m) denotes the `-adic valuation. For all this, see [16], Theorem
6.4 and its proof. Also note that val`(ν!) = n−s

`−1
, where s =

∑
si is the digit sum in

ν =
∑
si`

i, see [55], Chapter 5, Section 3.1. Let us tabulate the first five values of
the above function:

n 0 1 2 3 4

MN(n) 1 23 · 3 27 · 32 · 5 210 · 33 · 5 · 7 215 · 34 · 52 · 7

Note that MN(1) = 24 is the order of the group {±1,±i,±j} o C3, which plays
a special role for elliptic curves. Indeed, our interest in MN(n) stems from the
following general fact, which should be well-known:

Lemma 6.2. For each n-dimensional abelian variety A and each finite subgroup
G ⊂ Aut(A), the order |G| divides the integer MN(n).

Proof. Fix an ample invertible sheaf L0 on A. Then L =
⊗

σ∈G σ
∗(L0) is ample,

and its class in Pic(A) is G-fixed. Write A∨ = Pic0
A/k for the dual abelian variety,

and consider the homomorphism

f : A −→ A∨, a 7−→ τ ∗a (L )⊗L ∨,
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where τa(x) = x + a denotes translation. By contravariance, the G-action on A
induces an action of the opposite group Gop on the dual A∨, which is converted
back to a G-action via σ · N = (σ−1)∗(N ). The above map is equivariant with
respect to these G-actions: First observe

(σ−1)∗ ◦ τ ∗a = (τa ◦ σ−1)∗ = (σ−1 ◦ τσ(a))
∗ = τ ∗σ(a) ◦ (σ−1)∗

for σ ∈ G and a ∈ A(k). Together with (σ−1)∗(L ) ' L this gives

σ · f(a) = (σ−1)∗(τ ∗aL )⊗ (σ−1)∗(L ∨) = τ ∗σ(a)(L )⊗L ∨ = f(σ · a).

Furthermore, the homomorphism f : A → A∨ has finite kernel, because the invert-
ible sheaf L is ample.

Now fix a prime ` > 0 not dividing 2p · deg(f) · |G|. This has three consequences:
First, the induced G-equivariant map f : A[`] → A∨[`] is an isomorphism. With
this identification, the Weil pairing A[`]×A∨[`]→ µ` becomes a G-fixed symplectic
form on A[`]. Second, Serre’s result ensures that the homomorphism G → AutA[`]

is injective ([24], Appendix or [49], Section 21, Theorem 5). Choosing a symplec-
tic basis of ksep-valued points in the finite étale group scheme A[`], we obtain an
inclusion G ⊂ Sp2n(F`). Now recall that the finite symplectic group has order

| Sp2n(F`)| = `n
2 ·

n∏
i=1

(`2i − 1),

see for example [32], Theorem 3.1. As a third consequence, we see that the order
|G| must be a divisor of

∏n
i=1(`2i − 1). This holds for almost all primes ` > 0, and

the assertion follows from the very definition of MN(n). �

The relation to T -trivial varieties arises as follows:

Proposition 6.3. Suppose the ground field k is separably closed. Let X be a proper
scheme of dimension n ≥ 0, and f : A → X be a finite étale covering by some
abelian variety A. Then there is a finite étale covering g : B → X by another
abelian variety B such that the degree deg(B/X) divides the integer MN(n).

Proof. Without loss of generality we may assume that f : A → X is Galois. Write
P for the underlying para-abelian variety of A. The finite group H = Aut(P/X) is
a subgroup of the semi-direct product Aut(P ) = A(k)oAut(A). Set N = H∩A(k).
The quotient B = A/N is another abelian variety, and the induced map g : B → X
is a finite étale Galois covering, with relative automorphism group G = H/N . By
construction, we have G ⊂ Aut(B), and Lemma 6.2 ensures that deg(B/X) = |G|
divides the integer MN(n). �

Proof of Theorem 6.1. By assumption, we have a discrete valuation ring R whose
residue field k = R/mR is separably closed of characteristic p > 0, and whose field
of fraction F = Frac(R) contains the rational numbers, together with an algebraic
space X and a proper flat morphism to S = Spec(R) whose closed fiber X = X⊗k is
smooth of dimension n ≥ 0, with h0(OX) = 1, and Chern classes c1 = 0 and c2 = 0.
Furthermore p ≥ 2n+ 2. Our task is to find a finite étale covering A→ X by some
abelian variety A.

We may assume thatR is henselian, and contained in the field of complex numbers.
Furthermore, by [30], , Exposé IV, Theorem 4.10 it suffices to construct the covering
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after passing to a finite extension k′ of our separably closed field k, and we are thus
free to replace R by the normalization in some finite extension F ⊂ F ′.

The `-adic local systems Rih∗(Q`) are constant, because R is strictly henselian,
and it follows that the relative Chern classes ci(Ω

1
X/S) vanishes for i ≤ 2. So the

generic fiber U = X⊗RF and the complex fiber V = X⊗RC both satisfy c1 = 0 and
c2 = 0. As discussed at the beginning of the section, there is a finite étale covering
V ′ → V by some abelian variety V ′. In light of the preceding paragraph and [30],
Exposé X, Corollary 1.8 we may assume that it arises from U by base-change. With
Proposition 6.3 we obtain a finite étale covering U ′ → U by some abelian variety
U ′ with the additional property that deg(U ′/U) divides the integer MN(n). The
latter is relatively prime to p, by Formula (10) and our assumption p ≥ 2n + 2.
Hence, by the theory of specialization of algebraic fundamental group ([30], Exposé
X, Corollary 3.9), we see that U ′ → U extends to some finite étale covering A→ X.
The schematic closure of the origin e ∈ U ′(F ) defines a section e : S → A. This
turns A → S into a family of abelian varieties, by [50], Theorem 6.14, and the
closed fiber yields the desired A→ X. �

Note that the projectivity assumptions in Theorem 6.1 are superflous, and the
above arguments carry over if X and the structure map X → Spec(R) are merely
proper, and X is an algebraic space, such that the complex fiber V = X ⊗R C is
a proper algebraic space over C. Indeed: By Artin’s result ([1], Theorem 7.3), the
category of algebraic spaces proper over C is equivalent to the category of compact
Moishezon spaces, and the Beauville–Bogomolov Splitting Theorem was recently ex-
tended to compact Moishezon manifolds by Biswas, Cao, Dumitrecu and Guenancia
[5]. However, the finite étale covering A → X by an abelian variety a posteriori
reveals that X must be projective.
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[10] M. Brion: Some structure theorems for algebraic groups. In: M. Can (ed.), Algebraic
groups: structure and actions, pp. 53–126. Amer. Math. Soc., Providence, RI, 2017.

[11] S. Brochard: Duality for commutative group stacks. Int. Math. Res. Not. IMRN 2021,
2321–2388.



30

[12] K. Brown: Cohomology of groups. Springer, Berlin, 1982.
[13] F. Catanese, A. Demleitner: Hyperelliptic threefolds with group D4, the dihedral group of

order 8. Preprint, arXiv:1805.01835, 2018.
[14] F. Catanese, A. Demleitner: The classification of hyperelliptic threefolds. Groups Geom.

Dyn. 14 (2020), 1447–1454.
[15] F. Catanese, A. Demleitner: The classification of rigid hyperelliptic fourfolds. Ann. Mat.

Pura Appl. 202 (2023), 1425–1450.
[16] B. Conrad: Semistable reduction for abelian varieties. Lecture notes for the Number theory

learning seminar 2010–2011. https://citeseerx.ist.psu.edu/document?repid=rep1&

type=pdf&doi=2a1f2325a607872d7a14d70653ef2bb59af20f10.
[17] B. Conrad, O. Gabber, G. Prasad: Pseudo-reductive groups. Cambridge University Press,

Cambridge, 2010.
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