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On the periods of motives

with complex multiplication
and a conjecture of Gross-Deligne

By Vincent Maillot and Damian Roessler

Abstract

We prove that the existence of an automorphism of finite order on a
Q-variety X implies the existence of algebraic linear relations between the
logarithm of certain periods of X and the logarithm of special values of the
Γ-function. This implies that a slight variation of results by Anderson, Colmez
and Gross on the periods of CM abelian varieties is valid for a larger class of
CM motives. In particular, we prove a weak form of the period conjecture
of Gross-Deligne [11, p. 205]1. Our proof relies on the arithmetic fixed-point
formula (equivariant arithmetic Riemann-Roch theorem) proved by K. Köhler
and the second author in [13] and the vanishing of the equivariant analytic
torsion for the de Rham complex.

1. Introduction

In the following article, we shall be concerned with the computation of
periods in a very general setting. Recall that a period of an algebraic variety
defined by polynomial equations with algebraic coefficients is the integral of
an algebraic differential against a rational homology cycle. In his article [16,
formule 26, p. 303] Lerch proved (see also [3]) that the abelian integrals that
arise as periods of elliptic curves with complex multiplication (i.e. whose ra-
tional endomorphism ring is an imaginary quadratic field) can be related to
special values of the Γ-function. A special case of his result is the following
identity (already known to Legendre [15, 1-ère partie, no. 146, 147, p. 209])∫ π/2
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where k = sin( π
12), which is associated to an elliptic curve whose rational en-

domorphism ring is isomorphic to Q(
√
−3). The formula of Lerch (now known

1This should not be confused with the conjecture by Deligne relating periods and values
of L-functions.
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as the Chowla-Selberg formula) has been generalised to higher dimensional
abelian varieties in the work of several people (precise references are given be-
low), including Anderson and Colmez. They show that the abelian integrals
arising as periods of abelian varieties of dimension d with complex multipli-
cation by a a CM field (i.e. a totally complex number field endowed with an
involution which becomes complex conjugation in any complex embedding)
whose Galois group over Q is abelian of order 2d, are related to special values
of the Γ-function.

Consider now any algebraic variety X defined over the algebraic numbers.
The transcendence properties of the periods of X are influenced by the al-
gebraic subvarieties of X; a subvariety of X has a cycle class in the dual of
a rational homology space of X and the duals of these cycle classes span a
subspace of homology, which might be large. Up to normalisation, the integral
of an algebraic differential against a cycle class will be an algebraic number.
The celebrated Hodge conjecture describes the space spanned by the classes
of the algebraic cycles in terms of the decomposition of complex cohomology
in bidegrees (the Hodge decomposition) and its underlying rational structure.
This set of data is called a Hodge structure. The Hodge conjecture implies
that the periods of X depend only on the Hodge structure of its complex co-
homology and thus any algebraic variety whose cohomology contains a Hodge
structure related to a Hodge structure appearing in the cohomology of an
abelian variety with complex multiplication as above should have periods that
are related to the special values of the Γ-function. This leads to the conjecture
of Gross-Deligne, which is described precisely in the last section of this paper.

The main contribution of this paper is the proof of a (slight variant of) the
conjecture of Gross-Deligne, in the situation where the Hodge structure with
complex multiplication arises has the direct sum of the nontrivial eigenspaces
of an automorphism of finite prime order acting on the algebraic variety. We
use techniques of higher-dimensional Arakelov theory to do so. Arakelov the-
ory is an extension of Grothendieck style algebraic geometry, where the al-
gebraic properties of polynomial equations with algebraic coefficients and the
differential-geometric properties of their complex solutions are systematically
studied in a common framework.

Many theorems of Grothendieck algebraic geometry have been extended to
Arakelov theory, in particular there is an intersection theory, a Riemann-Roch
theorem ([9]) and a fixed-point formula of Lefschetz type ([13]). Our proof of
the particular case of the Gross-Deligne conjecture described above relies on
this last theorem; we write out the fixed-point formula for the de Rham complex
and obtain a first formula (11) which involves differential-geometric invariants
(in particular, the equivariant Ray-Singer analytic torsion); these invariants are
shown to vanish and we are left with an identity (12) which involves only the
topological and algebraic structure. More work implies that this is a rewording
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of a part of the conjecture of Gross-Deligne. Our proof is thus an instance of a
collapse of structure, where fine differential-geometric quantities are ultimately
shown to depend on less structure than they appear to.

In the rest of this introduction, we shall give a precise description of our
results and conjectures.

So let M be a (homological Grothendieck) motive defined over Q0, where
Q0 is an algebraic extension of Q embedded in C. We shall use the properties
of the category of motives over a field which are listed at the beginning of
[5]. The complex singular cohomology H(M,C) of the manifold of complex
points of M is then endowed with two natural Q0-structures. The first one
is induced by the standard Betti Q-structure H(M,Q) via the identifications
H(M, Q0) = H(M,Q) ⊗Q Q0 and H(M,C) = H(M, Q0) ⊗Q0 C and will be
referred to as the Betti (or singular) Q0-structure on H(M,C). The second one
arises from the comparison isomorphism between H(M,C) and the de Rham
cohomology of M (tensored with C over Q0) and will be referred to as the
de Rham Q0-structure.

Let Q be a finite (algebraic) extension of Q and suppose that the image
of any embedding of Q into C lies inside Q0. Furthermore, suppose that M
is endowed with a Q-motive structure (over Q0). A Q-motive is also called a
motive with coefficients in Q (see [5, Par. 2]). The Q-motive structure of M
induces a direct sum decomposition

H(M,C) =
⊕

σ∈Hom(Q,C)

H(M,C)σ

which respects both Q0-structures. The notation H(M,C)σ refers to the com-
plex vector subspace of H(M,C) where Q acts via σ ∈ Hom(Q,C). The de-
terminant detC(H(M,C)σ) thus has two Q0-structures. Let vsing (resp. vdR)
be a nonvanishing element of detC(H(M,C)σ) defined over Q0 for the singu-
lar (resp. for the de Rham) Q0-structure. We write Pσ(M) for the (uniquely
defined and independent of the choices made) image in C×/Q×

0 of the complex
number λ such that vdR = λ · vsing.

Let χ be an odd simple Artin character of Q and suppose at this point that
M is homogeneous of degree k (in particular, its cohomological realisations are
homogeneous of degree k). Consider the following conjecture:

Conjecture A(M, χ). The equality of complex numbers∑
σ∈Hom(Q,C)

log |Pσ(M)|χ(σ)

=
L′(χ, 0)
L(χ, 0)

∑
σ∈Hom(Q,C)

∑
p+q=k

p · rk(Hp,q(M,C)σ)χ(σ)

is verified, up to addition of a term of the form
∑

σ∈Hom(Q,C) log |ασ|χ(σ),
where ασ ∈ Q×

0 .
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Recall that an Artin character of Q is a character of a finite dimensional
complex representation of the automorphism group of the normalisation Q̃ of
Q over Q, which is trivial on all the automorphisms of Q̃ whose restriction to
Q is the identity. The normalisation Q̃ may be embedded in Q0 and in order
for the equality of Conjecture A to make sense, one has to choose such an
embedding; it is a part of the conjecture that the equality holds whatever the
choice.

Conjecture A is a slight strengthening of the case n = 1, Y = SpecQ0 of
the statement in [17, Conj. 3.1]. Notice that this conjecture has both a “mo-
tivic” and an “arithmetic” content. More precisely, if the Hodge conjecture
holds and Q0 = Q, this conjecture can be reduced to the case where M is a
submotive of an abelian variety with complex multiplication by Q. Indeed, as-
suming the Hodge conjecture, one can show by examining its associated Hodge
structures that some exterior power of M (taken over Q) is isomorphic to a mo-
tive over Q lying in the tannakian category generated by abelian varieties with
maximal complex multiplication by Q. In this latter case, the Conjecture A
is contained in a conjecture of Colmez [4]. Performing this reduction to CM
abelian varieties or circumventing it is the “motivic” aspect of the conjecture.

However, even in the case of CM abelian varieties, the conjecture seems
far from proof: as far as the authors know, only the case of Dirichlet characters
has been tackled up to now; obtaining a proof of Conjecture A for nonabelian
Artin characters (i.e. for abelian varieties with complex multiplication by a field
whose Galois group over Q is nonabelian) is the “arithmetic” aspect alluded
to above.

In this text we shall be concerned with both aspects, but our original
contribution concerns the “motivic” aspect, more precisely, in finding a way to
circumvent the Hodge conjecture.

We now state a weaker form of Conjecture A. Let χ be a simple odd Artin
character of Q as before, and N be a subring of Q. Let M0 be a motive over
Q0 (not necessarily homogeneous) and suppose that M0 is endowed with a
Q-motive structure (over Q0). Let Mk

0 (k � 0) be the motive corresponding
to the kth cohomology group of M0.

Conjecture B(M0, N, χ). The equality of complex numbers∑
k�0

(−1)k
∑

σ∈Hom(Q,C)

log |Pσ(Mk
0)|2χ(σ)

=
∑
k�0

(−1)k L′(χ, 0)
L(χ, 0)

∑
σ∈Hom(Q,C)

∑
p+q=k

p · rk(Hp,q(M,C)σ)χ(σ)

is verified, up to addition of a term of the form∑
σ∈Hom(Q,C)

∑
i

(bi,σ log |αi,σ|)χ(σ),

where αi,σ ∈ Q×
0 , bi,σ ∈ N and i runs over a finite set of indices.
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Note that Conjecture A (resp. B) only depends on the vector space
H(M,C) (resp. H(M0,C)), together with its Hodge structure (over Q), its
de Rham Q0-structure and its additional Q-structure. If V is a Q-vector space
together with the just described structures on V ⊗Q C (all of them satisfying
the obvious compatibility relations), we shall accordingly write A(V, χ) (resp.
B(V, N, χ)) for the corresponding statement, even if V possibly does not arise
from a motive.

In this article we shall prove Conjecture B (and to a lesser extent, part
of Conjecture A) for a large class of motives, which include abelian varieties
with complex multiplication by an abelian extension of Q, without assuming
the Hodge conjecture (or any other conjecture about motives). Even in the
case of abelian varieties, our method of proof is completly different from the
existing ones.

A consequence of our results is that on any Q-variety X, the existence of a
finite group action implies the existence of nontrivial algebraic linear relations
between the logarithm of the periods of the eigendifferentials of X (for the
action of the group) and the logarithm of special values of the Γ-function (recall
that they are related to the logarithmic derivatives of Dirichlet L-functions at
0 via the Hurwitz formula). More precisely, our results are the following:

Let X be a smooth and projective variety together with an automorphism
g : X → X of order n, with everything defined over a number field Q0. Let us
denote by µn(C) (resp. µn(C)×) the group of nth roots of unity (resp. the set
of primitive nth roots of unity) in C. Suppose that Q0 is chosen large enough
so that it contains Q(µn); and let Pn(T ) ∈ Q[T ] be the polynomial

Pn(T ) =
∑

ζ∈µn(C)×

∏
ξ∈µn(C)\{ζ}

T − ξ

ζ − ξ
.

The submotive X (g) = X (X, g) cut out in X by the projector Pn(g) is endowed
by construction with a natural Q := Q(µn)-motive structure.

Theorem 1. For all the odd primitive Dirichlet characters χ of Q(µn),
Conjecture B(X (g),Q(µn), χ) holds.

Let now Q be a finite abelian extension of Q with conductor fQ and let
M0 be the motive associated to an abelian variety defined over Q0 with (not
necessarily maximal) complex multiplication by OQ. We suppose that the
action of OQ is defined over Q0 and that Q(µfQ

) ⊆ Q0.

Theorem 2. For all the odd Dirichlet characters χ of Q, Conjecture
B(M1

0,Q(µfQ
), χ) holds.

As a consequence of the existence of the Picard variety and of Theorems 1
and 2, we get:
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Corollary. Let the hypotheses of Theorem 1 hold and suppose also that
X is a surface. For all the odd primitive Dirichlet characters χ of Q(µn), the
conjecture B(H2(X (X, g)),Q(µn), χ) holds.

Our method of proof relies heavily on the arithmetic fixed-point formula
(equivariant arithmetic Riemann-Roch theorem) proved by K. Köhler and the
second author in [13]. More precisely, we write down the fixed-point formula
as applied to the de Rham complex of a variety equipped with the action of a
finite group. This yields a formula for some linear combinations of logarithms
of periods of the variety in terms of derivatives of (partial) Lerch ζ-functions.
Using the Hurwitz formula and some combinatorics, we can translate this into
Theorems 1 and 2. In general the fixed-point formula of [13], like the arithmetic
Riemann-Roch theorem, contains an anomalous term, given by the equivari-
ant Ray-Singer analytic torsion, which has proved to be difficult to compute
explicitly. In the case of the de Rham complex, this anomalous term vanishes
for simple symmetry reasons. It is this fact that permits us to conclude.

When Q0 = Q, Q is an abelian extension of Q and M0 is an abelian
variety with maximal complex multiplication by Q, the assertion A(M1

0, χ) was
proved by Anderson in [1], whereas the statement A(M1

0, χ) had already been
proved by Gross [11, Th. 3, Par. 3, p. 204] in the case where Q is an imaginary
quadratic extension of Q, Q0 = Q and M0 is an abelian variety with (not
necessarily maximal) complex multiplication by Q. One could probably derive
Theorem 2 from the results of Anderson, using the result of Deligne on absolute
Hodge cycles on abelian varieties [7] (proved after the theorem of Gross and
inspired by it), which can be used as a substitute of the Hodge conjecture in
this context. In the case where M0 is an abelian variety with maximal complex
multiplication and Q is an abelian extension of Q, Colmez [4] proves a much
more precise version of A(M1

0, χ). He uses the Néron model of the abelian
variety to normalise the periods so as to eliminate all the indeterminacy and
proves an equation similar to Theorem 2 for those periods. A slightly weaker
form of his result (but still much more precise than Theorem 2) can also be
obtained from the arithmetic fixed-point formula, when applied to the Néron
models. This is carried out in [14]. Finally, when M0 is the motive of a CM
elliptic curve, Theorem 2 is just a weak form of the Chowla-Selberg formula
[3]. For a historical introduction to those results, see [19, p. 123–125].

In the last section of the paper, we compare Conjecture A with the period
conjecture of Gross-Deligne [11, Sec. 4, p. 205]. This conjecture is a translation
into the language of Hodge structures of a special case of Conjecture A, with
Q an abelian extension of Q. For example, we show the following: Theorem 1
implies that if S is a surface defined over Q and if S is endowed with an action
of an automorphism g of finite prime order p, then the natural embedding of
the Hodge structure detQ(µp)(H2(X (S, g),Q)) into H(×d

r=1S,Q), where d =
dimQ(µp) H2(X (S, g),Q), satisfies a weak form of the period conjecture.
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In light of the application of the arithmetic fixed-point formula to Con-
jectures A and B, it would be interesting to investigate whether this formula
is related to the construction of the cycles whose existence (postulated by the
Hodge conjecture) would be necessary to reduce the Conjecture A to abelian
varieties.

Acknowledgments. It is a pleasure to thank Y. André, J.-M. Bismut,
P. Colmez, P. Deligne and C. Soulé for suggestions and interesting discussions.
Part of this paper was written when the first author was visiting the NCTS
in Hsinchu, Taiwan. He is grateful to this institution for providing especially
good working conditions and a stimulating atmosphere. We especially thank
the referee for his very careful reading and his detailed comments.

2. Preliminaries

2.1. Invariance properties of the conjectures. Let Q0 and Q be number
fields taken as in the introduction, and let H be a (homogeneous) Hodge struc-
ture (over Q). The C-vector space HC := HQ ⊗Q C comes with a natural
Q0-structure given by HQ ⊗Q Q0. Suppose that HC is endowed with an-
other Q0-structure. The first of these two Q0-structures will be referred to as
the Betti (or singular) one, and the second as the de Rham Q0-structure on
HC. Suppose furthermore that HC is endowed with an additional Q-vector
space structure compatible with both the Hodge structure and the (Betti and
de Rham) Q0-structures. This Q-structure induces an inner direct sum of
C-vector spaces HC := ⊕σ∈Hom(Q,C)Hσ. Let V := ⊕σ∈Hom(Q,C)detC(Hσ)
and let m := dimQ(H). There is an embedding ι : V ↪→ ⊗m

k=1HC given by
ι(⊕σvσ

1 ∧ · · · ∧ vσ
m) :=

∑
σ Alt(vσ

1 ⊗· · ·⊗ vσ
m). Recall that Alt is the alternation

map, described by the formula Alt(x1 ⊗ · · · ⊗ xm) := 1
m!

∑
π∈Sm

sign(π)π(x1 ⊗
· · · ⊗ xm); here Sm is the permutation group on m elements and π acts on
⊗m

k=1HC by permutation of the factors.

Lemma 2.1. The space V inherits the Hodge structure as well as the Betti
and de Rham Q0-structures of ⊗m

k=1HC via the map ι.

Proof. The bigrading of HC is described by the weight of H and by an
action υ : C× → EndC(HC) of the complex torus C×, which commutes with
complex conjugation. The bigrading of ⊗m

k=1HC is described by the weight
m · weight(H) and the tensor product action υ⊗m : C× → EndC(⊗m

k=1HC).
On the other hand we can describe a bigrading on each detC(Hσ) by the weight
m · weight(H) and by the exterior product action. The map ι commutes with
both actions by construction.

To prove that V inherits the Hodge Q-structure, consider that there is
an action by Q-vector space automorphisms of Aut(C) on ⊗m

k=1HC given by
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a((h1 ⊗ z1) ⊗ · · · ⊗ (hm ⊗ zm)) := (h1 ⊗ a(z1)) ⊗ · · · ⊗ (hm ⊗ a(zm)). An
element t of ⊗m

k=1HC is defined over Q (for the Hodge Q-structure) if and
only if a(t) = t for all a ∈ Aut(C). For each σ ∈ Hom(Q,C), let bσ

1 , . . . , bσ
m

be a basis of Hσ, which is defined over σ(Q) such that a(bσ
i ) = b

a(σ)
i for all

a ∈ Aut(C). This can be achieved by taking the conjugates under the action
of Aut(C) of a given basis. Now choose a basis c1, . . . , cdQ

of Q over Q and
let ei :=

∑
σ σ(ci)bσ

1 ∧ · · · ∧ bσ
m. By construction, the elements ι(e1), . . . , ι(edQ

)
are invariant under Aut(C) and they are linearly independent over C, because
the determinant of the transformation matrix from the basis {bσ

1 ∧ · · · ∧ bσ
m}σ

to the basis formed by the ei is the discriminant of the basis ei over Q. They
thus define over V a Q-structure VQ which is compatible with the Hodge
Q-structure of ⊗m

k=1HC. The Betti Q0-structure on V is then just taken to be
VQ ⊗Q Q0.

To show that V inherits the de Rham Q0-structure of ⊗m
k=1HC, just notice

that for each σ ∈ Hom(Q,C), the space Hσ is a basis ασ
1 , . . . , ασ

m defined over
the de Rham Q0-structure of HC. The elements ασ

1 ∧ · · · ∧ ασ
m form a basis of

V and ι(ασ
1 ∧ · · · ∧ ασ

m) is by construction defined over Q0.

In view of the last lemma the complex vector space V arises from a (ho-
mogeneous) Hodge structure over Q that we shall denote by detQ(H). The
embedding ι arises from an embedding of Hodge structures detQ(H) ↪→ ⊗m

k=1H

and detQ(H) inherits a Betti and a de Rham Q0-structure from this embedding.
If H ′ = ⊕w∈ZHw is a direct sum of homogeneous Hodge structures (graded by
the weight), each of them satisfying the hypotheses of Lemma 2.1, we extend
the previous definition to H ′ by letting detQ(H ′) := ⊕w∈ZdetQ(Hw).

Proposition 2.2. The assertion A(M, χ) (resp. B(M0, N, χ)) is equiva-
lent to the assertion A(detQ(H(M,Q)), χ) (resp. B(detQ(H(M0,Q)), N, χ)).

Proof. We examine both sides of the equality in the assertion
A(H(M,Q), χ), when H(M,Q) is replaced by detQ(H(M,Q)). From the
definition of detQ(H(M,Q)), we see that the left-hand side is unchanged. As
to the right-hand side, it is sufficient to show that∑

p+q=k

p · rk(Hp,q
σ ) =

∑
p+q=r·k

p · rk(detC(Hσ)p,q),

where r := rk(Hσ), k is the weight of M and H := H(M,Q). To prove it, we
let v1, . . . , vr be a basis of Hσ, which is homogeneous for the grading. The last
equality follows from the equality

r∑
j=1

pH(vj) = pH(v1 ∧ · · · ∧ vr)

(where pH stands for the Hodge p-type) which holds from the definitions. The
proof of the second equivalence runs along the same lines.
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Let M be a Q-motive (over Q0) and let E be a Q-vector space. We denote
by M⊗QE the motive such that HomQ(M′,M⊗QE) = HomQ(M′,M)⊗QE

for any Q-motive M′. If χ is a character of Q, recall that IndE
Q(χ) is the

character on E (the induced character) defined by the formula IndE
Q(χ)(σE) :=

χ(σE |Q).

Proposition 2.3. Let E be a finite extension of Q, such that the im-
age of all the embeddings of E in C are contained in Q0. The statement
A(M ⊗Q E, IndE

Q(χ)) (resp. B(M0 ⊗Q E, N, IndE
Q(χ))) holds if and only if

A(M, χ) (resp. B(M0, N, χ)) holds.

Proof. Let r be the dimension of E over Q. The choice of a basis x1, . . . , xr

of E as a Q-vector space induces an isomorphism of Q-motives M ⊗Q E �
⊕r

j=1M and thus an isomorphism of C-vector spaces
r⊕

j=1

H(M,C) � H((M ⊗Q E),C)

which respects the Hodge structure and both Q0-structures. Under this iso-
morphism, we also have a decomposition

r⊕
j=1

H(M,C)σQ
�

⊕
σE |σQ

H((M ⊗Q E),C)σE

where σQ ∈ Hom(Q,C) and the σE ∈ Hom(E,C) restrict to σQ. This
decomposition again respects the Hodge structure and both Q0-structures.
We now compute the left-hand side of the equality predicted by A(ME :=
M ⊗Q E, IndE

Q(χ)):∑
σE

log |PσE
(ME)| IndE

Q(χ)(σE)

=
∑
σQ

χ(σQ)
∑

σE |σQ

log |PσE
(ME)|

=
∑
σQ

χ(σQ)
r∑

j=1

log |PσQ
(M)| = r ·

∑
σQ

log |PσQ
(M)|χ(σQ).

As for the right-hand side, we compute∑
σE

∑
p,q

p · rk(Hp,q(ME ,C)σE
)IndE

Q(χ)(σE)

=
∑
σQ

∑
p,q

p · χ(σQ) rk(⊕σE |σQ
Hp,q(ME ,C)σE

)

=
∑
σQ

∑
p,q

p · χ(σQ) · r · rk(Hp,q(M,C)σQ
);

dividing both sides by r, we are reduced to the conjecture A(M, χ). The proof
of the second equivalence is similar.



736 VINCENT MAILLOT AND DAMIAN ROESSLER

2.2. The arithmetic fixed-point formula. For the sake of completness and
in order to fix notation, we shall review in this section the arithmetic fixed-
point formula proved by K. Köhler and the second author in [13]. Many results
will be stated without proof; we refer to [13, Sec. 4] for more details and further
references to the literature.

Let D be a regular arithmetic ring, i.e. a regular, excellent, Noetherian
integral ring, together with a finite set S of injective ring homomorphisms of
D ↪→ C, which is invariant under complex conjugation. Let µn be the diag-
onalisable group scheme over D associated to the group Z/n. An equivariant
arithmetic variety f : Y → Spec D is a regular integral scheme, endowed with
a µn-action over Spec D, such that there exists a µn-equivariant ample line
bundle on Y . We write Y (C) for the complex manifold

∐
σ∈S Y ⊗σ(D) C. The

group µn(C) acts on Y (C) by holomorphic automorphisms and we shall write
g for the automorphism corresponding to a fixed primitive nth root of unity
ζ = ζ(g). The subfunctor of fixed points of the functor associated to Y is
representable and we call the representing scheme the fixed -point scheme and
denote it by Yµn

. It is regular and there are natural isomorphisms of complex
manifolds Yµn

(C) � Y (C)g, where Y (C)g is the set of fixed points of Y un-
der the action of g. We write fµn for the map Yµn

→ Spec D induced by f .
Complex conjugation of coefficients induces an antiholomorphic automorphism
of Y (C) and Yµn

(C), both of which we denote by F∞. We write Ã(Yµn
) for

Ã(Y (C)g) :=
⊕

p�0(A
p,p(Y (C)g)/(Im ∂ +Im ∂)), where Ap,p(·) denotes the set

of smooth complex differential forms ω of type (p, p) such that F ∗
∞ω = (−1)pω.

A hermitian equivariant sheaf (resp. vector bundle) on Y is a coherent
sheaf (resp. a vector bundle) E on Y , assumed locally free on Y (C), endowed
with a µn-action which lifts the action of µn on Y and a hermitian metric h

on EC, the bundle associated to E on the complex points, which is invariant
under F∞ and µn. We shall write (E, h) or E for a hermitian equivariant sheaf
(resp. vector bundle). There is a natural (Z/n)-grading E|Yµn

� ⊕k∈Z/nEk

on the restriction of E to Yµn
, whose terms are orthogonal, because of the

invariance of the metric. We write Ek for the kth term (k ∈ Z/n), endowed
with the induced metric. We shall also write E �=0 for ⊕k∈(Z/n)\{0}Ek.

We write chg(E) :=
∑

k∈Z/n ζ(g)kch(Ek) for the equivariant Chern char-
acter form chg(EC, h) associated to the restriction of (EC, h) to Yµn

(C). Recall

also that Tdg(E) is the differential form Td(E0)
( ∑

i�0(−1)ichg(Λi(E �=0))
)−1

.
If E : 0 → E′ → E → E′′ → 0 is an exact sequence of equivariant sheaves (resp.
vector bundles), we shall write E for the sequence E together with µn(C) and
F∞-invariant hermitian metrics on E′

C, EC and E′′
C. To E and chg is associated

an equivariant Bott-Chern secondary class c̃hg(E) ∈ Ã(Yµn
), which satisfies the

equation ∂∂
2πi c̃hg(E) = chg(E

′) + chg(E
′′) − chg(E).
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Definition 2.4. The arithmetic equivariant Grothendieck group K̂µn
′

0 (Y )
(resp. K̂µn

0 (Y )) of Y is the free abelian group generated by the elements of
Ã(Yµn

) and by the equivariant isometry classes of hermitian equivariant sheaves
(resp. vector bundles), together with the relations

(i) for every exact sequence E as above, c̃hg(E) = E
′ − E + E

′′;

(ii) if η ∈ Ã(Yµn
) is the sum in Ã(Yµn

) of two elements η′ and η′′, then
η = η′ + η′′ in K̂µn

′

0 (Y ) (resp. K̂µn

0 (Y )).

We shall now define a product on K̂µn
′

0 (Y ) (resp. K̂µn

0 (Y )). Let V , V
′ be

hermitian equivariant sheaves (resp. vector bundles) and let η, η′ be elements
of Ã(Yµn

). We define a product · on the generators of K̂µn
′

0 (Y ) (resp. K̂µn

0 (Y ))

by the rules V ·V ′ := V ⊗V
′, V · η = η ·V := chg(V )∧ η and η · η′ := ∂∂

2πiη ∧ η′

and we extend it by linearity. This product is compatible with the relations
defining K̂µn

′

0 (Y ) (resp. K̂µn

0 (Y )) and defines a commutative ring structure on
K̂µn

′

0 (Y ) (resp. K̂µn

0 (Y )).
Suppose now that f is projective. Fix an F∞-invariant Kähler metric on

Y (C), with Kähler form ωY and suppose that µn(C) acts by isometries with
respect to this Kähler metric. Let E := (E, h) be an equivariant hermitian
sheaf on Y . We write Tg(E) for the equivariant analytic torsion Tg(EC, h) ∈ C
of (EC, h) over Y (C); see [12, Sec. 2] or subsection 2.3 for the definition. Let
f : Y → Spec D be the structure morphism. We let Rif∗E be the ith direct
image sheaf of E endowed with its natural equivariant structure and L2-metric.
Let dY := dim(Y (C)). The L2-metric on Rif∗EC �

∐
σ∈S H i

∂
(Y ×σ(D)C, Eσ,C)

is defined by the formula
1

(2π)dY

∫
Y (C)

(s, t)ωdY

Y(1)

where s and t are harmonic (i.e. in the kernel of the Kodaira Laplacian
∂∂

∗ + ∂
∗
∂) sections of Λi(T ∗(0,1)Y (C)) ⊗ EC. The pairing (·, ·) is the nat-

ural metric on Λi(T ∗(0,1)Y (C)) ⊗ EC. This definition is meaningful because
by Hodge theory there is exactly one harmonic representative in each co-
homology class. We also write H i(Y, E) for Rif∗E and R·f∗E for the lin-
ear combination

∑
i�0(−1)iRif∗E. Let η ∈ Ã(Yµn

) and consider the rule
which associates the element R·f∗E −Tg(E) of K̂µn

′

0 (D) to E and the element∫
Y (C)g

Tdg(TY )η ∈ K̂µn
′

0 (D) to η.

Proposition 2.5. The above rule induces a well defined group homomor-
phism f∗ : K̂µn

′

0 (Y ) → K̂µn
′

0 (D).

One can show that K̂µn

0 (D) is isomorphic to K̂µn
′

0 (D) via the natural map
so that by composition the last proposition yields a map K̂µn

0 (Y ) → K̂µn

0 (D),
which we shall also call f∗.
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Finally, to formulate the fixed point theorem, we define the homomor-
phism ρ : K̂µn

0 (Y ) → K̂µn

0 (Yµn
), which is obtained by restricting all the in-

volved objects from Y to Yµn
. If E is a hermitian vector bundle on Y , we

write λ−1(E) :=
∑rk(E)

k=0 (−1)kΛk(E) ∈ K̂µn

0 (Y ), where Λk(E) is the kth exte-
rior power of E, endowed with its natural hermitian and equivariant structure.
If E is the orthogonal direct sum of two hermitian equivariant vector bundles
E

′ and E
′′, then λ−1(E) = λ−1(E

′) ·λ−1(E
′′). Let R(µn) be the Grothendieck

group of finitely generated projective µn-comodules over D. There are natu-
ral isomorphisms R(µn) � K0(D)[Z/n] � K0(D)[T ]/(1 − Tn). Let I be the
µn-comodule whose term of homogeneous degree 1 ∈ Z/n is D endowed with
the trivial metric and whose other terms are 0. We make K̂µn

0 (D) an R(µn)-
algebra under the ring morphism which sends T to I. In the next theorem,
which is the arithmetic fixed-point formula, let R be any R(µn)-algebra such
that the elements 1 − T k (k = 1, . . . , n − 1) are invertible in R.

Let now θ ∈ R. For all s ∈ C such that �(s) > 1 we define Lerch’s
partial ζ-functions ζ(θ, s) :=

∑
n�1

cos(nθ)
ns and η(θ, s) :=

∑
n�1

sin(nθ)
ns , and

using analytic continuation, we extend them to meromorphic functions of s

over C. Let R(θ, t) be the formal power series∑
n�1, n odd

(2ζ ′(θ,−n) +
n∑

j=1

ζ(θ,−n)
j

)
tn

n!

+ i
∑

n�0, n even

(2η′(θ,−n) +
n∑

j=1

η(θ,−n)
j

)
tn

n!
.

We shall need R(θ, (·)), which is by definition the unique additive characteristic
class on holomorphic vector bundles such that R(θ, L) = R(θ, c1(L)) for each
line bundle L. Let V be a µn-equivariant vector bundle on Y ; we define

Rg(V ) :=
rk(V )∑
k=1

R(arg(ζ(g)k), Vk).

Choose any µn-invariant hermitian metric on VC; this hermitian metric induces
a connection of type (1, 0) on each VC,k; using this connection, we may compute
a differential form representative of R(arg(ζ(g)k), Vk) in complex de Rham
cohomology; this representative is a sum of differential forms of type (p, p)
(p ≥ 0), which is both ∂− and ∂−closed. In the next theorem, we may thus
consider that the values of Rg(·) lie in Ã(Yµn

).

Theorem 2.6. Let NY/Yµn
be the normal bundle of Yµn

in Y , endowed
with its quotient equivariant structure and quotient metric structure (which is
F∞-invariant).

(i) The element Λ := λ−1(N
∨
Y/Yµn

) has an inverse in K̂µn

0 (Yµn
) ⊗R(µn) R.
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(ii) When ΛR := Λ · (1 + Rg(NY/Yµn
)), the diagram2

K̂µn

0 (Y )
Λ−1

R ·ρ−→ K̂µn

0 (Yµn
) ⊗R(µn) R

↓ f∗ ↓ fµn
∗

K̂µn

0 (D) Id⊗1−→ K̂µn

0 (D) ⊗R(µn) R
commutes.

The proof of this theorem is the object of [13], it combines the deformation
to the normal cone technique with deep results of Bismut on the behaviour of
equivariant analytic torsion under immersions [2].

2.3. The equivariant analytic torsion and the L2-metric of the de Rham
complex. In this subsection, we shall prove the vanishing of the equivariant an-
alytic torsion for the de Rham complex. Before doing so, we shall review some
results on the polarisation induced by an ample line bundle on the singular
cohomology of a complex manifold.

Let M be a complex projective manifold of dimension d and L be an
ample line bundle on M . Let us denote by ω ∈ H2(M,Q) the first Chern class
of L and for k � d, let P k(M,C) ⊆ Hk(M,C) be the primitive cohomology
associated to ω; this is a Hodge substructure of Hk(M,C). Recall that for any
k � 0, the primitive decomposition theorem establishes an isomorphism

Hk(M,C) � ⊕r�max(k−d,0) ωr ∧ P k−2r(M,C).

Define the cohomological star operator ∗ : Hk(M,C) → H2d−k(M,C) by the
rule ∗ωr∧φ := ip−q(−1)(p+q)(p+q+1)/2 r!

(d−p−q−r)!ω
d−p−q−r∧φ if φ is a primitive

element of pure Hodge type (p, q) and extend it by additivity. We can now
define a hermitian metric on Hk(M,C) by the formula

(ν, η)L :=
1

(2π)d

∫
M

ν ∧ ∗ η

for any ν, η ∈ Hk(M,C). This metric is sometimes called the Hodge metric.
The next lemma follows from the definition of the L2-metric, Hodge’s theo-
rem on the representability of cohomology classes by harmonic forms and the
Hodge-Kähler identities.

Lemma 2.7. Endow M with a Kähler metric whose Kähler form ωM rep-
resents the cohomology class of ω in Betti cohomology and equip the bun-
dles Ωp

M with the corresponding metrics. Endow ⊕p+q=kH
q(M,Ωp

M ) with the
L2-metric and Hk(M,C) with the Hodge metric. The Hodge-de Rham isomor-
phism Hk(M,C) � ⊕p+q=kH

q(M, Ωp
M ) is an isometry.

2Note that a misprint found its way into the statement [13, Th. 4.4] (= Th. 2.6). In [13,
Th. 4.4] the term Λ · (1 − Rg(NY/Yµn

)) has to be replaced by Λ · (1 + Rg(NY/Yµn
)) in the

expression for ΛR.
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Proof. Let ∗′ be the Hodge star operator of differential geometry. By the
definitions of the L2-metric and of the operator ∗′, we have the formula

1
(2π)d

∫
M

ν ∧ ∗′η

for the L2-hermitian product of two harmonic representatives of Hq(M, Ωp
M ).

Furthermore, the operator ωM ∧ (·) sends harmonic forms to harmonic forms
and the identity ∗′ ωr

M ∧ φ := ip−q(−1)(p+q)(p+q+1)/2 r!
(d−p−q−r)!ω

d−p−q−r
M ∧ φ is

verified if φ is a primitive harmonic form of pure Hodge type (p, q) (see [21]).
This implies the result.

Suppose now that M is a complex compact Kähler manifold endowed
with a unitary automorphism g, and let E be a hermitian holomorphic vector
bundle on M which is equipped with a unitary lifting of the action of g. Let
�E

q be the differential operator (∂ + ∂
∗)2 acting on the C∞-sections of the

bundle ΛqT ∗(0,1)M ⊗E. This space of sections is equipped with the L2-metric
and the operator �E

q is symmetric for that metric; we let Sp(�E
q ) ⊆ R be the

set of eigenvalues of �E
q (which is discrete and bounded from below) and we

let EigE
q (λ) be the eigenspace associated to an eigenvalue λ (which is finite-

dimensional). Define

Z(E, g, s) :=
∑
q�1

(−1)q+1q
∑

λ∈Sp(�E
q )\{0}

Tr(g∗|EigE
q (λ))λ

−s

for �(s) sufficiently large. The function Z(E, g, s) has a meromorphic continua-
tion to the whole plane, which is holomorphic around 0 (see [12]). By definition,
the equivariant analytic torsion of E is given by Tg(E) := Z ′(E, g, 0).

The nonequivariant analog of the following lemma (the proof of which is
similar) can be found in [18].

Lemma 2.8. Let M be a complex compact Kähler manifold and let g be a
unitary automorphism of M . The identity∑

p�0

(−1)pTg(Λp(ΩM )) = 0

holds.

Proof. Recall the Hodge decomposition (see [21, Chap. IV, no. 3, Cor. 2])

Ap,q(M) = Hp,q(M) ⊕ ∂(Ap−1,q(M)) ⊕ ∂∗(Ap+1,q(M))

where Hp,q(M) are the harmonic forms for the usual Kodaira-Laplace operator
�q = (∂ + ∂∗)2 = (∂ + ∂

∗)2 and Ap,q(M) is the space of C∞-differential forms
of type (p, q) on M . Let us write Ap,q

1 (M) for ∂(Ap−1,q(M)) and Ap,q
2 (M) for

∂∗(Ap+1,q(M)). The map ∂|Ap,q
2 (M)) is an injection and its image is Ap+1,q

1 (M).
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Notice also that the operator �q commutes with ∂ and ∂∗. Notice as well that
the C∞-sections of ΛqT ∗(0,1)M ⊗ Λp(ΩM ) correspond to the space Ap,q(M)
and that �Λp(Ω)

q = �q|Ap,q . For λ ∈ R×, we write Lp,q
λ = Ker(�Λp(Ω)

q − λ),
Lp,q

λ,1 = Lp,q
λ ∩ Ap,q

1 and Lp,q
λ,2 = Lp,q

λ ∩ Ap,q
2 . We compute∑

p�0

(−1)pTr(g∗|Lp,q
λ

) =
∑
p�0

(−1)p[Tr(g∗|Lp,q
λ,1

) + Tr (g∗|Lp,q
λ,2

)] = 0

and from this, we conclude that
∑

p�0(−1)pZ(Λp(ΩM ), g, s) ≡ 0.

2.4. An invariant of equivariant arithmetic K0-theory. From now on, we
restrict ourselves to the case D = Q0, where Q0

ι0
↪−→ C is a number field

embedded in C, and we fix a primitive nth root of unity ζ := e2πi/n. We
use this choice to identify the set µn(C)× of primitive nth roots of unity with
the Galois group G := Gal(Q(µn)/Q) = Hom(Q(µn),C). The ring mor-
phism R(µn) → Q(µn) which sends the generator T on ζ makes Q(µn) an
R(µn)-algebra and allows us to take R := Q(µn). We let ĈH(Q0) be the
arithmetic Chow ring of Q0 with the set of embeddings S := {ι0, ι0}, in the
sense of Gillet-Soulé (see [8]). There is a natural isomorphism ĈH(Q0) �
Z⊕R/ log |Q×

0 | and a ring isomorphism K̂0(Q0) � ĈH(Q0) given by the arith-
metic Chern character ĉh (see [8]), the ring K̂0(Q0) being defined similarly to
the ring K̂µ1

0 (Q0), with Ap,p(·) replaced by the space A
p,p
R (·) of real (not com-

plex) differential forms of type (p, p). The ring structure on Z⊕R/ log |Q×
0 | is

given by the formula (r ⊕ x) · (r′ ⊕ x′) := (r · r′, r · x′ + r′ · x). On generators
of K̂0(Q0), the arithmetic Chern character is defined as follows: For V a her-
mitian vector bundle on SpecQ0, the arithmetic Chern character ĉh(V ) is the
element rk(V ) ⊕ (− log ||s||), where s is a nonvanishing section of det(V ) and
|| · || is the norm on det(V )C induced by the metric on VC. For an element
η ∈ AR(Spec Q0) � R, the arithmetic Chern character ĉh(η) is the element
0 ⊕ 1

2η.
Let now ℵ0 be the additive subgroup of C generated by the elements

z · log |q0| where q0 ∈ Q×
0 and z ∈ Q(µn). We define ĈHQ(µn)(Q0) := Q(µn)⊕

C/ℵ0 and we define a ring structure on ĈHQ(µn)(Q0) by the rule (z, x) ·
(z′, x′) := (z · z′, z · x′ + z′ · x). Notice that there is a natural ring morphism
ψ : ĈH(Q0) → ĈHQ(µn)(Q0) and that there is a natural Q(µn)-module struc-
ture on ĈHQ(µn)(Q0). Define a rule which associates elements of ĈHQ(µn)(Q0)
to generators of K̂µn

0 (Q0) as follows. Associate the element ζk · ψ(ĉh(V )) to
a µn-equivariant hermitian vector bundle V of pure degree k (for the natu-
ral (Z/n)-grading) on SpecQ0; furthermore associate the element 0 ⊕ 1

2η to
η ∈ Ã(Spec Q0) � C.

Lemma 2.9. The above rule induces a morphism of R(µn)-modules ĉhµn
:

K̂µn

0 (Q0) → ĈHQ(µn)(Q0).
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Proof. Let

V : 0 → V ′ → V → V ′′ → 0

be a an exact sequence of µn-equivariant vector bundles (µn-comodules) over
Q0. We endow the members of V with (conjugation invariant) hermitian met-
rics h′, h and h′′ respectively, such that the pieces of the various gradings are
orthogonal. The equality

c̃hζ(V) =
∑

k∈Z/n

ζkc̃h(Vk)

holds (see [13, Th. 3.4, Par. 3.3]). From this and the well-defined quality of
the arithmetic Chern character, the result follows.

We shall write ĉ 1
µn

for the second component of ĉhµn
, i.e. the component

lying in C/ℵ0. If V is a hermitian µn-equivariant vector bundle on SpecQ0

with a trivial µn-action, we shall write ĉ1(V ) for ĉ 1
µn

(V ).

Lemma 2.10. Let V be a hermitian µn-equivariant vector bundle on Spec Q0.
The equation∏

l∈Z/n

(1 − ζ l)−rk(Vl)ĉhµn
(λ−1(V )) = 1 ⊕ (−

∑
l∈Z/n

ζ l

1 − ζ l
ĉ1(V l))(2)

holds.

Proof. We shall make use of the canonical isomorphism

det(Λk(W )) � det(W )⊗
(r−1)!

(r−k)!(k−1)! ,

valid for any vector space W of rank r over a field and any 1 � k � r, and
constructed as follows: For any basis b1, . . . , br of W , the element∧

1�i1<···<ik�r

(bi1 ∧ · · · ∧ bik
)

of det(Λk(W )) is sent to the element

(r−1)!
(r−k)!(k−1)!⊗

j=1

(b1 ∧ · · · ∧ br)

of det(W )⊗
(r−1)!

(r−k)!(k−1)! . This isomorphism is by construction invariant under base
change to a field extension. Furthermore, if one applies the above description
to the orthonormal basis of a vector space over C endowed with a hermitian
metric, one find that this isomorphism is also an isometry for the natural
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metrics on both sides. Thus, for any hermitian vector bundle W over Spec Q0,
the isomorphism of vector bundles

det(Λk(W )) � det(W )⊗
(r−1)!

(r−k)!(k−1)!

is an isometry. Using the definition of the ring structure of ĈHQ(µn)(Q0) and
the fact that ĉhµn

(λ−1(V ⊕ V
′)) = ĉhµn

(λ−1(V )) · ĉhµn
(λ−1(V

′)) for any two
hermitian equivariant vector bundles over Q0, we see that as functions of V ,
both sides of the equality in (2) are multiplicative for direct sums of hermitian
vector bundles. We are thus reduced to proving the equality

(1 − ζ l)−rk(Vl)ĉhµn
(λ−1(V l)) = 1 ⊕ −ζ l

1 − ζ l
ĉ1(V l)

for all l ∈ Z/n. Let rl := rk(Vl); we compute

ĉhµn
(λ−1(V l)) =

rl∑
k=0

(−1)kζ lkĉh(Λk(V l))

=
rl∑

k=0

(−1)kζ lk rl!
k!(rl − k)!

⊕ (
rl∑

k=1

(−1)kζ lk (rl − 1)!
(k − 1)!(rl − k)!

)ĉ1(V l).

Using the binomial formula, we see that the last expression can be rewritten
as

(1 − ζ l)rl ⊕ (−ζ l(1 − ζ l)rl−1)ĉ1(V l)

and the result follows.

3. Proof of Theorems 1 and 2

3.1. Two lemmas. For z belonging to the unit circle S1, we define Lerch’s
ζ-function ζL(z, s) :=

∑
k�1

zk

ks for s ∈ C such that �(s) > 1, and using analytic
continuation, we extend it to a meromorphic function of s over C.

Lemma 3.1. Let Y be a scheme, smooth over C, and let E be a vector
bundle on Y together with an automorphism g : E → E of finite order (acting
fiberwise). Let κ be the class

κ := Td(E0)

∑
p�0(−1)pp · chg(Λp(E∨))∑
p�0(−1)pchg(Λp(E∨

�=0))
.

The equality

κ[l+rk(E0)] = −ctop(E0)
∑
z∈S1

ζL(z,−l) ch[l](E∨
z )

holds.
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Proof. According to the splitting principle, we may suppose that E is
an equivariant direct sum of r := rk(E) line bundles Fi on which g acts by
multiplication with the eigenvalue α−1

i ∈ S1. If we set γi := c1(F∨
i ) for all i,

we can write∑
p�0

(−1)pp · chg(∧p(E∨)) =
∑
p�0

(−1)pp
∑

1�i1<···<ip�r

αi1 · · ·αip
eγi1+···+γip .(3)

If we take the formal derivative (with respect to t) of the identity

r∏
i=1

(1 − αie
γit) =

∑
p�0

(−1)p

 ∑
1�i1<···<ip�r

αi1 · · ·αip
eγi1+···+γip

 tp

set t = 1 and apply (3), we obtain∑
p�0

(−1)pp · chg(∧p(E∨)) = −
r∏

i=1

(1 − αie
γi)

r∑
j=1

αje
γj

1 − αjeγj
.(4)

Notice now that we can write
r∏

i=1

(1 − αie
γi) =

∏
αi �=1

(1 − αie
γi)

∏
αi=1

(1 − eγi)

=
∑
p�0

(−1)p chg(∧p(E∨
�=0))

ctop(E0)
Td(E0)

;

this together with (4) shows that

κ = −ctop(E0)
r∑

j=1

αje
γj

1 − αjeγj
.(5)

Furthermore, notice that for any smooth function f(x) and any k ∈ N,

dk

dtk
f(αet) =

([
x

d

dx

]k
f

)
(αet)

and (for x �= 1)

ζL(x,−k) =
[
x

d

dx

]k
ζL(x, 0)

and also,

ζL(x, 0) =
x

1 − x
.

We deduce that (for α �= 1)

αet

1 − αet
=

∑
p�0

ζL(α,−p)
tp

p!
.(6)
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When α = 1, we have the the classical expansion

et

1 − et
= −1

t
+

∑
p�0

ζQ(−p)
tp

p!
.

Using in (5) the formula just above or the formula (6) according to whether
αj is equal to 1 or not, we find that for all l � 0

κ[l+rk(E0)] = −ctop(E0)
[ ∑

z∈S1\{1}
ζL(z,−l) ch[l](E∨

z ) + ζQ(−l) ch[l](E∨
0 )

]
which, noticing that ζL(1,−l) = ζQ(−l), concludes the proof.

Caution. In what follows, in contradiction to classical usage and to the in-
troduction to this article, the notation L(χ, s) will always refer to the nonprim-
itive L-function associated with a Dirichlet character χ. We shall write χprim

for the primitive character associated with χ and accordingly write L(χprim, s)
for the associated primitive L-function.

Recall that the relationship between primitive and nonprimitive Dirichlet
L-functions is given by the equality

L(χ, s) = L(χprim, s)
∏
p|n

(1 − χprim(p)p−s)(7)

where χ is a character of Gal(Q(µn)/Q). This implies in particular the formula

L′(χ, s)
L(χ, s)

=
L′(χprim, s)
L(χprim, s)

+
∑
p|n

χprim(p)p−s

1 − χprim(p)p−s
log(p)(8)

obtained by taking the logarithmic derivative of both sides of (7).
The following lemma, proved in [14, Lemma 5.2, Sec. 5], establishes the

link between Lerch ζ-functions and Dirichlet L-functions. It follows from the
functional equation of Dirichlet L-functions when the character is primitive.
Recall that by definition (see before Theorem 2.6), the following identity relates
ζL(z, s), ζ(arg(z), s) and η(arg(z), s):

ζL(z, s) = ζ(arg(z), s) + i · η(arg(z), s)

where s ∈ C and z ∈ C, |z| = 1.

Lemma 3.2. Let χ be an odd character of G = Gal(Q(µn)/Q). The equal-
ity ∑

σ∈G

η(arg(σ(ζ)), s)χ(σ) = n1−s Γ(1 − s/2)
Γ((s + 1)/2)

πs−1/2L(χ, 1 − s)

holds for all s ∈ C.

If χ is a character of G, we shall write τ(χ) :=
∑

σ∈G σ(ζ)χ(σ) for
the Gauss sum associated to χ. Recall that if χ is primitive (i.e. not in-
duced from a subfield Q(µm) with m < n) the following equation holds (see
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[20, Lemma 4.7, p. 36]) ∑
σ∈G

σ(ζ l)χ(σ) = τ(χ)χ(l)(9)

where we used the identification G � (Z/n)× to give meaning to χ(l).
If one combines the preceding lemma with the functional equation of prim-

itive L-functions, one obtains the equation∑
σ∈G

η(arg(σ(ζ)), s)χ(σ) = −i · τ(χ)L(χ, s)(10)

for all s ∈ C, if χ is a primitive and odd Dirichlet character. Another way to
prove this equality is to apply (9) to the definition of the function η.

3.2. The proofs. The notations of Sections 1 and 2, and the conventions
of subsection 2.4 are still in force. If N× is a subgroup of C× and z, z′ ∈ C, we
shall write z ∼N× z′ if z = λ · z′ with λ ∈ N×. Recall that f : X → Spec Q0 is
a smooth and projective variety acted upon by g, an automorphism of order n

(defined over Q0). Suppose that Q0 contains Q(µn). Endow X(C) with a g-
invariant Kähler metric. We will denote by Ω the sheaf of relative differentials
of f equipped with the induced metric.

We shall now prove Theorems 1 and 2. To do so, we first apply the
arithmetic fixed-point formula (Theorem 2.6) to the de Rham complex λ−1(Ω).

f∗(λ−1(Ω)) =Tg(λ−1(Ω))

−
∫

Xµn (C)
Rg(TX)Tdg(TX)chg(λ−1(Ω))

+fµn
∗ (λ−1

−1(N
∨
X/Xµn

)λ−1(ρ(Ω)))

= Tg(λ−1(Ω)) −
∫

X(C)g

Rg(TX)Td(TXg)ch(λ−1(TX∨
g ))

+fµn
∗ (λ−1(Ω(fµn)))

= Tg(λ−1(Ω)) −
∫

X(C)g

Rg(TX)ctop(TXg) + fµn
∗

(
λ−1(Ω(fµn))

)
.

Applying ĉ 1
µn

(·) to both sides of the last equality, we obtain

(11)

ĉ 1
µn

(f∗(λ−1(Ω))) =
1
2
Tg(λ−1(Ω))

−1
2

∫
X(C)g

Rg(TX)ctop(TXg) + ĉ1(fµn
∗

(
λ−1(Ω(fµn))

)
).

We deduce from Lemma 2.8 that Tg(λ−1(Ω)) = 0. The following lemma shows
that the third term in (11) likewise vanishes:
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Lemma 3.3. The equality ĉ1(f
µn
∗

(
λ−1(Ω(fµn))

)
) = 0 holds.

Proof. Let dµ be the relative dimension of Xµn
over Spec Q0. The ex-

pression ĉ1(f
µn
∗

(
λ−1(Ω(fµn))

)
) can be subdivided into a linear combination of

terms of the following kind:

ĉ1(Rqfµn
∗ (Λp(Ω(fµn)))) + ĉ1(Rdµ−qfµn

∗ (Λdµ−p(Ω(fµn)))).

By Serre duality, the spaces Rqfµn
∗ (Λp(Ω(fµn))) and Rdµ−qfµn

∗ (Λdµ−p(Ω(fµn)))
are dual to each other, and even more, this duality is a duality of hermitian
vector bundles (for the last statement, see [9]). Hence, from the definition of
ĉ1, it follows that ĉ1(Rqfµn

∗ (Λp(Ω(fµn)))) = −ĉ1(Rdµ−qfµn
∗ (Λdµ−p(Ω(fµn))))

which ends the proof.

We shall write Hk
Dlb(X) := ⊕p+q=kR

qf∗(Λp(Ω(f))) and HDlb(X) for the
direct sum of the all the Hk

Dlb(X). Furthermore, we shall write HDlb(X) for
HDlb(X) equipped with its natural L2-metric. From the preceding discussion
and (11), there exists the equality∑

k�0

(−1)k ĉ 1
µn

(Hk
Dlb(X)) = −1

2

∫
X(C)g

Rg(TX)ctop(TXg).(12)

To show that (12) implies Theorems 1 and 2, we will use Lemma 3.2 to express
derivatives of Lerch ζ-functions occurring in Rg(TX) in terms of derivatives
of Dirichlet L-functions, and then Lemma 3.1 to give a global (cohomological)
expression for the right side of (12).

Proof of Theorem 1. Let L be a g-equivariant ample line bundle over X

and suppose now that X(C) is endowed with a Kähler metric whose Kähler
form represents the first Chern class of L in Betti cohomology. We compute∑

k�0

(−1)k ĉ 1
µn

(Hk
Dlb(X)) =

∑
k�0

(−1)k
∑
l�0

ζ l ĉ1(Hk
Dlb(X)l)

and∑
σ∈G

∑
k�0

(−1)k
∑
l�0

σ(ζ)l ĉ1(Hk
Dlb(X)l)χ(σ)

= τ(χ)
∑
k�0

(−1)k
∑
l�0

χ(l)ĉ1(Hk
Dlb(X)l)

= −τ(χ)
∫

X(C)g

L′(χ, 0)
∑

l

χ(l) rk(TXl)ctop(TXg)

= −τ(χ)
∫

X(C)g

L′(χ, 0)
L(χ, 0)τ(χ)

∑
σ∈G

χ(σ)Td(TXg)

∑
p�0(−1)pp · chσ(ζ)(Λp(Ω))∑
p�0(−1)pchσ(ζ)(Λp(N∨))

= −τ(χ)
L′(χ, 0)
L(χ, 0)

∑
σ∈G

∑
p,q

(−1)p+qp · rk(Hp,q(X(C))σ)χ(σ)
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which shows the result. For the first equality in the last string of equalities,
we have used (9); for the second one, we have used (12) and (10); for the third
one, we used Lemma 3.1 and the fact that L(χ, 0)τ(χ) = L(1, χ) i·n

π �= 0 (see
[20, p. 36, after Cor. 4.6] and [20, Cor. 4.4]); for the last equality, we have
applied the holomorphic Lefschetz trace formula [10, 3.4, p. 422] to the virtual
vector bundle 1 − Ω + 2 · Λ2(Ω) − · · · + (−1)dim(X) dim(X) · Λdim(X)(Ω). The
proof now follows from the coming lemma, the definition of ĉ 1

µn
(·) and the fact

that the Fourier transform of a constant function vanishes on odd characters.
To formulate it, let σ be any element of G and let l be the corresponding
element in (Z/n)×. Let k ≥ 0 and let ω1

σ, . . . , ωt
σ be a basis of Hk

Dlb(X)l (as
a Q0-vector space), which is homogeneous for the decomposition in bidegrees.
For the time of the lemma, endow detC(Hk

Dlb(X)l,C) with the exterior power
metric induced by the L2-metric on Hk

Dlb(X)l,C and denote the resulting norm
by | · |L2 as well. Let M := X (X, g).

Lemma 3.4. The relation |Pσ(Mk)| ∼|Q×
0 | (2π)

dim(X(C))t

2 |ω1
σ ∧ · · · ∧ ωt

σ|L2

holds.

Proof. Let ωσ := ω1
σ ∧ · · · ∧ ωt

σ. We know that the Hodge filtration
on Hk(X(C),C) is defined over Q0. Since the Hodge to de Rham spectral
sequence degenerates, we also know that the successive quotients of this fil-
tration are isomorphic to the spaces Hq(X(C),Ωp), where p + q = k, via the
canonical embedding Hq(X(C),Ωp) ↪→ Hk(X(C),C). Furthermore, these iso-
morphisms are compatible with the Q0-structure of Hq(X(C),Ωp) and with
the Q0-structure of the quotients of the filtration which arise from the de Rham
structure of Hk(X(C),C). These facts implie that ωσ ∈ detCH(Mk,C)σ �
detC(Hk

Dlb(X)l,C) is rational for the de Rham structure. Let z be a com-
plex number such that z · ωσ is defined over the singular Q0-structure of
detCH(Mk,C)σ. Since z · ωσ is of pure Hodge type, the construction of the
Hodge metric and Lemma 2.7 show that the number (2π)dim(X(C))t|z · ωσ|L2

lies in |Q×
0 | and from this the result follows.

Proof of Theorem 2. By class-field theory and Proposition 2.3, we are re-
duced to the case Q = Q(µn). We may thus suppose that X is an abelian vari-
ety A with (not necessarily maximal) complex multiplication by OQ(µn). In this
case the sheaf of differentials Ω is equivariantly isomorphic to f∗(H0(A,Ω)).
Let L be a g-equivariant ample line bundle over A and let ωL be a real,
translation-invariant (1, 1)-form which represents the first Chern class of L

in Betti cohomology. Let ωA := λ · ωL, where λ ∈ R is chosen so that
1

(2π)dim(A(C))

∫
A(C) ω

dim(A(C))
A = 1. We endow A(C) with the Kähler metric

ωA. Recall that the natural map of Q0-algebras Λk(H1
Dlb(A)) → Hk

Dlb(A) is
an isomorphism. The definition of ωY , the definition of the L2-metric and the
fact that the harmonic forms on A(C) are precisely the translation invariant
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ones, imply that this map is an isometry. Let V := H1
Dlb(A). By the usual

Lefschetz trace formula, the number of fixed points on A(C) of the automor-
phism corresponding to ζ ∈ OQ(µn) is

∏
l∈Z/n(1 − ζ l)rk(Vl). Thus we get, by

(12) and Lemma 2.10

−
∑

l

ζ l

1 − ζ l
ĉ1(V l) = −1

2
Rg(Ω∨) = −1

2

∑
l

2i(∂/∂s)η(arg(ζ l), 0)rk((Ω∨)l).

Now notice that Im ζl

1−ζl = η(arg(ζ l), 0) and that (Ω∨)l = (Ω−l)∨ and thus∑
l

η(arg(ζ l), 0)ĉ1(V l) =
∑

l

(∂/∂s)η(arg(ζ l), 0)rk(Ω−l).

Next we take the Fourier transform of both sides of the last equality for
the action of G = Gal(Q(µn)/Q) and change variables from l to −l on the
right side of the last equality. We get:∑

l

[
∑
σ∈G

η(arg(σ(ζ)l), 0)χ(σ)]̂c1(V l)

= −
∑

l

[
∑
σ∈G

(∂/∂s)η(arg(σ(ζ)l), 0)χ(σ)]rk(Ωl)

and by changing variables

− [
∑
σ∈G

η(arg(σ(ζ)), 0)χ(σ)]
∑

l

χ(l)ĉ1(V l)

= [
∑
σ∈G

(∂/∂s)η(arg(σ(ζ)), 0)χ(σ)]
∑

l

χ(l)rk(Ωl).

We now calculate, using Lemma 3.2 and (8),

[
∑

σ∈G(∂/∂s)η(arg(σ(ζ)), 0)χ(σ)]
[
∑

σ∈G η(arg(σ(ζ)), 0)χ(σ)]

= − log(n) − 1
2
(
Γ′(1)
Γ(1)

+
Γ′(1/2)
Γ(1/2)

) + log(π) − L′(χ, 1)
L(χ, 1)

= − log(n) − 1
2
(
Γ′(1)
Γ(1)

+
Γ′(1/2)
Γ(1/2)

) + log(π)

−L′(χprim, 1)
L(χprim, 1)

−
∑
p|n

χprim(p)
p − χprim(p)

log(p)

= − log(n) − 1
2
(
Γ′(1)
Γ(1)

+
Γ′(1/2)
Γ(1/2)

) + log(π) − log(
2π

fχ
)

+
Γ′(1)
Γ(1)

+
L′(χprim, 0)
L(χprim, 0)

−
∑
p|n

χprim(p)
p − χprim(p)

log(p)

= log(
fχ

n
) +

L′(χprim, 0)
L(χprim, 0)

−
∑
p|n

χprim(p)
p − χprim(p)

log(p),
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where we used the functional equation of primitive Dirichlet L-functions for the
third equality. Now notice that with our choice of metric and by Lemma 3.4,
we have ĉ1(V l) := − log |Pσ(M1

0)|+c for each l ∈ (Z/n)× and its corresponding
σ, where c is independent of l. Since the Fourier transform of any constant
function on (Z/n)× vanishes on any odd character, we have proved Theorem 2.

4. The period conjecture of Gross-Deligne

In this section, we shall indicate the consequences of Theorem 1 and The-
orem 2 for the period conjecture of Gross-Deligne [11, Sec. 4, p. 205]. We first
recall the latter conjecture. Let Q be a finite abelian extension of Q and let
H be a rational and homogeneous Hodge structure of dimension [Q : Q] and
homogeneous degree r. Suppose that there is a morphism of rings ι : Q ↪→
End(H) (in other words, H has maximal complex multiplication by Q). Sup-
pose also that H is embedded in the singular cohomology H(X,Q) of a variety
X defined over Q. We let fQ be the conductor of Q and we choose an embed-
ding of Q in Q(µfQ

) (this is possible by class-field theory). Choose an embed-
ding ϕ : Q ↪→ C and an isomorphism Gal(Q(µfQ

)/Q) � (Z/fQ)×. There is a
natural map Gal(Q(µfQ

)/Q) → Hom(Q,C) given for each σ ∈ Gal(Q(µfQ
)/Q)

by ϕ ◦ σ|Q, and we thus obtain a map (Z/fQ)× → Hom(Q,C). For each
u ∈ (Z/fQ)× let ωH

u ∈ H ⊗Q C be a nonvanishing element affording the em-
bedding corresponding to u and defined over Q for the de Rham Q-structure
of H(X,C) (such an element is well-defined up to multiplication by a nonzero
algebraic number). We attach to ωH

u a period Per(ωH
u ) := v(ωH

u ) where v ∈ H∨

is any (nonzero) element of the dual of the Q-vector space H. The number
Per(ωH

u ) is independent of the choices of v and ωH
u , up to multiplication by a

nonzero algebraic number, and only depends on u and H. In the notation at
the beginning of the introduction, with Q0 = Q, we have Per(ωH

u ) = Pu(H)
(where we identify u with the corresponding embedding of Q after the equality
sign). Let (p(u), q(u)) be the Hodge type of ωH

u . By [6, Lemme 6.12], there
exists a (nonunique) function εH : Z/fQ → Q which satisfies the equation

p(u) =
∑

a∈Z/fQ

εH(a)[u · a/fQ]

for all u ∈ (Z/fQ)×. Here [·] takes the fractional part. The following conjecture
is formulated by Gross in [11, p. 205]; he indicates that the precise form of it
was suggested to him by Deligne. This conjecture is related by Deligne to his
conjecture on motives of rank 1 in [5, 8.9, p. 338].
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Period conjecture. Let u ∈ (Z/fQ)×. The relations

|Per(ωH
u )| ∼

Q
×

∏
a∈Z/fQ

Γ(1 − a

fQ
)εH(a/u)(i)

Per(ωH
u ) ∼

Q
× |Per(ωH

u )|(ii)

hold.

The relations (i) and (ii) can of course be condensed in the single relation
Per(ωH

u ) ∼
Q

×
∏

a∈Z/fQ
Γ(1 − a

fQ
)εH(a/u).

One can show that the period conjecture is independent of the choice of
the function εH (see the appendix by Koblitz and Ogus to [5]).
In particular, the numbers ∏

a∈Z/fQ

Γ(1 − a

fQ
)γ(a/u),

where γ runs over all the functions Z/fQ → Q satisfying the equation∑
a∈Z/fQ

γ(a)[u · a/fQ] = 0

for all u ∈ (Z/fQ)×, span an algebraic extension ΓfQ
of the rationals.

Suppose now that Q = Q(µp) for a prime number p and let Q0 ⊆ Q be
a field of definition of X containing Q and Γp. Suppose that H inherits the
de Rham Q0-structure of H(X,C) and that its Q-vector space structure is
compatible with that Q0-structure. Suppose furthermore that all the ωH

u are
defined over Q0 (for the de Rham Q0-structure) and that Per(ωH

u ) ∼Q×
0

(2πi)r

Per(ωH
−u)

for all u.
If χ is an Artin character, we define Q(χ) as the field generated over Q

by the values of χ. We denote by E the compositum in C of the field Q(µp)
and of the fields Q(χ) for all the odd (simple) Artin characters χ of Q(µp),
and we let E+ := E ∩ R.

Lemma 4.1. If the conjecture B(H, E, χ) holds for all the odd simple Artin
characters χ of Q = Q(µp), then the identity

log |Per(ωH
u )| = log |

∏
a∈Z/p

Γ(1 − a

p
)εH(a/u)| +

∑
i

bu,i log |au,i|

holds for all u. Here bu,i ∈ E+, au,i ∈ Q0 and i runs over a finite set of indices.
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Proof. We can plainly assume that εH(0) = 0; set ε := εH . The statement
of the lemma is equivalent to the set of equalities∑

u

(log |Per(ωH
u )| −

∑
i

bu,i log |au,i|)χ(u) =
∑

u

χ(u)
∑

a

log(Γ(1 − a/p))ε(a/u)

=
∑

a

log(Γ(1 − a/p))
∑

u

χ(u)ε(a/u) =
∑

a

log(Γ(1 − a/p))χ(a)
∑

u

χ(u)ε(1/u)

where χ runs over all the odd or trivial characters of the group Gal(Q(µp)/Q)
(notice that with our conventions χ(0) = 0 for all characters including the
trivial one). Now by the definition of ε,∑

u

χ(u)p(u) =
∑

a

[a/p]
∑

u

χ(u)ε(a/u) = (
∑

a

χ(a)[a/p])(
∑

u

χ(u)ε(1/u))

and our set of equalities becomes∑
u

(log |Per(ωH
u )| −

∑
i

bu,i log |au,i|)χ(u)(13)

= (
∑

a

log(Γ(1 − a/p))χ(a))
∑

u χ(u)p(u)∑
a χ(a)[a/p]

.

If χ is odd, Hurwitz’s formula implies that the right-hand side of (13) is equal
to

(
L′(χ, 0)
L(χ, 0)

+ log(p))
∑

u

χ(u)p(u)

and in that case (13) is a consequence of B(H, E, χ). If χ is trivial, standard
identities satisfied by the Γ-function and the relation p(−u) = r − p(u) imply
that the right-hand side of (13) is equal to

(
p − 1

2
log(2π) − 1

2
log(p))r.

If we use the identity Per(ωH
u ) ∼Q×

0

(2πi)r

Per(ωH
−u)

to compute the sum on the left-
hand side of (13), we can conclude this last case and finish the proof.

Suppose moreover that X is acted upon by an automorphism g (defined
over Q0) of order p, and let dk := dimQ(Hk(X (g),Q)) for any k � 0. Arising
from the Künneth isomorphism H(×dk

j=1X,Q) � ⊗dk

j=1H(X,Q) and Lemma
2.1, there is a natural embedding of Hodge structures detQ(Hk(X (g),Q)) ↪→
H(×dk

j=1X,Q) which respects the de Rham Q0-structures.
The next two results follow from Theorem 1 and Lemma 4.1.

Corollary 4.2. Suppose that there is at most one k such that 0 � k �
dim(X) and dk �= 0. The Hodge structure detQ(Hk(X (g),Q)) ⊆ H(×dk

j=1X,Q)
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satisfies the hypothesis of the period conjecture and the identity

log |Per(ωdetQ(Hk(X (g),Q))
u )|

= log |
∏

a∈Z/p

Γ(1 − a

p
)εdetQ(Hk(X(g),Q))(a/u)| +

∑
i

bu,i log |au,i|

holds for all u, where bu,i ∈ E+, au,i ∈ Q0 and i runs over a finite set of
indices.

Notice that the weak Lefschetz theorem implies that the last corollary
applies if X is a hypersurface of a projective space.

Corollary 4.3. If X is a surface, the Hodge structure detQ(H2(X (g),Q))
⊆ H(×d2

j=1X,Q) satisfies the hypothesis of the period conjecture and the iden-
tity

log |Per(ωdetQ(H2(X (g),Q))
u )|
= log |

∏
a∈Z/p

Γ(1 − a

p
)εdetQ(H2(X(g),Q))(a/u)| +

∑
i

bu,i log |au,i|

holds for all u, where bu,i ∈ E+, au,i ∈ Q0 and i runs over a finite set of
indices.

Proof. The conjecture B(H1(X (g),Q), E, χ) is verified for all the odd sim-
ple Artin characters χ of Q(µp) because of the existence of the Picard variety
and Theorem 2. Theorem 1 and Lemma 4.1 now imply that the conjecture is
verified for H2(X (g),Q).

Notice that when p = 3 in either of the last corollaries, the assertion (i) in
the period conjecture holds for the Hodge structures under consideration (for
all u ∈ (Z/p)×), since E+ = Q in that case.

Remark. The assertion (ii) in the period conjecture seems to be out of
the reach of the techniques developed in the present paper.
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33 (1979), part 2, 313–346.

[6] ———, Sommes trigonométriques. SGA 4 1
2
, Lecture Notes in Math. 569, Springer-

Verlag, New York, 1977.

[7] P. Deligne, J. S. Milne, A. Ogus, and K. Shih, Hodge Cycles, Motives, and Shimura
Varieties, Lecture Notes in Math. 900, Springer-Verlag, New York, 1982.
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