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1 Introduction

Let A be an abelian variety of dimension d defined over Q. Let K ⊆ C be a number
field such that A is defined over K and such that the Néron model of A over OK has
semi-stable reduction at all the places of K. Let Ω be the OK-module of global sections
of the sheaf of differentials of A over OK and let α be a section of Ωd. We write A(C)σ

for the manifold of complex points of the variety A×σ(K) C, where σ ∈ Hom(K,C) is an
embedding of K in C. The modular (or Faltings) height of A is the quantity

hFal(A) :=
1

[K : Q]
log(#Ωd/α.Ωd)− 1

2[K : Q]

∑
σ:K→C

log |
∫
A(C)σ

α ∧ α|.

NB In the classical definition of the Faltings height, there is a multiplicative factor 1
(2π)d

in front
of the

∫
sign. We have chosen to follow Colmez’s definition, because it makes more sense in the

context of his conjecture (see below).

It does not depend on the choice of K or α. The modular height defines a height on some
moduli spaces of abelian varieties and plays a key role in Falting’s proof of the Mordell
conjecture.

Suppose now that there exists a CM field E, of degree 2d over Q and an embedding of
rings OE → End(A) into the endomorphism ring of A. By definition, this means that A
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has complex multiplication by OE . We can suppose without loss of generality that the
action of OE is defined over K and that K contains all the conjugates of E in C. Let Φ be
the subset of τ ∈ Hom(E,C) such that the subspace

{t ∈ H0(A,ΩA/K) : a∗(t) = τ(a).t, ∀a ∈ OE}

contains a non-zero element (this is the type of the CM abelian variety A). Using a re-
finement the theory of p-adic periods, a refinement of Shimura’s period relations and
explicit computations on Jacobians of Fermat curves, P. Colmez gave an explicit for-
mula for hFal(A). To describe it, suppose furthermore that E is Galois over Q and let
G := Gal(E|Q). Identify Φ with its characteristic function G → {0, 1} and define Φ∨ by
the formula Φ∨(τ) := Φ(τ−1).

Theorem 1.1 (Colmez, with a final input by Obus). If G is abelian then

1

d
hFal(A) = −

∑
χ, L(χ,0)6=0

< Φ ∗ Φ∨, χ > [2
L′(χ, 0)

L(χ, 0)
+ log(fχ)]

holds.

Here χ runs through the Artin characters ofE (which in this case are Dirichlet characters)
and L(χ, s) refers to the associated L-function. The notation < ·, · > refers to the scalar
product of complex valued functions onG and ∗ to the convolution product. The notation
fχ refers to the conductor of χ, which is an integer. This formula can be viewed as a
generalisation of the formula of Chowla and Selberg (see [SC67]) to which it reduces
when applied to a CM elliptic curve. Furthermore, Colmez conjectures that the theorem
1.1 holds even without the condition that G is abelian (see [Col98, Conjecture 3]).

The aim of this workshop is to got through the steps of Colmez’s proof of a generalisation
of Theorem 1.1, following his article [Col93]. The formula given in Theorem 1.1 (which
is a direct consequence of the main result of [Col93]) can be found in Conj. 3 of his later
article [Col98].

The weaker form of the result of Colmez, which follows when one views both sides of the
equality only up to an element of log(|Q̄∗|) (so that in particular the conductors become
irrelevant) is much easier to prove and follows from the work of Anderson (see [And82]).
See also the article by B.H. Gross [Gro78].

In the article by K. Köhler and D. Rössler [KR03], the theorem of Colmez is proven up
to Q̄∗ log(fχ) factors using methods from higher dimensional Arakelov theory. This is
not as strong as Colmez’s results but is stronger than Anderson’s. Another proof (as a

2



consequence of a more general ”motivic” result) is given in the paper [MR04], which I
suggest could be discussed in Talk 12.

In the (not yet published) PhD thesis of J. Frésan, a proof of a motivic generalisation of
Anderson’s result is given, which is based on the work of Saito-Terasoma.
See http://arxiv.org/pdf/1403.4105.pdf for this. The idea behind this proof comes from
a unpublished letter from S. Bloch to H. Esnault.

In [MR02], a partial generalisation of Colmez’s conjecture is proposed, which provides an
interpretation of the values L′(χ, 1− n)/L(χ, 1− n) for all n > 0 such that L(χ, 1− n) 6= 0

(see Talk 13). A full generalisation, which would include a conjectural generalisation of
the log(fχ) factors yet has to be found.

There is some speculation in the introduction of [Col93] on possible purely p-adic analogs
of Theorem 1.1 (see the bottom of p. 633 in [Col93]). Something in this direction was done
in the unpublished thesis of F. Urfels. See http://www.theses.fr/1998STR13210.

The only known confirmation of the conjecture of Colmez in a non abelian situation (ie
when the CM field is a non abelian extension of Q) is a result of T. Yang (see [Yan10a]).
He proves a weak version of Colmez’s conjecture (formulated in (3) on p. 634 of [Col93])
for certain CM abelian surfaces.

There seems to be no other introduction to Colmez’s article than the original article. The
introduction to the article of Obus (see [Obu13]) provides a useful survey of the results
and methods of the article of Colmez. Otherwise, one could have a look at par. 3 of
[Yan10b].1

2 Programme

Here is a user’s guide for the programme proposed below.

- The talks carry stars (one or two ”*”). The number of stars indicates the level of difficulty
of the talk.

- Talk 12 and 13 are concerned with the Arakelov-theoretic approach to the result of
Colmez. Talk 12, which concerns motivic generalisations of the result of Colmez could
be skipped if some of the speakers of Talks 0 to 11 needed more time (for instance, if
the speaker for Talk 1 on absolute Hodge cycles [which is important] needed more time).
Talk 13 is more speculative in nature but is important because it shows that Colmez’s

1my thanks to J. Frésan for bringing this text to my attention
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work is part of a larger framework.

- It is important that every speaker stick as much as possible with Colmez’s notations.
This rule might have to be broken in Talks 0, 2 and 3, if the speakers wanted to use
Anderson’s notations rather than Colmez’s.

- The speakers do not have to follow the directions given below precisely if they do not
wish to do so. Nevertheless, all the results mentioned in the descriptions of the talks
should at least be formulated by the speakers, because the talks build on each other.

- I have compiled a folder containing electronic copies of all the bibliographical references
mentioned in this report, with very few exceptions. The exceptions are: [KRY06] and
[Fon77]. It can be downloaded from the web address

http://www.math.univ-toulouse.fr/ rossler/mypage/pdf-files/Colmez-Source-Files.dmg.

The folder Colmez-Source-Files.dmg is encrypted. The password to decrypt it is Shimura.

2.1 Sunday. Talk 0∗∗. Introduction and overview

This talk will first introduce the subject, following the introduction given above. Note
that the main result of Colmez’s article is Th. III.2.9 (ii) in [Col93]. The log(2) indeter-
minacy appearing there can be shown to vanish, thanks to the work of Obus (see Talk
11). This result is more precise than Theorem 1.1 above but I suggest not to formulate Th.
III.2.9 (ii) of [Col93] in this introduction because the definition of the map ht appearing
there is somewhat technical. Note also that Colmez gives an interpretation of Th. III.2.9
(ii) in the introduction to his article as a product formula for the valuations of all the pe-
riods (p-adic and classical) of CM abelian varieties (see Conjecture 0.1 in [Col93]) but I
suggest to concentrate on the formulation given in Th. III.2.9 (ii), because the formulation
in terms of a product over the valuations of the periods involves renormalisation issues
that are unpleasant to keep track of.

After that, an overview of the proof of Anderson’s result should be given. More precisely

1. Introduce Anderson’s period map (p. 317 in [And82]).

2. Formulate Anderson’s result (Th. 2.1 in [And82]) directly for a an abelian variety
with CM by an abelian extension of Q (without mentioning the distribution).

3. Formulate Shimura’s result on monomial relations (to be discussed in Talk 2).
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4. Explain briefly why in view of Shimura’s relations, it is sufficient to compute the
periods of Fermat curves (this is Th. 3.1 and Th. 4.7 and the computation at the
bottom of p. 325 in [And82]; this will be discussed in Talk 3) to prove Th. 2.1.

Finally, explain the following:

- The proof of Colmez’s theorem (ie Th. III.2.9 (ii) in [Col93]) has a similar structure but he
considers a refined period distribution, where p-adic and complex periods are bundled
in one package (via the map ht, see Talk 10); in particular, he needs p-adic analogs of
Shimura’s monomial relations (see Talk 9).

- To define this refined period distribution, he needs a general result expressing the p-
adic valuations of p-adic periods of CM formal groups (and thus of CM abelian varieties)
in terms of the integral structure of de Rham cohomology (see Talk 7). It is this new
expression that is ultimately computed on some quotients of the Fermat curves, using
results of Coleman and Obus (see Talk 11).

NB There is a sign mistake in the diagram of equalities at the top of p. 633 of [Col93]. In the first
line of the diagram, the term +1

2
log D should be replaced by −1

2
log D.

2.2 Monday. The periods mod Q̄∗.

2.2.1 Talk 1∗∗. Deligne’s theorem on absolute Hodge cycles on abelian varieties.

This talk is a survey of the results of [DMOS82, Chap. I]. Another reference for this
material is [Pan94]. See also [Del80].

First introduce the various comparison isomorphisms (as on p. 19 of [DMOS82, Chap. I]).
Briefly recall the Hodge conjecture (see [Gro69]) and its striking numerical consequences
on periods (ie Prop. 1.5, p. 23 in [DMOS82, Chap. I]).

Introduce the notion of absolute Hodge cycle, following par. 2 (p. 28) in [DMOS82, Chap.
I]. If the speaker wishes, he might take l-adic cohomology out of the definition of an
absolute Hodge cycle, because l-adic cohomology plays no role in Colmez’s article.

Formulate the conjecture ’tout cycle de Hodge l’est absolument’ (Open Question 2.4 in
[DMOS82, Chap. I]). Explain that the main result of the article (Deligne’s theorem) is that
this conjecture is a theorem for abelian varieties.

Introduce the category of homological pure motives for absolute Hodge cycles. This
category is defined exactly as the category of classical homological pure motives (see
[Sch94]), with homological correspondences replaced by absolute Hodge cycles. You
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should not spend much time on this and assume that the audience has already heard
of motives. Follow for instance the presentation given in [Del80] or [Del79, 0. Motifs].
Explain that motives for absolute Hodge cycles have periods and that two isomorphic
motives for absolute Hodge cycles have the same periods.

Explain that Deligne’s theorem has the same numerical consequence as the Hodge con-
jecture for periods (Prop. 7.1 in [DMOS82, Chap. I]).

Formulate principles A (=Th. 3.8 in [DMOS82]) and B (=Th. 2.12 in [DMOS82]) for
absolute Hodge cycles. You may give some indications about their proofs, which are not
very difficult.

Explain that the main theorem is proven in four steps:

- first one proves Lemma 4.5 (formulate and prove it);

- then one uses a deformation argument together with principle B to extend Lemma 4.5 to
CM abelian varieties; this is Th. 4.8, which should be formulated (including the definition
of polarizations) but not proven;

- now principle A is used to prove that all Hodge cycles on CM abelian varieties are
absolute; this is the core of the argument and a fair amount of detail should be given.
Here are the main steps: 1) Introduce the groups GH and GAH 2) Show that GH ⊆ GAH

and that GH and GAH are both tori 3) Use Th. 4.8 together with the existence of some
algebraic cycles (ie (a), (b) on p. 67) to describe several vanishing relations (see p. 70
in [DMOS82]) in the character group of GAH viewed as a quotient of X(

∏
E× × Gm) 4)

Show that these relations together with the known explicit description of GH suffice to
show that the character groups of GH and GAH coincide, which implies that GH = GAH.

NB There is a typo on l. 13, p. 71 of [DMOS82]. One should have Y (GAH) ⊂ Y (GH) and not
Y (GH) ⊂ Y (GAH).

- finally a deformation argument together with principle B is used to reduce the proof
of the main theorem to CM abelian varieties. Give the desired amount of detail but do
not describe in detail the construction of the Shimura variety needed in the deformation
argument.

2.2.2 Talk 2∗. Anderson’s period distribution. Shimura’s monomial relations. The
Gamma distribution.

The aim of this talk is to present Anderson’s period distribution and in particular to
formulate Shimura’s theorem giving relations between periods of CM abelian varieties.
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Recall the definition of Anderson’s periods (p. 317 in [And82]).

Formulate Shimura’s theorem on monomial relations between periods (Th. 1.3 in [And82]).

Show that Shimura’s theorem follows from the Hodge conjecture. Show that Deligne’s
result on absolute Hodge cycles has the same consequence. See [Del80] for this.

Introduce the period distribution (Prop. 1.5 in [And82]) and formulate Th. 2.1 (which is
the main result of [And82]).

Give the explicit description of Mab appearing in Th. 3.1. Prove Th. 3.1.

With a view to proving Th. 4.7 in [And82], prove the reduction lemma on p. 324.

2.2.3 Talk 3∗. Fermat curves. Proof of Anderson’s theorem.

The aim of this talk is to prove Th. 4.7 in [And82].

Introduce the curve with function field Q̄(x, xa(1 − x)b) and show that its Jacobian has
complex multiplication. Compute its CM type as at the bottom of p. 325. Deduce that by
the reduction lemma, it is sufficient to compute the periods of this Jacobian to prove Th.
4.7.

Give the formula before eq. (4.10) and explain its proof (with the amount of detail that
the speaker desires).

Finally, prove the reformulation of Th. 4.7 in terms of derivatives of Dirichlet L-functions
given in paragraph 5 of [And82]. This uses (3.3) and (3.4) in [And82], that must have
appeared in the previous talk (in the explicit description of Mab).

2.3 Tuesday. Formal groups.

2.3.1 Talk 4∗∗. Commutative formal groups. The Dieudonné and Tate modules of a
commutative formal group. Tate’s results.

In this talk, there will be many definitions but few proofs. The aim is to present several
basic facts and results in the theory of p-divisible groups.

Define finite group schemes and p-divisible groups as in Tate’s article [Tat67, (2.1)]. In-
troduce Cartier duality and the fundamental exact sequence as in [Tat67, (1.4)] and ex-
plain that these generalise to p-divisible groups ((2.3) and ?). Formulate but don’t prove
the equivalence between commutative formal groups and connected p-divisible groups
(Prop. 1). Prove the all important Prop. 3 and introduce the two fundamental Galois
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modules Φ(G) and T (G) as on p. 169. Formulate but don’t prove Prop. 8. This proposi-
tion concerns the Galois cohomology of Cp and is at the root of all the further investiga-
tions in p-adic Hodge theory.

Now formulate Prop. 11 and then Th. 3. Prove that Cor. 2 follows from them (this
requires an orthogonality result proved in the proof of Th. 3, at the bottom of p. 179,
which should be made explicit). Explain that Cor. 2 is the p-adic Hodge decomposition
for commutative formal groups over the ring of integers of local fields.

Now formulate Prop. I.1.1 (a theorem of Fontaine - see [Fon77]) and Prop. I.1.4 in [Col93].
Give the basic properties of the ring Bp = B+

DR,p but don’t spend much time on it (the
precise structure of the ringBp does not play an important role in [Col93]; it will reappear
in Talk 7; see [Ber04, II.2] for more details about this ring). Explain that Prop. I.1.4 is the
analog for de Rham cohomology of Tate’s p-adic Hodge decomposition, which holds for
Hodge cohomology (where Hodge cohomology is the direct sum of the quotients of the
Hodge filtration on de Rham cohomology).

2.3.2 Talk 5∗. Lubin-Tate formal groups.

The aim of this talk is to define Lubin-Tate formal groups, which are certain commutative
formal groups with complex multiplication and to give some of their basic properties.

Define Lubin-Tate formal groups in dimension 1. Here you may follow the original article
by Lubin-Tate (see [LT65]), which is very well written or the more succinct exposition
given in [Neu99, (4.5), V.4, P. 343], which is perhaps more suitable for this talk.

Prove Theorem V.4.6 (p. 344) in [Neu99], using Prop. 2.2 (p. 328), which should be
proven first.

After that, explain quickly the content of Cor. 5.7 (p. 350), which justifies the introduction
of Lubin-Tate formal groups.

Do Exercise 4 in V.4 (p. 345) in [Neu99] (this is important in the context of Colmez’s
article).

Finally, formulate the generalisation of Exercise 4 mentioned at the bottom of p. 641
and at the top of p. 642 in [Col93]. This concerns higher-dimensional generalisations of
Lubin-Tate formal groups; these were introduced in [Car76].
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2.3.3 Talk 6∗. CM formal groups. The main structure theorem.

The aim of this talk is to prove Theorem I.3.2 in [Col93]. This theorem is a structure
theorem for CM formal groups, similar to Prop. I.1.1 in [Col93]. It consists in some clever
computations with formal power series. The speaker should present the proof of Th. I.3.2
(ie Lemmes I.3.2 to I.3.14), which is self-contained, with the desired amount of detail.

2.4 Wednesday. Talk 7∗∗. The p-adic periods of CM formal groups.

The aim of this talk is to formulate Th. I.3.15, which computes the valuations of the
periods of CM formal groups, and to prove it in the case of Lubin-Tate formal groups (I
do not suggest that the speaker prove Th. I.3.15 in full).

Formulate Th. I.1.4 and Formulate Th. I.3.15 (in particular, introduce the symbols Zp and
µArt,p).

Now formulate and prove Th. I.2.1, going through Lemme I.2.2 and I.2.3. Finally, prove
Lemme I.2.4 and show (Prop. I.2.7) that it implies that Th. I.3.15 holds for Lubin-Tate
formal groups.

2.5 Thursday. Colmez’s period distribution. Formulation of the main
theorem.

2.5.1 Talk 8∗. Crystalline cohomology. The action of the crystalline Weil group.

The aim of this talk is to define crystalline cohomology and formulate its main properties.
Furthermore, the action of the crystalline Weil group of varieties with good reduction
should be described. More precisely:

(1) Define crystalline cohomology. This is a cohomology theory arising as the sheaf co-
homology of a natural sheaf on the so-called crystalline site. You may follow [Ill94] for
this, looking up the earlier report [Ill76] for more details. The basic reference here is
Berthelot’s thesis [Ber74].

(2) Explain that in the presence of a smooth lifting over an absolutely unramified discrete
valuation ring of mixed characteristic, the crystalline cohomology coincides with the de
Rham cohomology of the lifting (see (1.3.8, p. 47 in [Ill94]).

(3) Now explain the more refined independence results described in par. 2.3, p. 51 of
[Ill94]. These results are proved in [BO83].
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(4) Finally define the crystalline Weil group as in par. 4 p. 187 of [BO83] and formulate Th.
4.2, p. 188 in [BO83], which describes the action of the crystalline Weil group on varieties
with good reduction. Prove this result assuming the independence results mentioned
above and the general theorem of Gillet-Messing 4.3.

2.5.2 Talk 9∗∗. p-adic absolute Hodge cycles.

The aim of this talk is to go through the proof of the main result of [Bla94]. A variant of
Blasius’s argument is presented in [Ogu90]. We shall follow Ogus’s argument.

(1) First formulate Faltings p-adic comparison theorem (see 2.1.2 in [Ill90] or [Ber04, II])
and explain briefly its link with the results on formal groups described in Talk 4.

(2) Formulate Th. 4.2 in [Ogu90]. Explain why it implies that two isomorphic homologi-
cal motives for absolute Hodge cycles have the same classical and p-adic periods.

(3) Explain and prove the analog of Principle A in this setting (see the beginning of the
proof of Th. 4.2).

(4) Give the argument of the proof of the analog of principle B (Prop. 4.3). Here the exis-
tence of the element η̄ requires a reference to Deligne’s article on mixed Hodge structures,
which is beyond the scope of these conference so the proof of the existence of η̄ should
be skipped or only outlined.

(5) Explain that the fact that the analogs of principles A and B hold implies that it suffices
to show that the Hodge cycles constructed in Lemma 4.5 in [DMOS82, Lemma ] (this
Lemma appears in Talk 1) have the property asserted in Th. 4.2, which is obvious.

2.5.3 Talk 10∗. The period distribution ht. The main result. Link with the Faltings
height.

The aim of this talk is to introduce the map ht and to prove Lemme II.2.9 and Th. II.2.10
in [Col93]. Furthermore, the aim of this talk is to formulate the main result Th. III.2.9 (ii)
of Colmez article (see below).

(1) Formulate Th. II.1.1 and explain that it follows from Th. I.3.15, with a bit more work
(skip the proof).

(2) Introduce the map ht as defined in Lemme II.2.9. Prove Lemme II.2.9. It is a direct
consequence of

- the product formula for the absolute values of rational numbers (ie the product of all
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the absolute values of a rational number equals 1)

- Lemme II.2.1, which should be proved (the proof is elementary)

- Th. II.1.1

(3) Prove Th. II.2.10 (i). This is a refinement of Shimura’s period relations and is a very
important step in the proof of the main result of Colmez’s article. The crux of the proof is
the fact that two specific motives with absolute Hodge cycles are equivariantly (under the
action of a CM field) isomorphic (see l.-9, p. 666 in [Col93]). Since they are isomorphic,
the main result of Talk 1 and the main result of Talk 9 shows that they have (loosely
speaking) the same classical as well as p-adic periods. More precisely, the equality at the
bottom of p. 666 in [Col93] holds, which quickly implies Th. II.2.10 (i).

(4) Give an outline (with the amount of detail desired) of the proof of Th. II.2.10 (ii). This
is a computation, where the main point is Lemme II.2.13.

Finally explain that the main result Th. III.2.9 (ii) of the article [Col93] is that Conjecture
II.2.11 (i) holds if a lies in CMab, up to a factor Q log(2), which was proven to be 0 by
the subsequent work of A. Obus (see [Obu13]), who computed the Frobenius matrices of
Fermat curves in char. 2 (see Talk 11). As a consequence of this and Th. II.2.10 (ii), one
gets a formula for the Faltings height of CM abelian varieties with complex multiplication
by a CM field, which is an abelian extension of Q (see Conjecture II.2.11 (ii)). This formula
is made more explicit in [Col98, Conjecture 3].

2.6 Friday. Fermat curves. Completion of the proof. Outlook.

2.6.1 Talk 11∗∗. Coleman’s results on the action of the crystalline Weil group on the
cohomology of Fermat curves. Completion of the proof.

The aim of this talk is to give a complete proof of Colmez’s main result Th. III.2.9 (ii) in
[Col93], on the basis of Th. II.2.10 (i).

Explain that if Th. II.2.10 (i) (ie the refined monomial relations) could be proven by general
arguments without going through a direct calculation of the valuations of the p-adic periods of
CM abelian varieties, then the proof of the main result could be considerably simplified. More
precisely, the proof of the main result would then be reduced to the proof of Lemme
III.2.5 (see below) and it should in principle be possible to prove this Lemme III.2.5 in
a less round about way then in Colmez’s paper (but the author of this report does not
know how to provide such a proof).

11



(1) Formulate Prop. III.1.2 in [Col93]. The proof of this proposition is an application of
the formulae of Hurwitz for the first terms of the Taylor development of Hurwitz zeta
functions, together with the explicit description of CMab given in Talk 1 (ie Th. 3.1 in
[And82]). It is similar to formula (5.1) in [And82]. Give as many details as desired (it is
not very important to give a detailed proof).

(2) Prove Lemme III.2.1. This requires the computation of some explicit classical periods
on a certain quotient of the Fermat curve. This was already treated in Talk 1. Then Prove
Cor. III.2.2, whose proof depends on Prop. III.1.2

(3) Prove Lemme III.2.3. This again relies on some explicit evaluations of periods of
quotients of the Fermat curve. The proof may be skipped, if desired.

(4) Explain why Lemme III.2.5 suffices to complete the proof, provided one has Lemma
III.2.4. The argument is similar to the ”Reduction Lemma” on p. 326 of [And82]. Then
prove Lemme III.2.4.

(5) Finally, prove Lemme III.2.5. The point of the Lemma is to compute vp(ωgq). This
computation relies on two facts: vp(g(ωq)) = vp(ωq), which is consequence of Th. II.1.1
(iii) (see Talk 10), and the computation of the valuation of the quotient g(ωq)/ωgq, which
was computed by Coleman in [Col90]. Notice that the restrictions on p in Lemma III.2.5
can be lifted by the work of Obus (see [Obu13]).

NB. The formula for the Faltings height of the Jacobian of the curve with equation y2 = x5 + 1 in
the middle of p. 680 of [Col93] is incorrect. The term Γ(1/5)−1 in that formula should be replaced
by Γ(4/5)−1.

2.6.2 Talk 12∗. Complements. The motivic setting.

The aim of this talk is to survey the results presented in Soulé’s Bourbaki talk [Sou07].
These results partially generalise Colmez’s theorem to a motivic setting.

(1) Give a very quick survey of Arakelov theory as in par. 1 of [Sou07] (for more infor-
mation, see [Bos91] or [Sou92] and the references therein).

(2) Introduce all the elements (R-genus, char. classes, etc.) appearing in Th. 3.1 of [Sou07]
and formulate Th. 3. Note that Th. 3.1 is the main result of [KR01].

(3) Formulate Prop. 4.1, insisting on Prop. 4.1 (i) (proven in [RS73, Th. 3.1]), which is the
key vanishing result. Show that Th. 3.1 together with Prop. 4.1 implies equality (3) in
[Sou07].

(4) Explain that some linear algebra (give the amount of detail you wish) implies that
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equality (3) implies Prop. 4.4.

(5) Explain that Prop. 4.4 leads to the conjecture given in 7.1, which is a generalisation of
the conjecture of Colmez to all pure motives with complex multiplication, provided one
disregards Q̄ log(p) factors, for p a prime dividing the discriminant of the CM field.

The main reference for Soulé’s Bourbaki talk is [MR04].

2.6.3 Talk 13∗∗. Complements. The logarithmic derivatives of Dirichlet L-functions
at negative integers.

The aim of this talk is to formulate the conjecture presented in [MR02]. This conjecture
gives a formula relating the logarithmic derivatives of Artin L-functions at negative inte-
gers to arithmetic Chern classes of subbundles of the Hodge bundle of abelian schemes
with complex multiplication. It specialises to a weak form of Colmez’s conjecture (ie
Conjecture II.2.11 (i) in [Col93]) when the Artin L-functions are evaluated at 0.

We recommend the following: formulate the conjecture only in the setting of abelian
schemes, not semiabelian schemes. In this way, one does not have to introduce the (par-
tially conjectural) generalised arithmetic Chow theory described in the first paragraph of
[MR02, 1. Préliminaires].

(1) Describe the setting: polarised abelian schemes over an arithmetic variety, together
with the ring of integers of a number fieldK. Explain that the polarisation induces a met-
ric on the Hodge bundle. Suppose from here onwards that the discriminant of K is invertible
in the arithmetic ring underlying the base arithmetic variety. This assumption is not made in
the article [MR02] but this extra degree of generality now seems doubtful to the author
of this program. A correct formulation of the conjecture with this assumption removed
has yet to be found.

(2) Formulate Conjecture 2.1 in [MR02]. Explain that this conjecture should also be true
for semiabelian schemes but that this generalisation requires the generalised Chow the-
ory described in [MR02, 1. Préliminaires] (note that this generalisation is now almost in
existence: see [BGKK07, Introduction] and [BGKK05, par. 5.4]). Explain that Conjecture
2.1 in the situation where K is an abelian extension of Q is a consequence of the general
relative arithmetic Lefschetz formula proven in [Tan12], together with the vanishing of
the equivariant analytic torsion form of the relative de Rham complex proven in general
in [Bis04] (in the situation of abelian schemes, one can give a direct proof of the latter).
The proof is outlined in [MR02, 4. Résultats]. This computation is analogous to the com-
putation presented in Talk 12.
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(3) Give several special cases of this formula (up to some log(p) factors, for p dividing
the discriminant of the number field) that have been considered in the literature, for
example [Küh01] and [KRY06, Th. 1.0.5]. Further references to known special cases are
given after Conjecture 2.1. When the base arithmetic variety is the arithmetic ring itself
and the generic fibre of the abelian scheme has (maximal) complex multiplication, the
formula reduces to the main result of Colmez, up to some Q̄ log(p) factors, for p dividing
the discriminant of the CM field.
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