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Abstract

Let A be an abelian variety over the function field K of a curve over a finite field.

We describe several mild geometric conditions ensuring that the group A(Kperf) is

finitely generated and that the p-primary torsion subgroup of A(Ksep) is finite. This

gives partial answers to questions of Scanlon, Ghioca and Moosa, and Poonen and

Voloch. We also describe a simple theory (used to prove our results) relating the

Harder-Narasimhan filtration of vector bundles to the structure of finite flat group

schemes of height one over projective curves over perfect fields. Finally, we use our

results to give a complete proof of a conjecture of Esnault and Langer on Verschiebung

divisibility of points in abelian varieties over function fields.
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1 Introduction

Let k be a finite field characteristic p > 0 and let S be a smooth, projective and geometrically

connected curve over k. Let K := κ(S) be its function field. Let A be an abelian variety of

dimension g over K. Choose an algebraic closure K̄ of K. Let Kperf ⊆ K̄ be the maximal

purely inseparable extension of K, let Ksep ⊆ K̄ be the maximal separable extension of K

and let Kunr ⊆ Ksep be the maximal separable extension of K, which is unramified above

every place of K. Finally, we let A be a smooth commutative group scheme over S such

that AK = A. We shall write ωA := ε∗A/S(ΩA/S) for the restriction of the cotangent sheaf of
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A over S via the zero section εA/S : S → A of A. We shall say that ωA is the Hodge bundle

of A.

If G is an abelian group, we shall write

Torp(G) := {x ∈ G | ∃n ≥ 0 : pn · x = 0}

and

Torp(G) := {x ∈ G | ∃n ≥ 0 : n · x = 0 ∧ (n, p) = 1}.

The aim of this text is to prove the following two theorems and to give a proof of a conjecture

of Esnault and Langer (see further below).

Theorem 1.1. (a) Suppose that A is geometrically simple. If A(Kperf) is finitely generated

and of rank > 0 then Torp(A(Ksep)) is a finite group.

(b) Suppose that A is an ordinary (not necessarily simple) abelian variety. If Torp(A(Ksep))

is a finite group then A(Kperf) is finitely generated.

Theorem 1.2. Suppose that A is a semiabelian scheme and that A is a geometrically simple

abelian variety over K. If Torp(A(Ksep)) is infinite, then

(a) A is an abelian scheme;

(b) there is rA ≥ 0 such that prA · Torp(A(Ksep)) ⊆ Torp(A(Kunr)).

Furthermore, there is

(c) an abelian scheme B over S;

(d) an S-isogeny A → B, whose degree is a power of p and such that the corresponding

isogeny AK → BK is étale;

(e) an étale S-isogeny B → B whose degree is > 1 and is a power of p,

and

(f) (Voloch) if A is ordinary then the Kodaira-Spencer rank of A is not maximal;

(g) if dim(A) 6 2 then TrK̄|k̄(AK̄) 6= 0;

(h) for all closed points s ∈ S, the p-rank of As is > 0.
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Here TrK̄|k̄(AK̄) is the K̄|k̄-trace of AK̄ . This is an abelian variety over k̄. See subsection

9.1.

Theorems 1.1 and 1.2 (b) have applications in the context of the work of Poonen and

Voloch on the Brauer-Manin obstruction over function fields. In particular Theorems 1.1

and 1.2 (b) show that the conclusion of [50, Th. B] holds whenever the underlying abelian

variety is geometrically simple, has semistable reduction and violates any of the conditions

in Theorem 1.2, in particular if it has a point of bad reduction. Theorems 1.1 and 1.2 (b)

also feed into the ”full” Mordell-Lang conjecture. See [56, after Claim 4.4] and [2, Intro.]

for this conjecture. In particular, in conjunction with the main result of [19] Theorems 1.1

and 1.2 (b) show that the ”full” Mordell-Lang conjecture holds if the underlying abelian

variety is ordinary, geometrically simple, has semistable reduction and violates any of the

conditions in Theorem 1.2, in particular if it has a point of bad reduction.

Let now L be a field, which is finitely generated as a field over an algebraically closed field

l0 of characteristic p. Let C be an abelian variety over L.

Conjecture 1.3 (Esnault-Langer). Suppose that for all ` > 0 we are given a point x` ∈
C(p`)(L) and suppose that for all ` > 1, we have V

C(p`)/L
(x`) = x`−1. Then the image of x0

in C(L)/TrL|l0(C)(l0) is a torsion point, which is of order prime to p.

See [15, Rem. 6.3 and after Lemma 6.5]. This conjecture is important in the theory of

stratified bundles in positive characteristic; see [15, Question 3 in the introduction] for

details.

Here C(p`) is the base change of C by the `-th power of the absolute Frobenius morphism

on SpecL and V
C(p`)/L

: C(p`) → C(p`−1) is the Verschiebung morphism. The abelian variety

TrL|l0(C) is the L|l0-trace of C (see subsection 9.1). It is an abelian variety over l0 and

the variety TrL|l0(C)L comes with an injective morphism to C. This gives in particular an

injective map TrL|l0(C)(l0) → C(L). The Lang-Néron theorem (see [35, chap. 6, Th. 2])

asserts that C(L)/TrL|l0(C)(l0) is a finitely generated group. Thus TrL|l0(C)(l0) ⊆ C(L) is

precisely the subgroup of C(L) consisting of divisible elements (ie elements divisible by any

integer).

In the present text, we shall call a point x0 ∈ C(L) with the property described in Conjecture

1.3 an indefinitely Verschiebung divisible point. We shall write IVD(C) = IVD(C,L) ⊆ C(L)

for the subgroup of indefinitely Verschiebung divisible points.

We prove:

Theorem 1.4. Conjecture 1.3 holds.

4



Note that Theorem 1.4 has the following consequence, which is of independent interest: if

C is as in Conjecture 1.3, C is ordinary and TrLperf |l0(CLperf ) = 0 then⋂
j≥0

pj · C(Lperf) = Torp(C(Lperf)).

To see this, let x ∈ C(Lperf). Let L1|L be a finite purely inseparable extension, which

is a field of definition for x. Remember that the multiplication by p endomorphism of C

is the composition of the Verschiebung morphism with the relative Frobenius morphism,

which is purely inseparable. Also, recall that since C is ordinary, the Verschiebung mor-

phism is (by definition) separable. Note finally that since TrLperf |l0(CLperf ) = 0 we also have

TrL1|l0(CL1) = 0. In particular, if x ∈
⋂
j≥0 p

j ·C(Lperf) then x is an indefinitely Verschiebung

divisible element of C(L1) and thus must lie in Torp(C(L1)) ⊆ Torp(C(Lperf)) according to

Theorem 1.4. The inclusion Torp(C(Lperf)) ⊆
⋂
j≥0 p

j · C(Lperf) is straightforward.

Outline of the paper. The basic strategy of the paper hinges on Lemma 4.8 below. This

Lemma associates a maximal multiplicative subgroup scheme with any finite flat group

scheme of height one over S. The existence of this subgroup scheme is not straightforward

and follows from an analysis of the Harder-Narasimhan filtration of (a Frobenius twist of)

the coLie algebra of the group scheme. This analysis is carried out in subsection 4.2.

One can apply Lemma 4.8 to the kernel of the relative Frobenius morphism FA/S : A → A(p),

replace A by the resulting quotient and repeat this construction ad infinitum, stopping only

when the maximal multiplicative subgroup scheme is trivial.

It is then a basic (unresolved) question to determine minimal geometric conditions on A
ensuring that the resulting sequence of semiabelian schemes stops. This also makes sense

(and seems important to us) if k is replaced by any perfect field of characteristic p > 0 (not

only when k is finite).

This question turns out to be intimately related to Theorems 1.1, 1.2 and 1.4. To explain

why, we shall first quote a result, which improves on (and elucidates) Lemma B.2 in the

Appendix. This result is proven in [52], which builds on the present article. We shall only

need Lemma B.2 in the present text but for conceptual clarity, we shall present the improved

result in this outline. Let E ⊆ S be the finite set of points s ∈ S where As is not an abelian

variety. Let U := S\E. We first recall a classical result:

Theorem 1.5 (Artin-Milne). There is a canonical injective group homomorphism

A(p)(K)/FA/K(A(K)) ↪→ HomK(F ∗K(ωK),ΩK/k).

Here FK is the absolute Frobenius endomorphism of K (the p-th power map). See [3,
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III.3.5.6] for the proof, which works in a more general setting. In [52] this is refined as

follows:

Theorem 1.6 (R.). The image of the Artin-Milne map lies inside the subgroup HomC(F ∗S(ω),ΩS/k(E))

of HomK(F ∗K(ωK),ΩK/k).

Here FS is the absolute Frobenius endomorphism of S. Here we write ΩS/k(E) := ΩS/k(E)⊗
OS(E) and E is understood as a divisor with no multiplicities. Theorem 1.6 refines Lemma

B.2 below (for the knowledgeable reader, in [52] it is even proven that the image of the

Selmer group of the relative Frobenius morphism lies in HomC(F ∗S(ω),ΩS/k(E))). The

group HomC(F ∗S(ω),ΩS/k(E)) can be understood as the target of an Abel-Jacobi map in

logarithmic Higgs cohomology, although to give a precise meaning to this interpretation

would require the development of a good theory of Higgs bundles in positive characteristic

(which does not exist at the moment, to the author’s knowledge). This theorem is proven

by providing a geometric interpretation for the Artin-Milne map and analysing its poles,

making essential use of Faltings-Chai’s semistable compactification of the universal abelian

scheme. The existence of this compactification allows us to show that the poles are at most

logarithmic, which is in essence the content of Theorem 1.6. Let us now explain why Theo-

rem 1.6 is relevant for Theorem 1.1. Consider eg (b) in Theorem 1.1. Suppose that A(Kperf)

is not finitely generated. We have

A(Kperf) =
⋃
i≥0

A(Kp−i

)

and by the Lang-Néron theorem (see also subsection 9.1) A(Kp−i
) is finitely generated.

Hence for infinitely many i ≥ 0, we must have

A(pi+1)(K)/FA(pi)/K(A(K)) ' A(Kp−i−1

)/A(Kp−i

) 6= 0.

In particular, for infinitely many i ≥ 0, we must have

HomC(F
◦(i+1),∗
S (ω),ΩS/k(E)) 6= 0

according to Theorem 1.6. If now the vector bundle ω were ample, this would lead to

a contradiction, because if i is large enough and ω is ample then there cannot be any

morphism from F
◦(i+1),∗
S (ω) to ΩS/k(E). This was already noticed in the earlier article [54],

where details are given. One can refine this line of reasoning as follows. If ω is not ample

and A is ordinary then one can show that ω must have a certain non trivial quotient, which

is semistable of degree 0. This non trivial quotient turns out to be induced by the maximal

multiplicative subgroup scheme mentioned above. Calling it GA, we may then replace A by
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A/GA. The group (A/GA)K(Kperf) will again be infinitely generated, since the morphism

A → (A/GA)K has finite kernel. Hence we can repeat the above reasoning for A/GA and

we obtain an infinite sequence of isogenous abelian varieties. The next step in the proof

of Theorem 1.1 (b) is to show that in this sequence, there are finitely many isomorphism

classes. This follows from the fact that the degrees of ωA and A/GA are the same and more

generally the degrees of the Hodge bundles of all the semiabelian schemes in the sequence

are the same. This is a consequence of a computation involving the cotangent complex of the

quotient morphism (see Lemma 4.12). It then follows from a classical reasoning involving

moduli spaces of abelian varieties, familiar from Zarhin’s proof of the Tate conjecture over

function fields, that the sequence contains only finitely many isomorphism classes. We can

thus conclude that, up to isogeny, A contains a non trivial finite endomorphism, whose

kernel is multiplicative. The dual of this endomorphism is then separable and this shows

that Torp(A
∨)(Ksep) is infinite (consider the kernels of its powers). Since A∨ is isogenous

to A, we see that Torp(A)(Ksep) is also infinite. This concludes our outline of the proof of

Theorem 1.1 (b).

For Theorem 1.1 (a), we consider the quotients of A by finite subgroups of Torp(A)(Ksep)

of increasing size. These quotients also run through finitely many isomorphism classes by

a similar reasoning and we thus see that if Torp(A)(Ksep) is infinite then, up to isogeny, A

is endowed with a separable finite endomorphism. The dual of this endomorphism is then

purely inseparable and of degree a positive power of p, and if A∨(K) is not finite, we may

show that A∨(Kperf) is infinitely generated by considering the inverse images of A(K) under

the powers of this endomorphism. If now A∨(Kperf) is not finitely generated, neither is

A(Kperf), since A and A∨ are isogenous. This concludes our outline of the proof of Theorem

1.1 (a).

In Theorem 1.2, we start out as in Theorem 1.1 (a) and we again obtain, up to isogeny,

a separable finite endomorphism of degree a positive power of p. The rest of the theorem

investigates the geometric consequences of the existence of this endomorphism. The most

interesting consequence is the fact that it implies that A must be an abelian scheme (if

A is geometrically simple). This is (a) in Theorem 1.2). The main point here is that

the endomorphism extends to an étale endomorphism of A. If A had a fibre with a toric

part then the endomorphism would induce an automorphism of the toric part, because tori

only have infinitesimal p-primary subgroups in characteristic p and these are only étale if

they are trivial. This fact forces the whole endomorphism to be an automorphism, which

is impossible. The proof of (c), (d) and (e) are straightforward and not much more than

a rewording of the fact that there are only finitely many isomorphism classes in the set

of quotients described above. The proof of (b) follows essentially from a variant of the
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fact that, under (a), the above endomorphism extends to an everywhere étale and finite

endomorphism of A. This also easily gives a proof of (h). The proof of (g) is based on class

field theory and the Serre-Tate theory of canonical liftings. First, up to a finite extension,

the field extension generated by the points of Torp(A)(Ksep) is everywhere unramified by (a)

and (b). If Torp(A)(Ksep) = Torp(A)(K̄) then a simple application of the Serre-Tate theory

of canonical liftings shows that AK̄ is the base change of an abelian variety defined over

k̄. Hence it must be contained in the Hilbert class field of K, which is but a constant field

extension (ie comes from an extension of k), up to a finite extension. So if Torp(A)(Ksep)

is infinite then it is an infinite torsion subset of A(Kk̄), which is finitely generated by the

Lang-Néron theorem if the trace of A vanishes: contradiction.

We now turn to Theorem 1.4. Using a height argument due to Raynaud, Esnault and

Langer prove in [15, Th. 6.2] that the image of x0 in C(L)/TrL|l0(C)(l0) is a torsion point

under the assumption that C has everywhere potential good reduction in codimension one.

Their argument works as follows. Choose a polarisation on C. This induces polarisations

on all the C(p`) by base change. A simple computation shows that if a point x ∈ C(L) has

a preimage y in C(p)(K) under the Verschiebung map then the height of x with respect to

the polarisation is p times the height of y with respect to the base changed polarisation.

Now if C has everywhere good reduction in codimension one, there is an abelian scheme C
extending C on an open subset with complement of codimension ≥ 2 of a normal complete

model V of L and the polarisations on C and C(p) naturally extend to this open subset.

This implies that the heights of x are y (with respect to the polarisations and a choice

of ample line bundle on V ) are integers, because they can then computed in a completely

geometric fashion. In particular, the height of x is an integer divisible by p. Repeating this

argument with y, one sees that the height of x is divisible by arbitrarily high powers of p

and one concludes that it must vanish. Then the conclusion follows from a theorem of Lang

(see [11, Th. 9.15]). The argument described above breaks down in the presence of bad

reduction in codimension one because the orders of the component groups of the special

fibres of the local Néron models of the varieties C(p`) increase with ` if they are not trivial

and this introduces denominators in the heights.

Our approach to Theorem 1.4 is again via the infinite sequence of quotients described at

the beginning of the outline. This sequence will effectively replace the sequence of the C(p`).

It has the advantage over the sequence of the C(p`) that it falls inside a bounded family of

abelian varieties (see below), making it possible to control the order of the (analogues of

the) images of the x` in the component groups of the Néron models. This makes a similar

height computation possible. The proof is in several steps.
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Step (0). Reduction to the case where L is the function field of a smooth and projective

curve B over l0. This follows from a Bertini type argument - see section C in the Appendix.

Step (1). We consider the images of the x` under the Artin-Milne map. A crucial point is

that these images must be compatible under the Verschiebung morphisms (see diagram (8)

below) and this constrains the image of x1 under the Artin-Milne map. Using Lemma B.2 (or

Theorem 1.6), the theory of semistable sheaves in positive characteristic and various global

results on finite flat group schemes of height one in a global situation proven in section 4, we

show that the image of x1 under the Artin-Milne map must factor through the coLie algebra

of the maximal multiplicative subgroup (kerFC/B)µ of kerFC/B. This implies that the image

of x1 in (C(p)/(kerFC/B)
(p)
µ,L)(L) = (C(p)/GC(p),L)(L) maps to 0 under the Artin-Milne map.

From the definitions, this means that the image of x0 in (C/GC,L)(L) is divisible by p in

(C/GC,L)(L). Suppose for simplicity that C has a semiabelian model C over B. We can now

repeat this process and we obtain a sequence of purely inseparable morphisms ψi : C → Ci
of increasing degree, such that ψi,L(x0) in Ci is divisible by pi in Ci(L).

Step (2). We choose a polarisation φD0 : C → C∨. The image of x0 under φD0 is of course

also indefinitely Verschiebung divisible. We identify φD0(x0) with a line bundle M on C.

Since φD0(x0) is indefinitely Verschiebung divisible, there are line bundles Mi on C(pi) such

that M is the pull-back of Mi by the morphism C → C(pi) arising by composing relative

Frobenii. The morphism C → C(pi) factors through ψi,L by construction. Hence there are

line bundles Ji on the Ci such that ψ∗i,L(Ji) = M .

Step (3). We now compute the height pairing between x0 and M . This can easily be seen to

equal the height pairing between ψi,L(x0) and Ji. Since ψi,L(x0) is divisible by pi, we see that

the height pairing between x0 and M is divisible by pi. If the Ci were all abelian schemes we

could deduce (like Raynaud-Esnault-Langer above) that the height pairing between x0 and

M must vanish, because then all the values of the various height pairing would be integral.

However, we cannot assume this.

Step (4). All the Ci are essentially part of a bounded family of abelian varieties over L

because the degrees of the Hodge bundles of the Ci are all equal (see above in the outline).

Using this, one can prove that there is an infinite set I0 ⊆ N such that if i ∈ I0 the image of

any element of Ci(L) in the component groups of the Néron model of Ci has an order, which

is bounded independently of i. This follows from Proposition A.2 (a) in the appendix. The

gist of the argument is that in a bounded family of semiabelian varieties over B, it is possible

to smoothly compactify the generic fibre, up to to normalisation in a finite extension of the

function field of the parameter space. This would follow from resolution of singularities

but in the present situation is a consequence of the work of Mumford, Chai-Faltings and
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Künnemann (see [34, Th. 4.2]). This means that the abelian varieties in the family almost

all have regular compactifications with a bounded number of geometric fibres over B. This

bound is also a bound for the order of the image of a rational point in the component groups

of the Néron model.

Step (5). In view of Step (4), if we replace x0 by a certain multiple of x0, all the height

pairing in sight are integers. Hence the divisibility argument envisaged in Step (3) can be

carried out and yields that the height pairing of x0 and M vanishes. This pairing is by

construction twice the Néron-Tate height of x0 with respect to the polarisation φD0 and we

conclude from a theorem of Lang (op. cit.) that the image of x0 in C(L)/TrL|l0(C)(l0) is a

torsion point. It remains to show that its order is prime to p.

Step (6). We first show that we may suppose that TrL̄|l0(CL̄) = 0. This is not completely

straightforward, because when one passes to a finite extension in Conjecture 1.3, one loses

control of part of the torsion of C(L)/TrL|l0(C)(l0). However, although the parasitical torsion

subgroup that might appear is not known, its exponent only depends on the degree of the

extension. This degree can be taken to be the same for all the Frobenius twists of C and the

information one gathers from this suffices to prove the conjecture, provided one can prove it

for a finite extension. Thus we may suppose that dim(TrL̄|l0(CL̄)) = dim(TrL|l0(C)) and then,

after quotienting by TrL|l0(C), that TrL̄|l0(CL̄) = 0. Now recall that the Ci are essentially

part of a bounded family of abelian varieties over L (see step (4)). Using this, and the fact

that now TrL̄|l0(Ci,L̄) = 0 for all i ≥ 1, one can prove that there is an infinite set I0 ⊆ N
such that if i ∈ I0, the cardinality of the torsion subgroup of Ci(L) is uniformly bounded.

This follows from Proposition A.2 (b) in the Appendix. To finish the proof of Conjecture

1.4, suppose that x0 is a non-zero torsion point, which is indefinitely Verschiebung divisible.

Since the image of x0 in Ci(L) is divisible by pi, we see that the torsion group of Ci(L) has

an element of order pi+1. This contradicts the above uniformity statement and shows that

the order of x0 must be prime to p.

The argument to prove the uniformity statement alluded to in Step (6) goes roughly as

follows. One first notices that the torsion subgroup of a trace free abelian variety coincides

with the set of elements of vanishing Néron-Tate height by the already quoted theorem of

Lang. Thus they can be described as the points of a moduli space of sections, which is of

finite type over l0, at least for those torsion points, whose image in the component groups

of the Néron model of the abelian variety is trivial. Since the abelian variety is trace free,

the torsion subgroup is finite and thus this moduli space is finite. Using the uniformity

statement in Step (4), we may assume that the torsion points of the Ci(L) have trivial

images in the components of the corresponding Néron models, up to multiplication by a
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fixed integer (independent of i running through an infinite set). The number of irreducible

components of the moduli space of each Ci is now uniformly bounded, since the Ci are part

of a bounded family. This gives a uniform bound for the torsion subgroups of the Ci(L).

The reader may enjoy the talk [55] as an introduction to parts of the present article.

The structure of the article is as follows. In section 2, we state various intermediate results,

from which we shall deduce Theorems 1.1 and 1.2. Theorem 2.1 in subsection 2.1 is of

independent interest and is (we feel) likely to be useful for the study of the geometry of

(especially ordinary) abelian varieties in general. The results in subsection 2.1 are deduced

from some results in the theory of finite flat groups schemes of height one over S, most

of which follow from the existence of a Harder-Narasimhan filtration on their Lie algebras.

These results on finite flat group schemes are proven in section 4 and for the convenience of

the reader, we included a section (section 3) listing the results on semistable sheaves over

curves in positive characteristic that we need. To the knowledge of the author, there are

very few general results on the structure of finite flat group schemes in a global situation

(eg when the base is not affine) and it seems that it is the first time time that the theory

of semistability of vector bundles is being used in this context. In [9] a similar idea is used

in characteristic 0, where it is applied to the study of formal groups over curves (recall that

all groups schemes are smooth in characteristic 0, so the Lie algebras of finite flat group

schemes vanish in characteristic 0). Lemma 4.4 below (which concerns finite flat group

schemes of height one) is inspired by [9, Lemma 2.9]. A prototype of Lemma 4.4 can be

found in [58, Lemma 9.1.3.1] but it is not applied to the study of group schemes there.

The key results here are the Lemmata 4.4 and 4.8, which will hopefully lead to further

generalisations (eg in the situation when the base scheme is of dimension higher than one -

in this direction, see [38, Th. 7.3]). The results in subsection 2.2 do not require the theory

of semistable sheaves and are based on geometric class field theory, the theory of Serre-Tate

canonical liftings and on the existence of moduli schemes for abelian varieties. In section

5, we prove the various claims made in subsection 2.1 and in section 6 we prove the claims

made in subsection 2.2. In section 7, we prove Theorem 1.1 and in section 8 we prove

Theorem 1.2. In section 9.2, we give a proof of Theorem 1.4. The proof of Theorem 1.4 is

quite long and uses virtually all the other results proven in this text.

In his very interesting recent preprint [61], Xinyi Yuan uses some techniques which are also

used in the present paper. They were discovered independently. His text focusses on the

case where the base curve is the projective line. In particular, the ”quotient process” used

in step (2) of the proof of Theorem 1.4 and also in the proof of Theorem 1.2 also appears

(over the projective line) in section 2.2 of [61]. Theorem 2.9 of [61] overlaps with the proof
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of Lemma 4.11.

The prerequisites for this article are algebraic geometry at the level of the EGA, familiarity

with the basic theory of finite flat group schemes, as expounded in [60] and a good knowledge

of the theory of abelian schemes and varieties, as presented in [43], [45] and [44]. We also

expect the reader to be familiar with the basic properties of Néron models (as in the chapter

on basics of [8]) and to have a working knowledge of Grothendieck topologies.
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Notation. If X is an integral scheme, we write κ(X) for the local ring at the generic

point of X (which is a field). If X is a scheme of characteristic p, we denote the absolute

Frobenius endomorphism of X by FX . If f : X → Y is a morphism between two schemes

of characteristic p and ` > 0, abusing language, we denote by X(p`) the fibre product of f

and F ◦`Y , where F ◦`Y is the `-th power of the Frobenius endomorphism FY of Y . If G → X

is a group scheme, we write εG/X : X → G for the zero section of G and

ωG/X = ωG := ε∗G/X(ΩG/X).

If X is of characteristic p, we shall write FG/X : G → G(p) for the relative Frobenius

morphism. If in addition G is flat and commutative, we shall write VG(p)/X : G(p) → G

for the corresponding Verschiebung morphism; we shall write F
(n)
G/X : G → G(pn) (resp.

V
(j)

G(pn)/X
: G(pn) → G(pn−j)) for the composition of morphisms

FG(pn−1)/X ◦ · · · ◦ FG/X
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(resp. the composition of morphisms

V
G(pn−j+1)/X

◦ V
G(pn−j+2)/X

◦ · · · ◦ VG(pn)/X

). See [25, Exp. VIIA, par. 4, ”Frobeniuseries”] for the definition of the relative Frobenius

morphism and the Verschiebung. If G is finite flat and commutative, we shall write G∨ for

the Cartier dual of G.

2 Intermediate results

We keep the notations and terminology of the introduction.

2.1 Consequences of infinite generation of A(Kperf)

We shall write

rkmin(ωA) := lim
`→∞

rk((F ◦`,∗S (ωA))min)

and

µ̄min(ωA) := lim
`→∞

deg((F ◦`,∗S (ωA))min)

p` · rk((F ◦`,∗S (ωA))min)
.

Here F ◦`S is the `-th power of the absolute Frobenius endomorphism of S and (F ◦`,∗S (ωA))min

is the semistable quotient with minimal slope of the vector bundle F ◦`,∗S (ωA). See section 3

for details. Our main tool will be the following theorem.

Theorem 2.1. There exists a (necessarily unique) multiplicative subgroup scheme GA ↪→
kerFA/S, with the following property: if H is a finite, flat, multiplicative group scheme of

height one over S and f : H → kerFA/S is a morphism of group schemes, then f factors

through GA.

If A is ordinary and ωA is not ample then the order of GA is prkmin(ωA).

If φ : A → B is a morphism of smooth commutative group schemes over S, then the

restriction of φ to GA factors through GB. Furthermore, we have deg(ωA) = deg(ωA/GA).

Here A/GA is the ”fppf quotient” of A by G, which is also a smooth commutative group

scheme over S. See Proposition 4.1 below for details.

Remark 2.2. Note that µ̄min(ωA) > 0 is equivalent to ωA being ample (see [4]).

Remark 2.3. Theorem 2.1 holds more generally if k is only supposed to be perfect (the

proof does not use the fact that k is finite).
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Remark 2.4. It would be interesting to provide an explicit example of an abelian variety A

as in the introduction to this article, such thatA is ordinary, A is semiabelian, TrK̄|k̄(AK̄) = 0

and GA 6= 0. It should be possible to construct such an example by considering mod p

reductions of the abelian variety constructed in [10, Th. 1.3]. We hope to return to this

question in a later article. The following question is also of interest: is there an ordinary

abelian variety A as above, such that A has maximal Kodaira-Spencer rank, A is semiabelian

and GA 6= 0?

Proposition 2.5. Suppose that A is ordinary and that A is semiabelian. Suppose that

A(Kperf) is not finitely generated. Then GA is of order > 1 and A/GA is also semiabelian.

Proposition 2.6. Suppose that A is ordinary and that A is semiabelian over S. Suppose

that A(Kperf) is not finitely generated.

Then there is a finite flat morphism

φ : A → B

where B is a semiabelian over S and a finite flat morphism

λ : B → B

such that ker(φ) and ker(λ) are multiplicative group schemes and such that the order of

ker(λ) is > 1.

2.2 Consequences of infiniteness of Torp(A(Ksep)) or Torp(A(Kunr))

Theorem 2.7. Suppose that TrK̄|k̄(AK̄) = 0. Suppose that the action of Gal(Ksep|K) on

Torp(A(Kunr)) factors through Gal(Ksep|K)ab. Then Torp(A(Kunr)) is finite.

Here Gal(Ksep|K)ab is the maximal abelian quotient of Gal(Ksep|K).

Proposition 2.8. Suppose that dim(A) 6 2 and that TrK̄|k̄(AK̄) = 0. Then Torp(A(Kunr))

is finite.

Theorem 2.9. Suppose that Torp(A(Ksep)) is infinite. Then there is an étale K-isogeny

φ : A→ B

where B is an abelian variety over K and there is an étale K-isogeny

λ : B → B

such that the order of ker(λ) is > 1 and such that the orders of ker(λ) and ker(φ) are powers

of p.
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Theorem 2.10. Suppose that there exists an étale K-isogeny φ : A→ A, such that deg(φ) =

pr for some r > 0. Suppose also that A is a geometrically simple abelian variety and that A
is a semiabelian scheme.

Then A is an abelian scheme and φ extends to an étale (necessarily finite) S-morphism

A → A of group schemes.

3 Semistable sheaves on curves

Let Y be a scheme, which is smooth, projective and geometrically connected of relative

dimension one over a field t0.

Suppose to begin with that t0 is algebraically closed.

If V is a non zero coherent locally free sheaf on Y , we write as is customary

µ(V ) = deg(V )/rk(V )

where

deg(V ) :=

∫
Y

c1(V )

and rk(V ) is the rank of V . The quantity µ(V ) is called the slope of V . Recall that a non

zero locally free coherent sheaf V on Y is called semistable if for any non zero coherent

subsheaf W ⊆ V , we have µ(W ) 6 µ(V ). Let V/Y be a non zero locally free coherent sheaf

on Y . There is a unique filtration by coherent subsheaves

0 = V0 ( V1 ( V2 ( · · · ( Vhn(V ) = V

such that all the sheaves Vi/Vi−1 (1 6 i 6 hn(V )) are (locally free and) semistable and

such that the sequence µ(Vi/Vi−1) is strictly decreasing. This filtration is called the Harder-

Narasimhan filtration of V (shorthand: HN filtration). One then defines

Vmin := V/Vhn(V )−1, Vmax(V ) := V1

and

µmax(V ) := µ(V1), µmin(V ) := µ(Vmin).

Let now r ∈ Q. Suppose that r ∈ {µ(V1), . . . , µ(V/Vhn(V )−1)}. Let i(r) ∈ N be the unique

natural number such that µ(Vi(r)/Vi(r)−1) = r. We shall write

V=r := Vi(r)/Vi(r)−1
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and

V≥r := Vi(r).

We shall also write

V>r := Vj(r)

where j(r) ∈ N is the largest natural number such that µ(Vj(r)/Vj(r)−1) > r.

One basic property of semistable sheaves that we shall use repeatedly is the following. If

V and W are non zero coherent locally free sheaves on Y and µmin(V ) > µmax(W ) then

HomY (V,W ) = 0. This follows from the definitions.

See [6, chap. 5] (for instance) for all these notions.

If V is a non zero coherent locally free sheaf on Y and t0 has positive characteristic, we

say that V is Frobenius semistable if F ◦r,∗Y (V ) is semistable for all r ∈ N. The terminology

strongly semistable also appears in the literature.

Theorem 3.1. Let V be a non zero coherent locally free sheaf on Y . There is an `0 =

`0(V ) ∈ N such that the quotients of the Harder-Narasimhan filtration of F ◦`0,∗Y (V ) are all

Frobenius semistable.

Proof. See eg [37, Th. 2.7, p. 259].

Theorem 3.1 shows in particular that the following definitions :

µ̄min(V ) := lim
`→∞

µmin(F ◦`,∗Y (V ))/p`,

µ̄max(V ) := lim
`→∞

µmax(F ◦`,∗Y (V ))/p`,

rkmin(V ) := lim
`→∞

rk((F ◦`,∗Y (V ))min),

and

rkmax(V ) := lim
`→∞

rk((F ◦`,∗Y (V ))max).

make sense if V is a non zero locally free and coherent sheaf on Y .

Suppose now that t0 is only perfect (not necessarily algebraically closed). If V is a non zero

coherent sheaf on Y , then we shall write µ(V ) := µ(Vt̄0) and we shall say that V is semistable

if Vt̄0 is semistable. The HN filtration of Vt̄0 is invariant under Gal(t̄0|t0) by unicity and by

a simple descent argument, we see that there is a unique filtration by coherent subsheaves

V0 ( V1 ( V2 ( · · · ( Vhn(V )

such that

V0,t̄0 ( V1,t̄0 ( V2,t̄0 ( · · · ( Vhn(V ),t̄0
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is the HN filtration of Vt̄0 . We then define as before

µmax(V ) := µ(V1)

and

µmin(V ) := µ(V/Vhn(V )−1).

Notice that we have µmax(V ) = µmax(Vt̄0) and µmin(V ) = µmin(Vt̄0).

Notice that if V and W are non zero coherent locally free coherent sheaves on Y and

µmin(V ) > µmax(W ) then we still have HomY (V,W ) = 0, since there is a natural inclusion

HomY (V,W ) ⊆ HomYt̄0
(Vt̄0 ,Wt̄0).

If t0 has positive characteristic, we shall say that V is Frobenius semistable if Vt̄0 is Frobenius

semistable. Since Frobenius morphisms commute with all morphisms, this is equivalent to

requiring that F r,∗
Y (V ) is semistable for all r ∈ N (with our extended definition of semista-

bility).

We can now extend the range of the terminology introduced above:

Vmax := V1, Vmin := V/Vhn(V )−1,

µ̄min(V ) := lim
`→∞

µmin(F ◦`,∗Y (V ))/p`, µ̄max(V ) := lim
`→∞

µmax(F ◦`,∗Y (V ))/p`,

rkmin(V ) := lim
`→∞

rk((F ◦`,∗Y (V ))min), rkmax(V ) := lim
`→∞

rk((F ◦`,∗Y (V ))max).

Note that we have µ̄min(V ) = µ̄min(Vt̄0), µ̄max(V ) = µ̄max(Vt̄0), rkmin(V ) = rkmin(Vt̄0),

rkmax(V ) = rkmax(Vt̄0) as expected.

If V is a non zero coherent locally free coherent sheaf on Y such that all the quotients

of the HN filtration of V are Frobenius semistable, we shall say that V has a Frobenius

semistable HN filtration. Note that by Theorem 3.1 above, for any non zero coherent locally

free coherent sheaf V on Y , the sheaf F ◦r,∗(V ) has a Frobenius semistable HN filtration for

all but finitely many r ∈ N.

The following simple lemma will also prove very useful. It was suggested by J.-B. Bost.

Lemma 3.2. Let V and W be coherent locally free sheaves on Y . Suppose that µ(V ) = µ(W )

and that rk(V ) = rk(W ). Let φ : V → W be a monomorphism of OY -modules. Then φ is

an isomorphism.

Proof. We may suppose that V and W are of positive rank, otherwise the lemma is

tautologically true. Let M := det(W )⊗det(V )∨. The assumptions imply that deg(M) = 0.
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Let det(φ) ∈ H0(Y,M) be the section induced by φ. The zero scheme Z(det(φ)) of det(φ) is

a torsion sheaf since det(φ) is non zero at the generic point of Y and the length of Z(det(φ))

is equal to the degree of M so Z(det(φ)) must be empty. In other words, M is the trivial

sheaf and det(φ) is a constant non zero section of M . In particular, φ is an isomorphism.

4 Finite flat group schemes over curves

The terminology of this section is independent of the introduction.

4.1 Quotients by proper flat group schemes

Let Y be a noetherian scheme. Let G be a commutative strongly quasiprojective flat group

scheme over Y . See [8, 8.2, p. 211] for the definition of strong quasi-projectivity. Note that

if Y is regular then G is strongly quasiprojective over Y if it is quasiprojective over Y .

Suppose that H is a closed subgroup scheme of G, which is proper and flat over Y . The

Y -scheme G (resp. H) defines a functor G (resp. H) from the category of Y -schemes

to the category of abelian groups. Both functors are fppf sheaves by a classical result of

Grothendieck. We may thus form the quotient G/H of G and H in the category of fppf

sheaves.

The following proposition describes the quotient construction that we use in this text.

Proposition 4.1. The fppf sheaf G/H is representable by a group scheme G/H over Y ,

which is also strongly quasiprojective. The natural morphism q : G → G/H is proper and

faithfully flat and makes G into an HG/H-torsor over G/H.

Proof. See [8, Th. 8.12, p. 220].

Note that if G is semiabelian and Y is normal then G is quasiprojective over Y (combine

[44, VI.3.1] with [51, XI.1.4]). In particular if Y is regular and G is semiabelian then G is

strongly quasiprojective over Y .

4.2 The HN -filtration on the Lie algebra of a finite flat group

scheme of height one

Let S be a smooth, projective and geometrically connected curve over a perfect field k.

Suppose that char(k) = p > 0.
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The following preliminary lemma will be very useful.

Lemma 4.2. Let G be a finite flat commutative group scheme over S. Let T → S be

a flat, radicial and finite morphism and let φ : H ↪→ GT be a closed subgroup scheme,

which is finite, flat and multiplicative. Then there is a finite flat closed subgroup scheme

φ0 : H0 ↪→ G, such that φ0,T ' φ.

Proof. Taking Cartier duals, we get a morphism

φ∨ : G∨T → H∨.

Notice that H∨ is étale over T , since H is multiplicative. By radicial invariance of étale

morphisms, there is a finite flat group scheme J0 → S, such that J0,T ' H∨. Notice also

that the morphism φ∨ is given by a section of the first projection

G∨T ×T H∨ → G∨T

and since H∨ is étale over T , the image of this section is open and closed (see [42, Cor.

3.12]). Since the projection morphism

G∨T ×T H∨ → G∨ ×S J0

is also radicial, this open set comes from a unique open subset of G ×S J0 and this open

subset defines an open and closed subscheme of G∨×S J0, which is isomorphic to G∨ via the

first projection. Hence the morphism φ∨ comes from a unique morphism G∨ → J0. Taking

the Cartier dual of this morphism gives the morphism φ0.

Recall that a commutative finite flat group scheme ψ : G → S over S is said to be of

height one if FG/S = εG/S ◦ ψ. Recall also that a (sheaf in) commutative p-Lie algebras

(resp. p-coLie) algebras V over S is a coherent locally free sheaf V on S together with a

morphism of OS-modules F ∗S(V ) → V (resp. V → F ∗S(V )). A morphism of commutative

p-Lie (resp. p-coLie) algebras V → W is a morphism of OS-modules from V to W satisfying

an evident compatibility condition. There is a covariant functor Lie(·) (resp. contravariant

functor coLie(·)) from the category of commutative finite flat group schemes of height one

over S to the category of commutative p-Lie (resp. p-coLie) algebras , which sends a group

scheme G over S to Lie(G) := ε∗G/S(ΩG/S)∨ (resp. coLie(G) := ε∗G/S(ΩG/S), together with

the morphism

Lie(VG(p)/S) := (V ∗G(p)/S)∨ : F ∗S(Lie(G)) = Lie(G(p))→ Lie(G)

(resp.

coLie(VG(p)/S) := V ∗G(p)/S : coLie(G)→ F ∗S(coLie(G(p))) = coLie(G(p))

19



)

Here (V ∗
G(p)/S

)∨ (resp. V ∗
G(p)/S

) is the dual of the pull-back morphism V ∗
G(p)/S

(resp. is the

pull-back morphism) on differentials induced by the Verschiebung morphism VG(p)/S.

The category of sheaves in commutative p-Lie algebras is tautologically antiequivalent to

the category of sheaves in commutative p-coLie algebras.

It can be shown that Lie is an equivalence of additive categories (see [25, Exposé VIIA, rem.

7.5]). In particular, a sequence of finite flat group schemes of height one

0→ G′ → G→ G′′ → 0

is exact if and only if the sequence

0→ Lie(G′)→ Lie(G)→ Lie(G′′)→ 0

is a sequence of commutative p-Lie algebras. Furthermore, we have

order(G) = prk(Lie(G))

(see [45, Proof of Th., p. 139, par. 14].)

Lemma 4.3. Let φ : V → W be a morphism of commutative p-Lie algebras. Then the

image Im(φ) (resp. the kernel ker(φ)) of φ as a morphism of OS-modules is endowed with a

unique structure of commutative p-Lie algebra, such that the morphism Im(φ) → W (resp.

ker(φ)→ V ) is a morphism of commutative p-Lie algebras.

Proof. Left to the reader.

If φ : V → W is an injective morphism of commutative p-Lie algebras, we shall say that

Im(φ) is a subsheaf in commutative p-Lie algebras. Beware that in this situation, the

arrow φ might have no cokernel in the category of commutative p-Lie algebras. So in

particular, Im(φ) might not correspond to a subgroup scheme. On the other hand, if the

quotient of OS-modules W/Im(φ) is locally free, then W/Im(φ) can be endowed with an

evident commutative p-Lie algebra structure, making it into a cokernel of W by Im(φ) in

the category of commutative p-Lie algebras. In that case, Im(φ) corresponds to a subgroup

scheme.

We shall say that a finite flat commutative group scheme G of height one (or its associated

commutative p-Lie algebra) is biinfinitesimal if the associated morphism F ∗S(Lie(G)) →
Lie(G) is nilpotent. To say that F ∗S(Lie(G)) → Lie(G) is nilpotent means that for some

n ≥ 1, the composition

F ◦n,∗S (Lie(G))→ F
◦(n−1),∗
S (Lie(G))→ · · · → F ∗S(Lie(G))→ Lie(G)→ 0
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vanishes. We notice without proof that if

0→ G′ → G→ G′′ → 0

is an exact sequence of commutative finite flat group schemes, then G′ and G′′ are biin-

finitesimal if and only if G is biinfinitesimal. Note also that a finite flat commutative group

scheme G of height one is multiplicative iff the associated morphism F ∗S(Lie(G))→ Lie(G)

is an isomorphism. This implies that if G1 and G2 are finite flat group schemes of height one

over S, where G1 is biinfinitesimal and G2 is multiplicative then there are no non-zero mor-

phisms of group schemes from G1 to G2 and also no non-zero morphisms of group schemes

from G2 to G1.

We inserted the following alternative proof of a special case of Lemma 4.2 to show the

mechanics of p-Lie algebras at work in a simple situation.

Second proof of Lemma 4.2 when G is of height one and T is smooth.

We may assume that T ' S and that T → S is a power F ◦nS of FS. By induction on n, we

are reduced to prove the statement for n = 1.

We are given a commutative diagram with exact rows and columns

0

��
0 // F ∗T (Lie(H))

F ∗T (Lie(φ))
//

Lie(VH/T )

��

F ∗T (Lie(G)T )

Lie(VGT /T )

��
0 // Lie(H)

Lie(φ) //

��

Lie(G)T

0

With the above reductions in place, this gives a commutative diagram with exact rows and

columns

0

��
0 // F ∗S(Lie(H))

F ∗S(Lie(φ))
//

Lie(VH/S)

��

F ◦2,∗S (Lie(G))

F ∗S(Lie(VG/S)

��
0 // Lie(H)

Lie(φ) //

��

F ∗S(Lie(G))

0
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Now consider the commutative diagram

F ∗S(Lie(H))
F ∗S(Lie(φ))

//

Lie(VH/S)

�� ))

F ◦2,∗S (Lie(G))

F ∗S(Lie(VG/S)

��
Lie(H)

**

Lie(φ) // F ∗S(Lie(G))

Lie(G)

��
Lie(G)

where the diagonal arrows are defined so that the diagram becomes commutative. The

labelling of the arrows shows that the upper triangle is the base change by FS of the lower

triangle. Hence the image of Lie(φ) is the base change by FS of the image of Lie(H) in

Lie(G), since Lie(VH/S) is an isomorphism. So H0 can be defined as the group scheme of

height one associated with the image of Lie(H) in Lie(G).

Lemma 4.4. Let V be a sheaf in commutative p-Lie algebras V over S. Suppose that the

HN filtration

0 = V0 ( V1 ( V2 ( · · · ( Vhn(V ) = V

of V is Frobenius semistable. Then for any Vi such that µmin(Vi) ≥ 0, Vi is a subsheaf in

commutative p-Lie algebras V over S. If µmin(Vi) > 0 then Vi is biinfinitesimal.

Proof. For the first statement, consider the morphism φ : F ∗S(Vi) → V given by the

composition of the inclusion F ∗S(Vi)→ F ∗S(V ) with the morphism F ∗S(V )→ V given by the

commutative p-Lie algebra structure. We have to check that the image of φ lies in Vi. The

composition of φ with the quotient morphism V → V/Vi gives a morphism F ∗S(Vi)→ V/Vi

and it is equivalent to check that this morphism vanishes. Now compute

µmin(F ∗S(Vi)) = p · µ(Vi/Vi−1)

and

µmax(V/Vi) = µ(Vi+1/Vi) < µ(Vi/Vi−1)

and thus µmin(F ∗S(Vi)) > µmax(V/Vi). We conclude that HomS(F ∗S(Vi), V/Vi) = 0 (see the

discussion after Theorem 3.1) which concludes the proof of the first statement. To prove the

second statement, it is sufficient by the remarks preceding the lemma to show that Vi/Vi−1

is biinfinitesimal for all indices i such that µ(Vi/Vi−1) > 0. By the above computation, we

have

µmin(F ∗S(Vi/Vi−1)) = µ(F ∗S(Vi/Vi−1)) = p · µ(Vi/Vi−1)

and thus µmin(F ∗S(Vi/Vi−1)) > µ(Vi/Vi−1). Again, this implies that HomS(F ∗S(Vi/Vi−1), Vi/Vi−1) =

0, showing that Vi/Vi−1 is biinfinitesimal.
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Remark 4.5. As explained in the introduction, a characteristic 0 analog of Lemma 4.4 can

be found in [9, Lemma 2.9]. See also [58, Lemma 9.1.3.1], where a variant of a special case

of Lemma 4.4 is proven under the assumption that p is sufficiently large.

Lemma 4.6. Let G be a commutative finite flat group scheme of height one over S and

suppose given an exact sequence

0→ Gbinf → G→ Gµ → 0

of finite flat group schemes such that Gµ is multiplicative and Gbinf is biinfinitesimal. Then

the sequence splits and this splitting is unique.

Proof. Consider the commutative diagram with exact rows and columns

0 // ker(Lie(V
(n)

Gbinf
(pn)/S

)) //

'
��

ker(Lie(V
(n)

G(pn)/S
)) //

��

0

��
0 // F ◦n,∗S (Lie(Gbinf)) //

=0
��

F ◦n,∗S (Lie(G)) //

��

F ◦n,∗S (Lie(Gµ)) //

'
��

0

0 // Lie(Gbinf) // Lie(G) // Lie(Gµ) // 0

where n ≥ 0 is chosen so that V
(n),∗
Gbinf

(pn)/S
= 0. Then the image of the arrow

F ◦n,∗S (Lie(G))→ Lie(G)

splits the bottom sequence. For the unicity of the splitting, note that for any two splittings

σ1, σ2 of the bottom sequence the morphism σ1 − σ2 : Lie(Gµ) → Lie(G) of vector bundles

factors through the image of Lie(Gbinf). It thus defines a morphism of vector bundles

Lie(Gµ) → Lie(Gbinf), which is by construction a morphism of p-Lie algebras. Such a

morphism must vanish (see the discussion after Lemma 4.3). Thus σ1 = σ2.

Lemma 4.7. Let G be a commutative finite flat group scheme of height one over S. Suppose

that Lie(G) is Frobenius semistable of slope 0. Let n ≥ 0 be such that rk(ker(V
(n),∗
G(pn)/S

)) is

maximal. Then there is a canonical decomposition

G(pn) ' Hbinf ×S Hµ

where Hbinf (resp. Hµ) is a biinfinitesimal (resp. multiplicative) finite flat group scheme

over S.

Proof. Consider the commutative diagram
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0 // F ◦n,∗S (ker(Lie(V
(n)

G(pn)/S
))) //

∼
��

F ◦n,∗S (ker(Lie(V
(n)

G(pn)/S
))) //

��

0

��
0 // F ◦n,∗S (ker(Lie(V

(n)

G(pn)/S
))) //

=0
��

F
◦(2n),∗
S (Lie(G)) //

��

F ◦n,∗S (W )

��

// 0

0 // ker(Lie(V
(n)

G(pn)/S
)) // F ◦n,∗S (Lie(G)) //W // 0

where n ≥ 0 is such that rk(ker(Lie(V
(n)

G(pn)/S
))) is maximal andW is the image of Lie(V

(n)

G(pn)/S
).

The two bottom rows and the two leftmost columns in this diagram are exact by construc-

tion. Furthermore the map F
(n),∗
S W → W is a monomorphism for otherwise rk(ker(Lie(V

(n)

G(pn)/S
)))

is not maximal. The diagram thus has exact rows and columns. Since the second row gives

a surjection

F
◦(2n),∗
S (Lie(G))→ F ◦n,∗S (W )

we have µmin(F ◦n,∗S (W )) ≥ 0. Also, since the second column gives an injection

F ◦n,∗S (W ) ↪→ F
(n),∗
S (Lie(G))

we have µmax(F ◦n,∗S (W )) ≤ 0. Thus F ◦n,∗S (W ) is of slope 0. Thus W is also of slope 0. Hence

by Lemma 3.2, the monomorphism

F ◦n,∗S (W )→ W

is an isomorphism. Now we see that the image of the morphism F
◦(2n),∗
S (Lie(G))→ F ◦n,∗S (Lie(G))

splits the bottom sequence.

Lemma 4.8. Let G be a finite flat commutative group scheme of height one over S. There

exists a (necessarily unique) multiplicative subgroup scheme Gµ ↪→ G, such that if H is

a multiplicative subgroup scheme of height one over S and f : H → G is a morphism of

group schemes, then f factors through Gµ. Furthermore, for any n ≥ 0, we have (Gµ)(pn) =

(G(pn))µ. If G is multiplicative over a dense open subset of S and Lie(G) has Frobenius

semistable HN filtration then Lie(G) = Lie(G)≤0 and Gµ corresponds to the subgroup scheme

associated with Lie(G)=0.

Proof. In view of Lemma 4.2, we may replace G by G
(pn)

for any n ≥ 0 and in particular

suppose that Lie(G) has a Frobenius semistable HN filtration. Let f : H → G be a morphism

of group schemes and consider the corresponding map

Lie(f) : Lie(H)→ Lie(G).
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Since H is multiplicative, Lie(H) is Frobenius semistable of slope 0 (this is a consequence

of Theorem 3.1). Thus the image of Lie(f) lies in Lie(G)≥0. According to Lemma 4.4 there

is an exact sequence of p-Lie algebras

0→ Lie(G)>0 → Lie(G)≥0
π→ Lie(G)=0 → 0

and we may assume according to Lemma 4.7 that there is a splitting

Lie(G)=0 ' Lie(G)=0,binf ⊕ Lie(G)=0,µ

of Lie(G)=0 into multiplicative and biinfinitesimal part (we might have to twist G some

more for this). The inverse image of Lie(G)=0,µ by π gives a p-Lie subalgebra π∗(Lie(G)=0,µ)

of Lie(G)≥0. This gives an exact sequence

0→ π∗(Lie(G)=0,µ)→ Lie(G)≥0 → Lie(G)=0,binf → 0

Since Lie(H) is multiplicative, the image of Lie(H) in Lie(G)=0,binf vanishes and thus the

image of Lie(H) lies in π∗(Lie(G)=0,µ). On the other hand by Lemma 4.6 and Lemma 4.4,

we have again a canonical decomposition

π∗(Lie(G)=0,µ)µ ⊕ π∗(Lie(G)=0,µ)binf

into multiplicative and binfinitesimal part and thus the image of Lie(f) lies in π∗(Lie(G)=0,µ)µ.

Now π∗(Lie(G)=0,µ)µ is a multiplicative p-Lie subalgebra of Lie(G) and it defines the required

subgroup scheme.

If G is multiplicative over an open subset of S then we have an injection

F ◦n,∗S (Lie(G)) ↪→ Lie(G)

(obtained by composition) for any n ≥ 0 and thus if Lie(G) has Frobenius semistable

HN filtration then we must have Lie(G) = Lie(G)≤0. Secondly the morphism F ∗S(Lie(G)) ↪→ Lie(G)

then induces an injection

F ∗S(Lie(G)=0) ↪→ Lie(G)=0

and since both source and target in this map have the same rank and the same slope,

we deduce from Lemma 3.2 that this map must be an isomorphism. Thus Lie(G)=0 is

multiplicative and by the explicit construction above, it is associated with Gµ.

Remark 4.9. Note that the ”connected étale” decomposition of G∨K (see the beginning of

[60]) gives a canonical exact sequence of group schemes

0→ (G∨K)inf → G∨K → (G∨K)et → 0

25



over K, where (G∨K)inf is an infinitesimal group scheme and (G∨K)et is an étale group scheme

over K. The group scheme (G∨K)et corresponds to a representation of Gal(Ksep|K) into a

finite p-group E and one might be tempted to think that Gµ is the Cartier dual of the group

scheme corresponding to the largest unramified quotient of E, ie the largest quotient of E,

such that the action of Gal(Ksep|K) factors through the fundamental group π1(S). This not

so, however. Indeed, consider a finite flat commutative group scheme G of height one, which

is such that µ̄max(Lie(G)) < 0. Then Gµ = 0 and for any finite flat base change S ′ → S, we

also have (GS′)µ = 0. On the other hand (G∨K)et will become constant (and hence entirely

unramified) after a finite separable field extension K ′|K .

4.3 Quotients of semiabelian schemes by finite flat multiplicative

group schemes

Let S be a smooth, projective and geometrically connected curve over a perfect field k.

Lemma 4.10. Let A → S be a semiabelian scheme. Suppose that there is an open dense

subset U ⊆ S, such that AU → U is an abelian scheme. Suppose that G ↪→ A is a finite,

flat, closed subgroup scheme. Then the quotient scheme A/G is also a semiabelian scheme

and (A/G)U → U is an abelian scheme.

Proof. Since the quotient morphism q : A → A/G is faithfully flat, the group scheme A/G
also has geometrically regular fibres (and is flat). Hence A/G is smooth over S. Over U ,

its fibres are proper since the quotient morphism is also proper and they are thus abelian

varieties. In other other words, (A/G)U → U is an abelian scheme. Now let s ∈ S. Since

(A/G)s is smooth, we know by the Barsotti-Chevalley theorem (see [40, Th. 10.25, p. 157])

that (A/G)s sits in the middle of an exact sequence

0→ E1 → (A/G)s → A1 → 0 (1)

where A1 is an abelian variety over s and E1 is a connected affine algebraic group variety

over s. The subgroup variety E1 is maximal among connected affine subgroup varieties of

(A/G)s (see [40, Th. 10.5, p. 153 and proof] and [40, Th. 10.24, p. 156]). Finally it has the

form E1 = T1 ×s U , where T1 is a torus and U is a connected unipotent group variety (see

[40, chap. 10.(i), p. 161]). When we write that the sequence (1) is exact, we mean that the

third morphism is faithfully flat and that its kernel is E1.

By assumption, the corresponding presentation for As is

0→ T → As → A0 → 0
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where T is a torus and A0 is an abelian variety, both over s.

Let D be the identity component of the closed subgroup scheme q−1
s (U × 0) of As (see

[40, Prop. 1.14] for details). Since s is perfect the closed subscheme Dred of D is a closed

subgroup scheme of D (see [40, Cor. 1.25, p. 24]). Moreover D and hence Dred is affine,

since qs is finite. Since T is the maximal connected affine subgroup variety of As, we see that

Dred must be contained in T . However, every closed subgroup scheme of a multiplicative

group over s is multiplicative (see [26, 8.1, Exp. IX]) and thus Dred is multiplicative. Thus

Dred is contained in the kernel of the morphism q−1
s (U × 0)→ U × 0 (because there are no

non trivial morphisms between multiplicative and unipotent algebraic groups - see [40, Cor.

15.18, p. 255]). Now notice that q−1
s (U × 0)(s̄)/D(s̄) is a finite set (see [40, Prop. 1.14,

p. 21]). On the other hand qs(D(s̄)) = {0} by the above so U(s̄) must be finite. Since U

is smooth, it must thus be trivial. This shows that (A/G)s is an extension of an abelian

variety by a torus. Since s ∈ S was arbitrary, we see that A/G is a semiabelian scheme.

Lemma 4.11. Let G → S be a finite flat group scheme of multiplicative type. Then there

is a finite étale morphism T → S such that GT is a diagonalisable group scheme.

Proof. See [26, Exp. IX, Intro.].

Lemma 4.12. Let A → S be a smooth commutative group scheme. Suppose that G ↪→ A
is a finite, flat, closed subgroup scheme, which is multiplicative. Then

deg(ωA) = deg(ωA/G)

Proof. By Lemma 4.11, we may assume that G is diagonalisable. In particular, we may

assume that there is a finite group scheme G0 → Spec(k) such that G0,S ' G. Let B := A/G.

Let f : A → S and g : B → S be the structural morphisms and let π : A → B be the

quotient morphism. The triangle of cotangent complexes associated with the morphisms π,

g and f gives an exact sequence

0→ H1(CT(π))→ π∗(Ωg)→ Ωf → Ωπ → 0 (2)

where CT(π) is the cotangent complex of π and H1(CT(π)) is its first homology sheaf. Now

π makes A into a torsor over B and under GB. Hence there is a faithfully flat morphism

T → B (for instance, we may take T = A), such that AT ' (GB) ×B T . In particular we

have

ΩπT ' ΩG0/k,T
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and

H1(CT(πT )) ' H1(CT(G0/k))T

because the homology sheaves of the cotangent complex of G0 over k are flat (since they are

k-vector spaces).

On the other hand, since T → B is flat, we have

ΩπT ' Ωπ,T

and

H1(CT(πT )) ' H1(CT(π))T

Finally, notice that ΩG0/k,T andH1(CT(G0/k))T are flat and thus by flat descent, the sheaves

H1(CT(π)) and Ωπ are flat (in other words: locally free). Hence the sequence

0→ ε∗A/S(H1(CT(π)))→ ε∗B/S(Ωg)→ ε∗A/S(Ωf )→ ε∗A/S(Ωπ)→ 0 (3)

is also exact. Furthermore, we then have

ε∗A/S(H1(CT(π))) ' H1(CT(G0/k))S

and

ε∗A/S(Ωπ) ' ΩG0/k,S

and thus the sheaves ε∗A/S(H1(CT(π))) and ε∗A/S(Ωπ) are trivial sheaves. In particular, we

have deg(ε∗A/S(H1(CT(π)))) = deg(ε∗A/S(Ωπ)) = 0 and by the additivity of deg(·), we deduce

from the existence of the sequence (3) that deg(ωA) = deg(ωA/G).

Remark 4.13. The computation of the cotangent complex made in the proof of Lemma

4.11 is in essence also contained in [14, Prop. 1.1] (but the assumptions made there are not

quite the right ones for us).

5 Proofs of the claims made in subsection 2.1

We now use the terminology of the introduction. So let k be a finite field of characteristic

p > 0 and let S be a smooth, projective and geometrically connected curve over k. Let

K := κ(S) be its function field. Let A be an abelian variety of dimension g over K. Fix

an algebraic closure K̄ of K. Let Kperf ⊆ K̄ be the maximal purely inseparable extension

of K and let Kunr ⊆ Ksep be the maximal separable extension of K, which is unramified
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above every place of K. Finally, we let A be a smooth commutative group scheme over S

such that AK = A.

Proof of Theorem 2.1. Recall the statement: there exists a (necessarily unique) multiplica-

tive subgroup scheme GA ↪→ kerFA/S, with the following property: if H is a multiplicative,

finite and flat group scheme of height one over S and f : H → kerFA/S is a morphism

of group schemes, then f factors through GA. If A is ordinary and ωA is not ample then

the order of GA is prkmin(ωA). If φ : A → B is a morphism of smooth commutative group

schemes over S, then the restriction of φ to GA factors through GB. Furthermore, we have

deg(ωA) = deg(ωA/GA).

In spite of its lengthy statement, the proof Theorem 2.1 readily follows from Lemma 4.8 and

Lemma 4.12. More precisely, we simply have to define GA := (kerFA/S)µ in the notation of

Lemma 4.8. The equality deg(ωA) = deg(ωA/GA) now follows from Lemma 4.12.

Proof of Proposition 2.5. Recall the assumptions of Proposition 2.5: A is ordinary, A is

semiabelian and A(Kperf) is not finitely generated. We have to prove that GA is of order

> 1 and that A/GA is also semiabelian.

We know that µ̄min(ωA/S) ≥ 0 by Lemma 4.8 and since A(Kperf) is not finitely generated,

we know by Theorem B.1 that µ̄min(ωA/S) = 0. Proposition 2.5 now follows from Theorem

2.1 and Lemma 4.10.

Proof of Proposition 2.6. Recall the assumptions of Proposition 2.6: A is ordinary, A is

semiabelian over S and A(Kperf) is not finitely generated. We have to prove that there a

finite flat morphism

φ : A → B

where B is a semiabelian over S and a finite flat morphism

λ : B → B

such that ker(φ) are ker(λ) are multiplicative group schemes and such that the order of

ker(λ) is > 1.

Consider now A1 := A/GA. By Lemma 4.10, the group scheme A1 is also semiabelian and

of course A1 := A1,K is also an ordinary abelian variety. We also have that A1(Kperf) is not

finitely generated, since the natural map A(Kperf) → A1(Kperf) has finite kernel. Finally,

the quotient morphism is A → A1 is finite, flat, with multiplicative kernel and GA is non

trivial by Proposition 2.5.

Repeating the above procedure for A1 in place of A and continuing this way, we obtain an
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infinite sequence of semiabelian schemes over S

A→A1→A2 → . . . (4)

where all the connecting morphisms are finite, flat, of degree > 1 and with multiplicative

kernel. Applying Lemma 4.12, we see that

deg(ωA) = deg(ωA1) = deg(ωA2) = . . .

Let now K ′ be a finite separable extension of K such that A(K)[n] ' (Z/nZ)2 dim(A) for

some n ≥ 3 such that (p, n) = 1. Let S ′ be the normalisation of S in K ′. After base-change,

we obtain an infinite sequence of semiabelian schemes over S ′

AS′→A1,S′→A2,S′ → . . . (5)

and applying a theorem of Zarhin (see [53, Th. 3.1] for a statement, explanations and further

references), we conclude that in the sequence (5), there are only finitely many isomorphism

classes of semiabelian schemes over S ′. On the other hand, applying a basic finiteness result

in Galois cohomology proven by Borel and Serre (see [49, par. 3, p. 69]), we can now

conclude that in the sequence (4), there are also only finitely many isomorphism classes of

semiabelian schemes over S.

Hence there are integers j > i ≥ 0 and an isomorphism

I : Ai ' Aj

over S. Letting φ : A → Ai be the constructed morphism and letting λ be the constructed

morphism Ai → Aj composed with I−1, we can now conclude the proof of Proposition 2.6.

6 Proofs of the claims made in subsection 2.2

We start with the proof of Theorem 2.7. We recall the statement:

Suppose that TrK̄|k̄(AK̄) = 0. Suppose that the action of Gal(Ksep|K) on Torp(A(Kunr))

factors through Gal(Ksep|K)ab. Then Torp(A(Kunr)) is finite.

For the proof, let L|K be the maximal subextension of Kunr|K, which is Galois with abelian

Galois group. Since S is geometrically integral, K ⊗k k̄ is a field and L contains a subfield

isomorphic to K⊗k k̄ (note that k̄ = ksep and that Gal(k̄|k) ' Ẑ, which is an abelian group).

Furthermore, geometric class field theory (see eg [59, Cor. 1.3]) tells us that Gal(L |K⊗k k̄)

is a finite group. In particular, the field L is finitely generated (as a field) over k̄, since K⊗k k̄
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is finitely generated over k̄. Now suppose to obtain a contradiction that Torp(A(Kunr)) were

infinite. By assumption, we have

Torp(A(Kunr)) ⊆ Torp(A(L))

Thus Torp(A(L)) is infinite as well. By the Lang-Néron theorem, this implies that

TrL|k̄(AL) 6= 0,

contradicting the first assumption.

We now turn to the proof of Proposition 2.8. We recall the statement:

Suppose that dim(A) 6 2 and that TrK̄|k̄(AK̄) = 0. Then Torp(A(Kunr)) is finite.

For the proof, notice that if Torp(A(Kunr)) is infinite then we have⋂
`≥0

p` · Torp(A(Kunr)) 6= 0

This follows from the fact that for each n ≥ 0, the set

{x ∈ Torp(A(Kunr)) | pn · x = 0}

is finite (the details are left to the reader). Let G ⊆
⋂
`≥0 p

`·(Torp(A(Kunr))) be the subgroup

of elements annihilated by the multiplication by p map.

If G = 0 then there the conclusion holds, because then
⋂
`≥0 p

` · (Torp(A(Kunr))) = 0 and

thus Torp(A(Kunr)) is finite by the above remark.

Suppose now that #G = p. Then
⋂
`≥0 p

` ·Torp(A(Kunr)) is infinite and it is a union of cyclic

groups of p-power order (use the classification theorem for finite abelian groups). Thus the

action of Gal(Ksep|K) on
⋂
`≥0 p

` · (Torp(A(Kunr))) factors through Gal(Ksep|K)ab. But this

contradicts Theorem 2.7 and thus we must have #G > p. If #G > p then by the assumption

that dim(A) ≤ 2, we see that we must have #G = p2 and thus the inclusions

Torp(A(Kunr)) ⊆ Torp(A(Ksep)) ⊆ Torp(A(K̄))

are both equalities. In particular, A is an ordinary abelian surface. Let now s ∈ S be a

closed point such that As is an ordinary abelian variety over s. Let W := Spec(Ôsh
S,s) be the

spectrum of the completion of the strict henselisation of the local ring at s and write K̂sh
s

for the fraction field of Ôsh
S,s. The abelian scheme AW → W gives rise to an element e of

HomZp(Tp(As̄(s̄))⊗ Tp(A∨s̄ (s̄)), Ôsh
S,s

∗
).

31



Here Tp(As̄(s̄)) and Tp(A∨s̄ (s̄)) are the p-adic Tate modules of As̄ and A∨s̄ respectively and

Ôsh
S,s

∗
is the group of multiplicative units of Ôsh

S,s. The element e is called the Serre-Tate

pairing associated with AW . See [31] for the construction of this pairing. We have e = 0 if

and only if AW ' As̄ ×s̄W . Furthermore, the fact that

Torp(A(W )) = Torp(A(K̂sh
s )) = Torp(A(Kunr)) = Torp(A(K̂sh

s ))

in our situation shows that e = 0. This follows directly from the definition of the Serre-Tate

pairing in the ordinary case (see the definition of the morphism ”pn” in [31, p.151]). Thus

we have AW ' As̄ ×s̄ W and in particular TrK̄|k̄(AK̄) 6= 0 by Proposition 9.1 (c) below.

This contradicts one of our assumptions. We conclude that G = 0, so that the conclusion

must hold.

We shall now prove Theorem 2.9. Recall the statement:

Suppose that Torp(A(Ksep)) is infinite. Then there is an étale K-isogeny

φ : A→ B

where B is an abelian variety over K and there is an étale K-isogeny

λ : B → B

such that the order of ker(λ) is > 1 and such that the orders of ker(λ) and ker(φ) are powers

of p.

For the proof, note that in [53, Th. 1.4], this statement is proven under the supplementary

assumption that there exist n ∈ Z, such that (n, p) = 1 and n > 3 and such that A[n](K̄) '
(Z/nZ)2 dim(A). Using [49, par. 3, ”Finiteness Theorem for Forms”, p. 69] in the proof,

it can be seen that this assumption is not necessary. A completely parallel argument is

described in the proof of Proposition 2.6. We leave the details to the reader.

We now turn to the proof of Theorem 2.10. Recall the statement:

Suppose that there exists an étale K-isogeny φ : A → A, such that deg(φ) is strictly larger

than 1 and that deg(φ) = pr for some r > 0. Suppose also that A is a geometrically simple

abelian variety and that A is a semiabelian scheme.

Then A is an abelian scheme and φ extends to an étale S-morphism A → A of group

schemes.

For the proof, notice first that by a result of Raynaud (see [51, IX, Cor. 1.4, p. 130]), the

morphism φ extends uniquely to an S-morphism φ̄ : A → A of group schemes. Since φ̄ is

étale over K, we have an exact sequence of coherent sheaves

0→ φ̄∗(ΩA/S)→ ΩA/S
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on A. Let σ ∈ H0(A, det(φ̄∗(ΩA/S))∨ ⊗ det(ΩA/S)) be the corresponding section. Since

σK ∈ H0(A, det(φ∗(ΩA/K))∨⊗det(ΩA/K)) has an empty zero-scheme, the zero scheme Z(σ)

is supported on a finite number of closed fibres of A. Hence there exists a finite number

P1, . . . Pn of closed point of S, such that Z(σ) =
∐n

i=1 niAPi
(as Weil divisors) for some

ni > 0. On the other hand, the Weil divisor Z(σ) is rationally equivalent to 0, since

det(φ∗(ΩA/S))∨⊗det(ΩA/S) ' det(ΩA/S)∨⊗det(ΩA/S) ' OA. Now notice that the morphism

p∗ : Pic(S) → Pic(A) of Picard groups is injective, because it is split by the map ε∗A/S :

Pic(A) → Pic(S). Hence the Weil divisor
∐n

i=1 niPi is rationally equivalent to 0 on S,

which implies that ni = 0 for all i = 1, . . . n. In other words, we have Z(σ) = ∅ and thus

the morphism φ̄∗(ΩA/S) → ΩA/S is an isomorphism. By [21, III, Prop. 10.4], this implies

that φ̄ is étale.

Let now s ∈ S be a closed point such that As has a presentation

0→ G
ι→ As → A0

0 → 0

where G is a torus over s of dimension d > 0 and A0
0 is an abelian variety over s. The

morphism φ̄s|G : G → As factors through G, since there is no non-constant s-morphism

G → A0
0. Call γ : G → G the resulting morphism. The morphism γ is étale. Indeed, we

have a commutative diagram

γ∗(ι∗(ΩAs/s)) //

∼
��

γ∗(ΩG/s) // ΩG/s

=

��
ι∗(φ̄∗s(ΩAs/s)) // ι∗(ΩAs/s) // ΩG/s.

and in the lower row of this diagram all the arrows are surjective. Thus the arrow

γ∗(ΩG/s)→ ΩG/s

must also be surjective and hence an isomorphism. Since G is smooth over κ(s), we conclude

that γ is smooth by [21, III, Prop. 10.4]. In particular γ is faithfully flat, because it is a

morphism of group schemes andG is connected (see eg [25, SGA 3.1, Exp. IV-B, Cor. 1.3.2]).

Now recall that there is a K-morphism ψ : A → A such that ψ ◦ φ = [pdeg(φ)]A (because

finite commutative group schemes over K are annihilated by their order; see [48, Theorem

(Deligne), p. 4]). The morphism ψ extends uniquely to ψ̄ : A → A and thus by unicity, we

have ψ̄ ◦ φ̄ = [pdeg(φ)]A. In particular, ker(γ) is a closed subscheme of ker([pdeg(φ)]G). Since

ker([pdeg(φ)]G) is an infinitesimal group scheme and γ is étale, we see that ker(γ) = 0 (since

ker(γ) is étale over s). Thus γ is an isomorphism.
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Now choose a s̄-isomorphism Gs̄ ' Gd
m (here s̄ if the spectrum of the algebraic closure of

κ(s)). The morphism γs̄ is described by a matrix M ∈ GLd(Z) (because the group scheme

dual to Gs̄ is the diagonalisable group scheme over s̄ associated with Zd). Hence there exists

a monic polynomial P (x) ∈ Z[x], such that P (0) = ±1 and such that P (γs̄) = 0.

Finally, choose a prime l 6= p. Let Ôsh
s be the completion of the strict henselisation of

the local ring of S at s. Let K̂sh
s be the fraction field of Ôsh

s and let j ∈ N. The closed

subgroup scheme Gs̄[l
j] of Gs̄ extends uniquely to a finite and étale subgroup scheme G̃lj

of AÔsh
s

over Ôsh
s . See [26, Th. 3.6 and Th. 3.6 bis]. Furthermore the natural map

G̃lj(Ôsh
s ) → Gs̄[l

j](s̄) is a bijection, since Ôsh
s is strictly henselian and G̃lj is étale (see

[42, Prop. I.4.4]). Hence P (φ)(G̃lj(Ôsh
s )) = 0. On the other hand, the image of the

group
⋃
j∈N G̃lj(Ôsh

s ) in AK̂sh
s

is dense, because A is geometrically simple and the group⋃
j∈N Ĝlj ,s̄(Osh

s ) is infinite. Hence P (φ) = 0 and since P (0) = ±1, we see that φ is an

automorphism, which is a contradiction.

7 Proof of Theorem 1.1

Recall the statement:

(a) Suppose that A is geometrically simple. If A(Kperf) is finitely generated and of rank > 0

then Torp(A(Ksep)) is a finite group.

(b) Suppose that A is an ordinary (not necessarily simple) abelian variety. If Torp(A(Ksep))

is a finite group then A(Kperf) is finitely generated.

We shall need the following

Lemma 7.1. Let B be an abelian variety over K and let γ : B → B be a K-isogeny such

that deg(φ) > 1. Suppose that B is geometrically simple. Let H ⊆ A(K̄) be a finitely

generated subgroup. Then the set ⋂
r≥0

γ◦r(H)

is a finite group.

Proof. (of Lemma 7.1) Let G :=
⋂
r≥0 γ

◦r(H). Let F := G/Tor(G) be the quotient of G by

its torsion subgroup. We may suppose without restriction of generality that rk(G) > 0 for

otherwise the lemma is proven. Since γ is a group homomorphism, we have γ(Tor(G)) ⊆
Tor(G) and thus γ gives rise to a group homomorphism F → F that we also denote by γ.

By construction, we have γ(F ) = F and thus γ : F → F is a bijection, since F is a finitely
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generated free Z-module. Let

P (t) := tn + an−1t
n−1 + · · ·+ a1t+ a0 ∈ Z[t]

be the characteristic polynomial of γ : F → F . We have P (γ) = 0 by the Cayley-Hamilton

theorem and since γ is an automorphism, we have have

P (0) = a0 = ±1 = det(γ).

Hence

(−a0)−1 · (γ◦,n−1 + an−1 · γ◦,n−2 + . . . a1 · IdF )

is the inverse of γ : F → F . Now let γ̃ be the K-group scheme homomorphism

γ̃ := (−a0)−1 · (γ◦,n−1 + an−1 · γ◦,n−2 + . . . a1 · IdB)

from B to B. Suppose first that the morphism of K-group schemes γ̃ ◦ γ − IdB is not the

zero morphism. Then it is surjective, because B is simple. Furthermore the group G is

dense in BK̄ , since B is geometrically simple. Thus the group (γ̃ ◦ γ − IdB)(G) is dense in

BK̄ . On the other hand, by construction (γ̃ ◦ γ − IdB)(G) ⊆ Tor(G). Since Tor(G) is a

finite group, it is not dense in BK̄ and thus we deduce that γ̃ ◦ γ − IdB must be the zero

morphism. Hence γ is invertible (with inverse γ̃), which contradicts the assumption that

deg(γ) > 1. We conclude that we cannot have rk(G) > 0 and thus G = Tor(G) is a finite

group.

For the proof of Theorem 1.1 (a), suppose first that Torp(A(Ksep)) is not a finite group.

Then by Theorem 2.9, there exists an abelian variety B over K, which is K-isogenous to A

and which carries an étale K-endomorphism B → B, whose degree is > 1 and is a power

of p. The dual of B hence carries an isogeny φ, which is purely inseparable (because the

dual of a finite étale group scheme over a field is an infinitesimal group scheme) and thus

we have

B∨(Kperf) =
⋂
r≥0

φ◦r(B∨(Kperf))

By Lemma 7.1, B∨(Kperf) is thus either finite or not finitely generated and the same holds

for A, since A is isogenous to B∨. This proves (a).

We now turn to the proof of statement (b). Note that by Grothendieck’s semiabelian re-

duction theorem, there is a finite and separable extension K1|K such that AK1 extends to

a semiabelian scheme over the normalisation S1 of S in K1. The scheme S1 might not be

geometrically connected over k but there a finite extension k1 of k, such that the connected
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components of S1,k1 are geometrically connected. We choose one of these connected com-

ponents, say S2. The extension of function fields corresponding to the morphism S2 → S is

separable by construction so we may (and do) assume that A is semiabelian to begin with.

Suppose that A(Kperf) is not finitely generated and that A is ordinary. Then by Proposition

2.6, there is an abelian variety B over K, which is K-isogenous to A and which carries a

K-isogeny B → B, whose kernel is a multiplicative group scheme of order > 1. The dual

φ of this isogeny is an étale isogeny of B∨, which has degree pr for some r > 0. Thus

Torp(B
∨(Ksep)) is an infinite group and the same holds for A, since A is isogenous to B∨.

This proves (b).

8 Proof of Theorem 1.2

Recall the statement:

Suppose that A is a semiabelian scheme and that A is a geometrically simple abelian variety

over K. If Torp(A(Ksep)) is infinite, then

(a) A is an abelian scheme;

(b) there is rA ≥ 0 such that prA · Torp(A(Ksep)) ⊆ Torp(A(Kunr));

Furthermore, there is

(c) an abelian scheme B over S;

(d) a generically étale S-isogeny A → B, whose degree is a power of p;

(e) an étale S-isogeny B → B whose degree is > 1 and is a power of p.

Finally

(f) if A is ordinary then the Kodaira-Spencer rank of A is not maximal;

(g) if dim(A) 6 2 then TrK̄|k̄(AK̄) 6= 0.

(h) for all closed points s ∈ S, the p-rank of As is > 0.

Proof of (a): note that by Theorem 2.9, the abelian variety A is isogenous to an abelian

variety B over K, which is endowed with an étale endomorphism of degree a positive power

of p. Since A extends to a semiabelian scheme over S so does B. This is a consequence of a
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theorem of Grothendieck (see [1, 5.] for a nice presentation). Thus, by Theorem 2.10 we see

that B extends to an abelian scheme B over S. Using the criterion of Néron-Ogg-Shafarevich

(see [57]), we see that A also extends to an abelian scheme over S. By the uniqueness of

semiabelian models (see [51, IX, Cor. 1.4, p. 130]), this extension must be A and thus A is

an abelian scheme.

Proof of (b): Let H := Gal(Ksep|Kunr). For i ≥ 0, let Gi := A(Ksep)[pi]. The group Gi is

the group of K-rational points of an étale finite group scheme Gi over K, which is naturally

a closed subgroup scheme of A. Let Ai := A/Gi and for i ≤ j let φi,j : Ai → Aj be the

natural morphism. Let Ai be the connected component of the zero section of the Néron

model of Ai over S. By (a) and the criterion of Néron-Ogg-Shafarevich (see [57]), this is an

abelian scheme. Furthermore, by [51, IX, Cor. 1.4, p. 130] the morphisms φi,j extend to

morphisms φ̄i,j : Ai → Aj and we have the classical exact sequence

φ̄∗i,j(ΩAj/S)→ ΩAi/S → Ωφ̄i,j → 0.

Now the morphism φ̄∗i,j(ΩAj/S) → ΩAi/S is injective over the generic point of Ai, because

φi,j = φ̄i,j,K is smooth by construction. On the other hand both φ̄∗i,j(ΩAj/S) and ΩAi/S are

locally free and thus it follows that φ̄∗i,j(ΩAj/S)→ ΩAi/S is also injective. Hence we have an

exact sequence

0→ φ̄∗i,j(ΩAj/S)→ ΩAi/S → Ωφ̄i,j → 0. (6)

Let πi : Ai → S be the structural morphism. We have a functorial isomorphism

ΩAi
' π∗i (πi,∗(ΩAi/S))

and thus there is a coherent sheaf Ti,j on S, which is a torsion sheaf, such that π∗i (Ti,j) ' Ωφ̄i,j

and the sequence (6) is the pull-back by π∗i of a sequence

0→ πj,∗(ΩAj/S)→ πi,∗(ΩAi/S)→ Ti,j → 0

and in particular

degS(πj,∗(ΩAj/S)) + degS(Ti,j) = degS(πi,∗(ΩAi/S)).

Now recall that degS(πi,∗(ΩAi/S)) > 0 for all i ≥ 0 (see [16, V, Prop. 2.2, p. 164]). Thus, for

i = 0, 1, . . . the sequence degS(πi,∗(ΩAi/S)) is a non-increasing sequence of natural numbers.

Hence for large enough i, say i0, it reaches its minimum. We conclude that Ti0,j = 0 for

j > i0, so that the morphism φ̄i0,j is étale and finite. Now φ0,i0(Gj(K
sep)) lies by construction

in the kernel of φi0,j. Thus

φ0,i0(Gj(K
sep)) ⊆ Ai0(Kunr)

37



when j > i0. In other words, for any x ∈ Gj(K
sep) and any γ ∈ H, we have

γ(x)− x ∈ Gi0(Ksep).

In particular, we have

γ(pi0 · x) = pi0 · γ(x) = pi0 · x

In particular, since j > i0 was arbitrary, we see that

γ(pi0 · x) = pi0 · x

for all x ∈ Torp(A(Ksep)) and all γ ∈ H. Setting rA = i0 concludes the proof of (b).

Proof of the existence statements (c), (d), (e): this is a consequence of (a) and Theorems

2.9 and 2.10.

Proof of (f): this is contained in a theorem of J.-F. Voloch; see [62, Proposition on p. 1093].

Proof of (g): this is a consequence of (b) and Proposition 2.8.

Proof of (h): This follows from (a) and (e).

9 Proof of Theorem 1.4

9.1 The trace of an abelian variety over a function field: basic

facts

Let E be an abelian over a field F . Let F0 ⊆ F be a subfield.

The F |F0 trace (TrF |F0(E), λ) (if it exists) of E over F0 is an abelian variety TrF |F0(E) over

F0 together with a homomorphism λ : TrF |F0(E)F → E of abelian varieties over F . They

have the following universal property. For any abelian E0 over F0 and a homomorphism

φ : E0,F → E of abelian varieties, there is a unique morphism φ̃ : E0,F → TrF |F0(E)F such

that φ = λ ◦ φ̃. This means that TrF |F0(E) and λ are uniquely determined if they exist.

Here are some known facts about TrF |F0(E). Before stating them, we record the fact for any

finite morphism of abelian varieties f : E ′ → E over F , the natural morphism E ′/ker(f)→
E is a closed immersion. Here E ′/ker(f) is the quotient described in Proposition 4.1. To see

this, consider that the morphism E ′/ker(f) → E is by definition a monomorphism of fppf

sheaves over F0 and hence a monomorphism of schemes. On the other hand, it is proper

and of finite type and thus a closed immersion (see [13, EGA IV.4, 18.12.6]) for this). We

shall call Im(f) the abelian variety E ′/ker(f) viewed as an abelian subvariety of E.
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The field extension F |F0 is called primary (resp. regular) if the algebraic closure of F0 in F

is purely inseparable over F0 (if F0 is algebraically closed in F and F is separable over F0).

Note that if F is the function field of a smooth and geometrically integral variety over F0

then F |F0 is regular.

Proposition 9.1. [see [11, Th. 6.4 and Th. 6.12]]

(a) If F |F0 is primary then the F |F0 trace (TrF |F0(E), λ) of E over F0 exists and the kernel

of λ is finite over F .

(b) If F |F0 is regular then the kernel of the morphism λ is connected and so is its Cartier

dual.

(c) If F1|F and F |F0 are primary extensions then (TrF |F0(E)F1 , λF1) is an F1|F0-trace of

EF1.

(d) We have TrF |F0(A/Im(λ)) = 0.

We also recall the Lang-Néron theorem (see [11, Th. 7.1] and [35, chap. 6, Th. 2]): if

F |F0 is a finitely generated regular extension then the quotient group E(F )/TrF |F0(E)(F0)

is finitely generated. Here TrF |F0(E)(F0) is viewed as a subgroup of E(F ) via λ and the

natural base change map from F0 to F .

9.2 The proof

We now use the notations of Conjecture 1.3.

Let λ : TrL|l0(C)→ C be the canonical morphism. We write C/Im(λ) for the quotient of C

by Im(λ) in the sense of Proposition 4.1.

We begin with the

Proposition 9.2. If IVD(C/Im(λ), L) ⊆ Torp((C/Im(λ))(L)) then IVD(C,L) ⊆ Torp(C(L)).

For the proof of Proposition 9.2, we shall need the following

Lemma 9.3. Let N be a finite flat infinitesimal group scheme over a field J of characteristic

p. There is a finite field extension J ′|J such that for any n ≥ 0 and any element α ∈
H1(J,N (pn)), the image αJ ′ of α in H1(J ′, N (pn)

J ′) vanishes.

Here H1(J,N (pn)) is the first cohomology group of N (pn) viewed as a sheaf in the fppf

topology. More concretely, it is the group of isomorphism classes of torsors of N (pn) over J .
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In the following proof, we shall write Jp
−m ⊆ J̄ for the subfield of J̄ consisting of elements

of the form xp
−m

, where x ∈ J .

Proof. (of Lemma 9.3) First suppose that N has a filtration by finite closed subgroup

schemes, whose quotients are isomorphic to either αp,J or µp,J . Let m ≥ 0 be the number

of non vanishing quotients. We shall prove by induction on m that the image of α in

H1(Jp
−m
, N (pn)) vanishes for all n ≥ 0 (under the supplementary assumption on N), for any

field J of characteristic p. If m = 0 the statement holds tautologically, so we shall suppose

that it holds for 1, . . . ,m− 1. Let

0→ F1 → NJ1 → F2 → 0

be a presentation of N where F2 is isomorphic to either αp,J or µp,J and F1 has a filtration as

above, whose number of non vanishing quotients is ≤ m− 1. This induces exact sequences

0→ H1(Jp
−1

, (F1,Jp−1 )(pn))→ H1(Jp
−1

, (NJp−1 )(pn))→ H1(Jp
−1

, (F2,Jp−1 )(pn))

and

0→ H1(Jp
−m

, (F1,Jp−m )(pn))→ H1(Jp
−m

, (NJp−m )(pn))→ H1(Jp
−m

, (F2,Jp−m )(pn))

(observe that H0(Jp
−m
, (F2,Jp−m )(pn)) = 0 since F2 is infinitesimal). Since F2

(pn) is of height

one, the image of α in H1(Jp
−1
, (F2,Jp−1 )(pn)) vanishes by [41, Lemma III.3.5.7]. The el-

ement α is thus the image of an element β ∈ H1(Jp
−1
, (F1,Jp−1 )(pn)). By the inductive

hypothesis, the image of β in H1(Jp
−m
, (F1,Jp−m )(pn)) vanishes and thus the image of α in

H1(Jp
−m
, (NJp−m )(pn)) vanishes, proving the claim.

Now according to [27, par. 2.4, p. 28] there is a finite extension J1 of J such that NJ1 has a

filtration by finite closed subgroup schemes, whose quotients are isomorphic to either αp,J1

or µp,J1 . This extension will by construction also work for all the group schemes N (pn) and

the number of non vanishing quotients of all the group schemes N (pn)
J1 is constant, say it

is m. Hence the extension J ′ := Jp
−m

1 has the required property.

Proof. (of Proposition 9.2). Now suppose that IVD(C/Im(λ), L) ⊆ Torp((C/Im(λ))(L)).

We want to show that IVD(C,L) ⊆ Torp(C(L)).

Write

λ(pn) : TrL|l0(C)(pn) → C(pn)

for the base change of λ by F ◦nL . We have an exact sequence

0→ Im(λ)(L)→ C(L)→ (C/Im(λ))(L)
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and we have (C/Im(λ))(pn) ' C(pn)/Im(λ(pn)). Let now

x0 ∈ C(L), x1 ∈ C(p)(L), x2 ∈ C(p2)(L), . . .

be a sequence of points such VC(p)/L(x1) = x0, VC(p2)/L(x2) = x1 etc. Then we know from

the above supposition that the image of xn in (C(pn)/Im(λ(pn)))(L) is a prime to p torsion

point for all n ≥ 0. In particular, the order m of the image of xn in (C(pn)/Im(λ(pn)))(L)

is independent of n, because the degree of the Verschiebung is always a power of p. Let m

be the order of x0 (and hence of all the xn). Then m · xn ∈ Im(λ(pn))(L) for all n and thus

m·x0 is indefinitely Verschiebung divisible in Im(λ)(L) (because the Verschiebung morphism

commutes with morphisms of commutative group schemes). It now suffices to prove that

m · x0 is of finite and prime to p order in Im(λ)(L). Hence, we may and do assume that the

morphism λ : TrL|l0(C)→ C is a surjection.

Now λ is also finite and purely inseparable by [11, Th. 6.12] and it is thus a bijection. We

are now given infinitely many L-morphisms

. . . (λ(pn))∗(xn)→ · · · → (λ(p))∗(x1)→ λ∗(x0)

where (λ(pn))∗(xn) is the base change by λ(pn) of xn viewed as a closed subscheme of C(pn).

The L-scheme (λ(pn))∗(xn) is a torsor under the group scheme (kerλ)(pn) ' kerλ(pn) and

according to Lemma 9.3, there is a finite extension L′, which splits all the (λ(pn))∗(xn). We

thus obtain an indefinitely Verschiebung divisible point x′0 in TrL|l0(C)(L′), whose image in

C(L′) is x0. Now TrL|l0(C)L′ is by definition the base change to L′ of an abelian variety

over l0; so we are reduced to showing Theorem 1.4 for abelian varieties C that arise by

base-change from l0. Lemma 9.4 below thus concludes the proof.

Lemma 9.4. We have IVD(C,L) ⊆ Torp(C(L)) if C ' C0 ×l0 L, where C0 is an abelian

variety over l0.

Proof. (of Lemma 9.4) By [15, Th. 6.2 and afterwards] there is an m ≥ 1 so that

m ·x0 ∈ C0(l0). Since l0 is algebraically closed, this implies that x0 ∈ C0(l0), concluding the

proof.

Proof. (of Theorem 1.4.)

We begin with a couple of reductions.

(1) We may assume in the statement of Theorem 1.4 that L is the function field of a smooth

and proper curve B over l0.

Using Proposition 9.2 and Proposition 9.1 (d), we see that when carrying out reduction (1),

we may assume that TrL|l0(C) = 0. Reduction (1) now follows from a standard spreading
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out argument together with Proposition C.1 in the Appendix. Here one could probably

appeal instead to Hilbert’s irreducibility theorem (as in [35, chap. 9, cor. 6.3]) but for lack

of an adequate reference in the case of function fields, we prefer to use Proposition C.1.

(2) We may assume in the statement of Theorem 1.4 that dim(TrL̄|l0(CL̄)) = dim(TrL|l0(C)).

To see this, suppose for the space of this paragraph that we know that Theorem 1.4 is

true in general under restrictions (1) and (2). Let L′|L be a finite extension such that

dim(TrL′|l0(CL′)) is maximal among all finite extensions of L. In particular we then have

dim(TrL′|l0(CL′)) = dim(TrL̄|l0(CL̄)). According to Proposition 9.1 (c), we may assume that

L′|L is separable. Replacing L′ by the Galois closure of L′ over L, we may even suppose that

L′|L is Galois. Let y0 ∈ C(L) be an indefinitely Verschiebung divisible element. Suppose

y0 6= 0. Applying our assumptions to CL′ and to the normalisation B′ of B in L′, we see

that the image of y0 in CL′(L
′) is indefinitely Verschiebung divisible. Thus for some integer

my0 , which is prime to p, the element my0 · y0 is divisible in the group CL′(L
′). Now there

is a natural group homomorphism u : CL′(L
′)→ C(L) (the trace) given by the formula

u(z) =
∑

σ∈Gal(L′|L)

σ(z)

Hence my0 · u(y0) = my0 · [L′ : L] · y0 is divisible in the group C(L) and hence

my0 · [L′ : L] · y0 ∈ TrL|l0(C)(l0).

Now if the order of the image of y0 in C(L)/TrL|l0(C(l0)) is prime to p then we are done. Oth-

erwise, we may (and do) replace y0 by a multiple such that the image in C(L)/TrL|l0(C(l0))

of y0 is a non-zero element of order p. In the rest of the argument, we shall derive a con-

tradiction from the existence of this element. Let i ≥ 1. Let yi ∈ C(pi)(L) be such that

V
(i)

C(pi)/L
(y1) = y0. The variety

(C(pi))L′ = (CL′)
(pi) ≡ C

(pi)
L′

also has the property that dim(TrL′|l0(C
(pi)
L′ )) = dim(TrL̄|l0(C

(pi)

L̄
)) since C(pi) is isogenous to

C over L. Hence, repeating the above reasoning, there is an integer myi , which is prime

to p, such that myi · [L′ : L] · yi ∈ TrL|l0(C(pi)(L). Now according to Proposition 9.1

(c), the natural morphism TrL|l0(C)
(pi)
L → C(pi) obtained by base change under F ◦iC from

the morphism TrL|l0(C)L → C makes TrL|l0(C)(pi) into the trace of C(pi). Thus the map

V
(i)

C(pi)/L
(L̄) (resp. F

(i)
C/L(L̄)) induces a surjective map

C(pi)(L̄)/TrL|l0(C)(pi)(l0)→ C(L̄)/TrL|l0(C)(l0)
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(resp. a bijective map

C(L̄)/TrL|l0(C)(l0)→ C(pi)(L̄)/TrL|l0(C)(pi)(l0)

). Since V
(i)

C(pi)/L
(L̄) ◦ F (i)

C/L(L̄) = pi, we see that the order of yi in

C(pi)(L)/TrL|l0(C(pi))(l0) ⊆ C(pi)(L̄)/TrL|l0(C(pi))(l0)

is pi+1. This is a contradiction if i is chosen large enough so that pi is not a divisor of [L′ : L].

We conclude that the order of the image of y0 in C(L)/TrL|l0(C)(l0) is prime to p and this

concludes reduction step (2).

We now assume that we are given an abelian variety C over L and that C satisfy the

assumptions of 1.4 as well as (1) and (2).

Let as before λ : TrL|l0(C)L → C be the canonical morphism. According to Proposition 9.2,

it will be sufficient to prove that IVD(C/Im(λ), L) ⊆ Torp((C/Im(λ))(L)). By Theorem 9.1

(d), we have TrL|l0(C/Im(λ)) = 0 and since we work under supplementary assumption (2),

we even have TrL̄|l0(C/Im(λ)) = 0. Thus we may replace C by C/Im(λ) and assume from

now on that TrL̄|l0(C) = 0. Finally, since we have TrL̄|l0(C) = 0, we may replace without

restriction of generality replace L by a finite extension L′ and B by its normalisation B′ in

L′. We may thus assume that there is an integer m ≥ 3, with (m, p) = 1 and such that

C[m] ' (Z/mZ)2 dim(C) and C∨[m] ' (Z/mZ)2 dim(C∨).

By a theorem of Raynaud (see [1, Prop. 5.10]), the connected component of the Néron

model of C will then be a semiabelian scheme. We call it C.

Now suppose as in the statement of Conjecture 1.3 that we are given points x` ∈ C(p`)(L)

and suppose that for all ` > 1, we have V
C(p`)/L

(x`) = x`−1. We want to show that x0 ∈
Torp(C(L)).

By Lemma B.2 and the discussion preceding it we have a canonical map

α : C(p)(L)→ HomB(ωC(p) ,ΩB/l0(E)) (7)

such that α(x) = 0 iff x ∈ FC/L(C(L)). Here E = E(C) is the reduced divisor, which is the

union of the closed point b ∈ B such that Cb is not proper over κ(b). Note that we have

E(C) = E(C(p)) = E(C(p2)) = . . . . The map α is naturally compatible with isogenies (we

skip the verification) and so there is an infinite commutative diagram
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C(p)(L) // HomB(ωC(p) ,ΩB/l0(E))

C(p2)(L) //

V
C(p2)/L

OO

HomB(ωC(p2) ,ΩB/l0(E))

V ∗
C(p2)/B

OO

...

OO

// ...

OO

(8)

Remember that we have

ωC(pn) ' F ◦n,∗B (ωC).

Now choose n1 ≥ 1 so that

- ωC(pn1 ) has a Frobenius semistable HN filtration;

- (ωC(pn1 ))=0 ' (ωC(pn1 ))=0,binf ⊕ (ωC(pn1 ))=0,µ splits into a biinfinitesimal and a multiplicative

commutative coLie-algebra (see Lemmata 4.4 and 4.7).

Note that if some n1 ≥ 1 has the two above properties, than any higher n1 will as well (by

definition for the first property and tautologically for the second one).

Choose n2 > n1 so that

(I) the image of the map

V
(n2−n1),∗
C(pn2 )/B

: ωC(pn1 ) → ωC(pn2 )

lies in (ωC(pn2 ))≥0 ' F
◦(n2−n1),∗
B ((ωC(pn1 ))≥0);

(II) the image of the map of coLie algebras

V
(n2−n1),∗
C(pn2 )/B

: (ωC(pn1 ))=0 → F
◦(n2−n1),∗
B ((ωC(pn1 ))=0) = (ωC(pn2 ))=0

is F
◦(n2−n1),∗
B ((ωC(pn1 ))=0,µ). Note that this is possible because the biinfinitesimal part of

(ωC(pn1 ))=0 will be sent to 0 by sufficiently many composed Verschiebung morphisms (by

definition).

Note that under (I) for any n3 > n2 the image of the map

V
(n3−n2),∗
C(pn3 )/B

: (ωC(pn2 ))≥0 → ωC(pn3 )

and hence of the map

V
(n3−n1),∗
C(pn3 )/B

: ωC(pn1 ) → ωC(pn3 )

automatically lies in (ωC(pn3 ))≥0 ' F
◦(n3−n1),∗
B ((ωC(pn1 ))≥0).

Choose n3 > n2 so that
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(III) the map

ωC(pn3 ) → ΩB/l0(E)

given by xn3 factors through its quotient (F ◦n3,∗
B (ωC))≤0 ' F

◦(n3−n1),∗
B ((ωC(pn1 ))≤0);

(IV) the image of the map

V
(n3−n2),∗
C(pn3 )/B

: F
◦(n2−n1),∗
B ((ωC(pn1 ))=0)→ F

◦(n3−n2),∗
B ((ωC(pn2 ))=0)

is F
◦(n3−n2),∗
B ((ωC(pn2 ))=0,µ) ' F

◦(n3−n1),∗
B ((ωC(pn1 ))=0,µ).

Now we shall exploit the compatibility between the morphism

ωC(pn1 )

c(xn1 )
→ ΩB/k(E)

induced by xn1 and the morphism

ωC(pn3 )

c(xn3 )
→ ΩB/k(E)

induced by xn3 . According to the diagram (8), this compatibility gives the equality

c(xn3) ◦ V ∗
C(pn3−n1 )/B

= c(xn1).

In other words the composition of morphisms

ωC(pn1 )

V ∗
C(p

n3−n1 )/B→ ωC(pn3 )

c(xn3 )
→ ΩB/k(E)

is c(xn1). Furthermore, in view of (I) and (III) the map c(xn1) factors as follows:

ωC(pn1 )

V
(n3−n1),∗

C(p
n3 )/B→ F

◦(n3−n1),∗
B ((ωC(pn1 ))≥0)→ F

◦(n3−n1),∗
B ((ωC(pn1 ))=0)→ F

◦(n3−n1),∗
B ((ωC(pn1 ))≤0)→ ΩB/k(E)

and by (I) the map

ωC(pn1 )

V
(n3−n1),∗

C(p
n3 )/B→ F

◦(n3−n1),∗
B ((ωC(pn1 ))=0)

factors as follows

ωC(pn1 )

V
(n2−n1),∗

C(p
n1 )/B→ F

◦(n2−n1),∗
B ((ωC(pn1 ))≥0)→ F

◦(n2−n1),∗
B ((ωC(pn1 ))=0)

V
(n3−n2),∗

C(p
n1 )/B→ F

◦(n3−n1),∗
B ((ωC(pn1 ))=0)

and thus by (IV) and (II) the image of this last map is precisely F
◦(n3−n1),∗
B ((ωC(pn1 ))=0,µ).

We have thus constructed a multiplicative quotient of the p-coLie algebra ωC(pn1 ) . On the

other hand the p-coLie algebra ωC(pn1 ) is the p-coLie algebra of the finite flat group scheme
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kerFC(pn1 )/B. By the equivalence of categories recalled in subsubsection 4.2, this quotient cor-

responds to a multiplicative subgroup scheme of kerFC(pn1 )/B. By Lemma 4.8, this subgroup

scheme embeds in the canonical largest multiplicative subgroup scheme (kerFC(pn1 )/B)µ of

kerFC(pn1 )/B (in fact, it coincides with it, but we shall not need this). Finally note that

(kerFC(pn1 )/B)µ ' ((kerFC/B)µ)(pn1 ),

by the last part of Lemma 4.8.

Let G := (kerFC/B)µ. Note that G = GC in the notation of Theorem 2.1. Now consider

the quotient C1 := C/G (which is a semiabelian scheme by 4.10) and let ψ1 : C → C1 be the

quotient morphism. The point xn1 and its image yn1 in C1(L) give a commutative diagram

0 F
◦(n3−n1),∗
B ((ωC(pn1 ))=0,µ)

uu

ωG(pn1 )

OO 66

F
◦(n3−n1),∗
B (ωC(pn1 ))

��

OO

oo

ωC(pn1 )

c(xn1 )
//

OO 66

ΩB/k(E)

'
��

ωC(pn1 )
1

c(yn1 )
//

ψ∗1

OO

ΩB/k(E)

where the left column is an exact sequence and c(yn1) is the morphism induced by yn1 .

Thus c(yn1) vanishes. In particular, yn1 lies in the image of F
C(pn1−1)

1 /B
(C(pn1−1)

1 (L)). Using

the fact that

[p]
C(pn1−1)

1

= VC(pn1 )
1 /B

◦ F
C(pn1−1)

1 /B
,

we conclude that yn1−1 has a p-th root in C(pn1−1)
1 (L). Hence y0 also has a p-th root in

C1(L). Now since G is independent of x0, we conclude that the image of any indefinitely

Verschiebung divisible point of C(L) in C1(L) has a p-th root. Since G is compatible with

twists, we also see that for any n ≥ 0 the image of any indefinitely Verschiebung divisible

point of C(pn)(L) in C1
(pn)(L) has a p-th root. From this, by an elementary combinatorial

consideration, we see that the image of any indefinitely Verschiebung divisible point of C(L)

in C1(L) has a p-th root, which is indefinitely Verschiebung divisible.

By the discussion above, the image of IVD(C) in C1(L) lies in p · IVD(C1,L). This is the

crucial fact that the rest of the proof will exploit.

Let C1 := C/GC, C2/GC1 , . . . be the sequence of smooth commutative group schemes obtained

by successively quotienting by the canonical subgroup schemes described in Theorem 2.1.
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Note that all the Ci are semiabelian by Lemma 4.10. We shall denote by ψi the morphism

C → Ci obtained by composition. Write Ci := Ci,L for convenience.

Let m00 be an integer such that m00 · x0 =: v0 extends to an element ṽ0 of C(B).

Now let D0 be a line bundle on C. We suppose that [−1]∗C(D0) ' D0 (ie D0 is symmetric),

where [−1]C is the inversion morphism given by the group scheme structure of C over B.

We also suppose that D0 is a relatively ample line bundle. If x ∈ C(B), write τx : C → C for

the translation by x morphism. We use the same notation for x ∈ C(L).

Now consider the isogeny φD0 : C → C∨ from C to its dual abelian variety, which is

induced by D0 (this is the polarisation induced by D0). Since v0 ∈ IVD(C), we also

have φD0(v0) ∈ IVD(C∨), since relative Frobenius morphisms are naturally compatible with

morphisms of abelian varieties. The point φD0(v0) corresponds to the line bundle

M = τ ∗v0
(D0)⊗D∨0

on C (see [45, III.13]). Since the morphism dual to the Verschiebung morphism is the

relative Frobenius morphism (this is very often the definition of the Verschiebung), we see

that the fact that φD0(v0) ∈ IVD(C∨) translates to the fact that there exist line bundles Mi

on C(pi) for all i ≥ 1, such that

F ∗C/L(M1) 'M, F ∗C(p)/L(M2) 'M1, F
∗
C(p2)/L

(M3) 'M2, . . .

Since ψi factors by construction through FC(pi−1)/L ◦ FC(pi−2)/L ◦ · · · ◦ FC/L, we see that for

each i ≥ 1, there is a line bundle Ji on Ci such that ψ∗i,L(Ji) 'M .

Now recall that D0 extends uniquely (up to isomorphism) to a line bundle D0 on C, if we

require D0 to be trivial along the unit section of C (see [44, Prop. 2.6, p. 21]). Similarly

the line bundle M extends uniquely (up to isomorphism) to a line bundle M on C with

the same property. We shall write Ji for the line bundle similarly associated with Ji on Ci.
Notice that by unicity, we have ψ∗i (Ji) 'M.

We shall now make a height computation. We shall need the

Lemma 9.5. LetW be a line bundle on C, which is trivial when restricted to the unit section

and such that WL is algebraically equivalent to 0. Let x ∈ C(B). Then deg(x∗(W)) is the

Néron-Tate height pairing of xL ∈ C(L) and WL.

Proof. This follows from [44, III.3.2 and 3.3] and the definition of polarisations.

We shall also need the crucial

47



Proposition 9.6. (a) There exists a constant m0 ∈ N∗ and an infinite set I0 ⊆ N∗ such

that for any i ∈ I0 and any P ∈ Ci(L), the element m0 · P extends to an element of Ci(B).

(b) There is a constant c0 ∈ N∗ and an infinite set I0 ⊆ N∗ such that for any i ∈ I0 and any

P ∈ Tor(Ci(L)) we have c0 · P = 0.

We shall prove this proposition later, using Proposition A.2 in the Appendix.

Let i ∈ I0. For the next computation, recall that ψi,L(v0) is divisible by pi in Ci(L). Let

zi be an element of Ci(L) such that pi · zi = ψi,L(v0). According to Proposition 9.6 (a),

m0 · zi extends to an element ui of Ci(B). By construction, we have pi · ui = m0 ·ψi(ṽ0). We

compute

deg(([m0](ṽ0))∗(M)) = deg(([m0](ṽ0))∗(ψ∗i (Ji))) = deg(([m0](ψi(ṽ0)))∗(Ji))

= deg(([pi](ui))
∗(Ji)) = deg(u∗i ([p

i]∗(Ji)))

= deg(u∗i (J
⊗pi
i )) = pi · deg(u∗i (Ji)).

Here [m0] refers to the multiplication by m0 morphism (in particular [m0](ṽ0) = m0 · ṽ0).

Now suppose for contradiction that deg(([m0](ṽ0))∗(M)) 6= 0. If we choose i large enough

so that pi is not a divisor of deg(([m0](ṽ0))∗(M)) then we obtain a contradiction. Thus

deg(([m0](ṽ0))∗(M)) = 0. We may also compute

deg(([m0](ṽ0))∗(M)) = deg(ṽ∗0([m0]∗(M))) = deg(ṽ∗0(M⊗m0)) = m0 · deg(ṽ∗0(M)).

In particular, by Lemma 9.5, the Néron-Tate height pairing of v0 and M vanishes. Now no-

tice that M is by definition the image of v0 under the polarisation induced by the symmetric

ample line bundle D0. Hence the Néron-Tate pairing of v0 and M is twice the Néron-Tate

height of v0 with respect to the polarisation induced by D0. In particular, the Néron-Tate

height of v0 with respect to D0 vanishes. By a theorem of Lang (see [11, Th. 9.15]) we

conclude that the image of v0 in C(L) is an element of finite order. Thus the image of x0 in

C(L) is also an element of finite order.

Now we show that x0 ∈ Torp(C(L)). For contradiction, suppose that x0 6∈ Torp(C(L)). We

thus may (and do) replace x0 by one of its multiples and suppose that p ·x0 = 0 and x0 6= 0.

We know that ψi,L(x0) is divisible by pi in Ci(L) and since ψi,L is injective we conclude that

there is an element of order pi+1 in Ci(L) for all i ≥ 1. Thus contradicts Proposition 9.6 (b)

so we are done.

Proof of Proposition 9.6. We need some preliminaries on moduli spaces of abelian

varieties. Let n ≥ 3 with (n, p) = 1) and g ≥ 1. We shall choose particular values for g and

n later.
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Let Ag,n be the functor from the category of locally noetherian Fp-schemes to the category

of sets, such that

Ag,n(B) = { isomorphism classes of the following objects :

principally polarized abelian schemes over B endowed

with a symplectic isomorphism (Z/nZ)2g
B ' A[n] }

D. Mumford proves (see [46]) that the functor Ag,n is representable by a scheme, which is

separated and of finite type over Fp. We shall also denote this scheme by Ag,n.

Furthermore, in [16, V, 2., Th. 2.5], C. Chai and G. Faltings prove that there exists

• a scheme Āg,n (resp. A∗g,n), which is proper over Fp;

• an open immersion Ag,n ↪→ Āg,n (resp. an open immersion Ag,n ↪→ A∗g,n);

• a semiabelian scheme U over Āg,n, such that UAg,n is isomorphic to the universal

abelian scheme over Ag,n.

• a morphism π̄ : Āg,n → A∗g,n compatible with the above open immersions of Ag,n;

• a line bundle ω0 on A∗g,n, which is ample and such that π̄∗(ω0) = ωU/Āg,n
.

Now write Z := B ×l0 A∗g,n,l0 . Recall that the Hilbert scheme Hilb(Z/l0) is a scheme, which

represents the functor

T 7→ {closed subschemes of ZT , which are proper and flat over T}

from the category of locally noetherian scheme T over l0 to the category of sets. It is locally

of finite type over l0 (see [28]).

Let Φ ∈ Q[λ] be a polynomial with rational coefficients and L0/Z an ample line bundle. By

definition, the l0-scheme HilbΦ(Z/l0) represents the functor

T 7→ {closed subschemes W of ZT , which are proper and flat over T

and such that χ(Wt, L
⊗λ
0,Wt

) = Φ(λ) for all λ ∈ N and all t ∈ T}

from the category of locally noetherian scheme T over l0 to the category of sets. Here Wt

is the fibre at t ∈ T of the morphism W → T and L0,Wt is the pull-back of L to Wt by

the natural morphism Wt → Z. The symbol χ(·) refers to the Euler characteristic. By

definition

χ(Wt, L
⊗λ
Wt

) =
∑
r>0

(−1)r dimκ(t) H
r(Wt, L

⊗λ
Wt

).
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(this is called the Hilbert polynomial of Wt with respect to LWt). It is shown in [28], that

HilbΦ(Z/l0) is projective over l0 (as a consequence of the projectivity of Z). Notice that by

construction, we have a disjoint union

Hilb(Z/l0) =
∐

Φ∈Q[λ]

HilbΦ(Z/l0)

Finally, it is shown in [17, part II, 5.23] that the functor Morl0(B,A∗g,n) from locally noethe-

rian l0-schemes T to the category of sets, such that

Morl0(B,A∗g,n,l0)(T ) = {T -morphisms from BT to A∗g,n,T}

is representable by an open subscheme of Hilb(Z/l0). More precisely, the natural transfor-

mation of functors

T -morphism f from BT to A∗g,n,T 7→ graph of f

is represented by an open immersion

Morl0(B,A∗g,n) ↪→ Hilb(B ×l0 A∗g,n,l0/l0).

Let now D be an ample line bundle on B. We choose L0 to be the line bundle D � ω0
l0

on

Z = B ×l0 A∗g,n,l0 .

Recall that the Hodge bundles of the Ci all have the same degree by Lemma 4.12. Let

d0 := deg(ωC/B) be this common degree. Our aim is to use this to show that all the Ci

embed in a bounded family of abelian varieties and apply Proposition A.2.

Notice that Ci[m] ' (Z/mZ)2 dim(Ci) and C∨i [m] ' (Z/mZ)2 dim(C∨i ). Indeed, since ψi,L is

purely inseparable, it induces an isomorphism C[m]→ Ci[m] and thus Ci[m] ' (Z/mZ)2 dim(Ci)

by (iv) above. For the isomorphism C∨i [m] ' (Z/mZ)2 dim(C∨i ), notice that the dual mor-

phism ψ∨i,L : C∨i → C∨ is separable (because its kernel is the Cartier dual of a multiplicative

group scheme) and of order a power of p. Hence, since (p,m) = 1 it also induces an isomor-

phism C∨i [m]→ C∨[m] (we leave the details to the reader).

Now let Ei := (Ci ×L C∨i )4 . By Zarhin’s trick (see [44, IX.1.1]) Ei carries a principal

polarisation. Furthermore, by the last paragraph, we also have Ei[m] ' (Z/mZ)2 dim(Ei).

Notice also that the identity component of the Néron model of Ci is semiabelian, since Ci is

semiabelian. Hence the identity component of the Néron model of C∨i is also semiabelian,

since C∨i is isogenous to Ci (see [1, Prop. 5.8 (4)] for a neat presentation). Since the

formation of the Néron model is compatible with products, we conclude that the identity

component Ei of the Néron model of Ei is also semiabelian. We also see Ei|B\E(C) is an
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abelian scheme over B\E(C) (where E(C) is as in (7)). Finally, we have deg(ωEi/B) = 8 · d0

by [16, V.3, Lemma 3.4, p. 166].

Let now g = dim(Ei) = 8 · dim(C) and n = m. By definition, Ei is associated with an

l0-morphism SpecL → Ag,n,l0 . By the valuative criterion of properness, this morphism

extends to a morphism φi : B → A∗g,n,l0 (resp. to a morphism φ̄i : B → Āg,n,l0). By unicity,

we have π̄ ◦ φ̄i = φi. Thus, since semiabelian extensions are unique (see [51, IX, Cor. 1.4,

p. 130]), we have φ∗i (ω
0
l0

) ' ωEi/B. The morphism φi is by definition associated with an

element of Morl0(B,A∗g,n,l0)(l0). We can now compute the Hilbert polynomial of the graph

Γφi of φi with respect to the line bundle L0:

χ(Γφi , L
⊗λ
0 ) = : Q(λ) = χ(B, (D ⊗ φ∗i (ω0

l0
))⊗λ) = degB((D ⊗ φ∗i (ω0

l0
))⊗λ) + 1− g(B)

= λ · degB(D ⊗ φ∗i (ω0
l0

)) + 1− g(B)

= λ · degB(D ⊗ ωEi/B) + 1− g(B)

= λ · degB(D) + λ · degB(ωEi/B) + 1− g(B)

= λ · degB(D) + λ · 8 · d0 + 1− g(B). (9)

Here g(B) is the genus of B. The second equality is justified by the Riemann-Roch theorem

on B. We thus see that the Hilbert polynomial Q(λ) of the graph of φi with respect to L0

is Q(λ) is independent of i. Thus the element of Morl0(B,A∗g,n,l0)(l0) corresponding to Ei
lies in the scheme

Morl0(B,A∗g,n,l0)(l0) ∩ HilbQ(λ)(B ×l0 A∗g,n,l0/l0)

which is of finite type over l0 by the above discussion. We now let Y be the Zariski

closure in Morl0(B,A∗g,n,l0)(l0) ∩ HilbQ(λ)(B ×l0 A∗g,n,l0/l0) of the set all the elements of

(Morl0(B,A∗g,n,l0)(l0) ∩ HilbQ(λ)(B ×l0 A∗g,n,l0/l0))(l0) which correspond to some φi (i ≥ 0).

Finally we let H00 be some irreducible component of Y , which meets infinitely many such

points. Let η00 := κ(H00). By construction, we have an H00-morphism

B ×l0 H00 → A∗g,n,H00

which sends (B\E(C))η00 into Ag,n,η00 ⊆ A∗g,n,η00
(because by construction, (B\E(C))x is

sent into Ag,n,x for a dense sent of points x ∈ H00). Let

γ0 : Bη00 → A∗g,n,η00

be the induced morphism over η00. Now recall that there is a proper morphism π̄ : Āg,n → A∗g,n.

By the valuative criterion of properness, there is a unique η00-morphism γ : Bη00 → Āg,n,η00
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such that π̄η00 ◦ γ = γ0. The morphism γ extends over an open subset H0 of H00, yielding

an H0-morphism

γ̃ : B ×l0 H0 → Āg,n,H0 .

Replacing H0 by one of its open subsets, we may suppose that H0 is normal. Let now B0

be the base change of U by γ̃. A theorem of Moret-Bailly (see [44, VI.3.1]) together with

a result of Raynaud ([51, XI.1.4]) then shows that B0 can be endowed with a relatively

ample line bundle, which is symmetric and trivial along the zero section. Let also t0 := l0,

C := B×l0 H0. If we now apply Proposition A.2 (a) with this choice of H0, t0, C and B0, we

reach the conclusion that there is an infinite set I0 ⊆ N∗ and a constant n0, such that for

i ∈ I0, and any P ∈ Ei(L), the element n0 · P extends to an element of Ei(L). Since Ci is a

direct factor of Ei, we may replace Ei (resp. Ei) by Ci (resp. Ci) in the last sentence. This

proves (a), with m0 = n0. For (b), note that TrL|l0(Ei) = 0 (since Ei is a product of abelian

varieties isogenous to C) and apply Proposition A.2 (b) to the same situation.

A Rational points in families

The terminology of this section is independent of the terminology of the rest of the article

and its appendices.

Let t0 be an algebraically closed field. Let H0 be an integral scheme of finite type over t0.

Let π : C → H0 be a smooth curve over H0, with geometrically connected fibres. Let B0

be a semiabelian scheme over C. Suppose that there exists a line bundle L on B0, which is

ample relatively to C, symmetric and trivial along the zero section. Let η0 := κ(H0) and

let λ0 := κ(C). Note that λ0 lies over η0 via π and that λ0 is also the generic point of Cη0

viewed as a subset of C. We suppose that B0,λ0 is an abelian variety over λ0.

In the next proposition, we shall need the following lemma, which is well known from the

theory of minimal models of curves.

Lemma A.1. Let φ : X → Y be a morphism of smooth varieties over t0. Suppose also that

there is a dense open set Y1 ⊆ Y , such that φ|Y1 : φ−1(Y1)→ Y1 is smooth. Denote by Xsm

the maximal open subscheme of X, such that φ|Xsm → Y is smooth.

Let σ ∈ X(Y ) be a section of φ. Then σ ∈ Xsm(Y ) ⊆ X(Y ).

Proof. See [39, Ex. 4.3.25].

Proposition A.2. (a) There is a natural number n0 and a dense open set V ⊆ H0 with
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the following properties. For any x ∈ V (t0), B0,κ(Cx) is an abelian variety and for any

Px ∈ B0(κ(Cx)), the point n0 · Px ∈ B0(κ(Cx)) extends to an element of N (B0,κ(Cx))
0(Cx).

(b) Suppose that C is proper over H0. Suppose that there is a set T0 ⊆ H0(t0), which is

dense in H0 and such that for any x ∈ T0 we have Trκ(Cx)|t0(B0,κ(Cx)) = 0. Then there is

a dense open set V ⊆ H0 and a natural number b0 such that for all x ∈ V (t0), we have

#Tor(B0(κ(Cx))) ≤ b0.

HereN (B0,κ(Cx))
0 is the connected component of the identity of the Néron modelN (B0,κ(Cx))

of B0,κ(Cx) over Cx.

Proof. We start with (a). We shall write η̄0 for an algebraic closure of η0. Consider the

semiabelian scheme B0,η̄0 over Cη̄0 . According to [34, Th. 4.2], there is an open immersion

B0,η̄0 ↪→ S1 (10)

of Cη̄0-schemes, with the following properties: S1 is a regular scheme, which is projective

over Cη̄0 and the open immersion B0,η̄0 ↪→ S1 is an isomorphism when restricted to the open

subset of Cη̄0 over which B0,η̄0 is an abelian scheme. In particular S1 is smooth over η̄0, since

η̄0 is perfect. There is a finite field extension η → η0 and a morphism

B0,η → S (11)

of Cη-schemes, which is model of (10). By flat descent, the morphism B0,η → S is also an

open immersion and S is also smooth over η and projective over Cη. Again by flat descent

B0,η → S is an isomorphism when restricted to the open subset of Cη over which B0,η is an

abelian scheme.

We now let g : H → H0 be the normalisation of H0 in η. Slightly abusing notation, we also

denote by η the generic point of H. Note that g is a finite morphism (see eg [13, IV.7.8]).

We let B be the semiabelian scheme on CH obtained by base change and we let λ be the

generic point of CH . Again λ lies over η via the second projection and is also the generic

point of the Cη. By an elementary constructibility argument, there is a non empty open set

U ⊆ H and an open immersion

BCU
↪→ S̃

of CU -schemes, where S̃ is smooth over U and projective over CU . Furthermore, we may

assume that there is an open subset U ′ ⊆ CU , which surjects onto U , with the property

that BU ′ is an abelian scheme over U ′ and that the induced morphism BU ′ ↪→ S̃U ′ is an

isomorphism.
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Let N0 be the supremum of the set of values of the function, which associates with any

q ∈ CU the number of geometric irreducible components of the fibre S̃q of S̃ over q. This

function is constructible (see [13, IV.9.7.9]) and so N0 is finite.

Now let y ∈ U(t0). By construction BCy is then a generically abelian semiabelian scheme

over Cy. We have a canonical Cy-morphism f : (S̃Cy)sm → N (Bκ(Cy)) by the definition

of the Néron model. Let Py ∈ B(κ(Cy)). The section Py extends uniquely to a element

of (S̃Cy)sm(Cy) by the valuative criterion of properness and Lemma A.1. It also extends

uniquely to an element of N (Bκ(Cy))(Cy) by the definition of the Néron model. By unicity,

these two extensions are compatible with the morphism f . Let s ∈ Cy(t0). Since the

number of irreducible components of (S̃Cy)sm
s is ≤ N0, we see that the images of the multiples

Py, 2 · Py, . . . of Py in N (Bκ(Cy))(s) are contained in at most N0 components of N (Bκ(Cy))s.

Hence the order of the image of Py in the component group of N (Bκ(Cy))s is ≤ N0. Since s

was arbitrary, we see that N0! · Py extends to an element of N (Bκ(Cy))
0(Cy). Note also (for

use in (b) below) that since BCy is semiabelian, N (Bκ(Cy))
0(Cy) naturally identifies with BCy

by the unicity of semiabelian extensions.

Finally let V be the open set H0\g(H\U). By construction, we have g−1(V ) ⊆ U . Thus

every point of V (t0) lifts to a point of U(t0) (since g is finite) and we see that V has the

required properties.

For the proof of (b) we first let U be as in the proof of (a). We let Sec0
U(BCU

/CU) the functor

from locally noetherian U -schemes T to sets, such that

Sec0
U(BCU

/CU)(T ) = {sections σ of BCT
→ CT such that deg((σ∗(L))Ct) = 0 for all t ∈ T}.

As BCU
is quasi-projective over U , this functor is representable by a scheme Sec0

U(BCU
/CU)

of finite type over U . See eg [47, Ex. before 5.6.3]. See the proof of Proposition 9.6 for a

similar construction. We leave the details to the reader. Now let x ∈ g−1(T0)∩U . We have

an identification

Sec0
U(BCU

/CU)x(t0) = Sec0
x(BCx/Cx)(t0)

= {P ∈ BCx(Cx) | the Néron-Tate height of P with respect to LBCx
vanishes}

See [44, III.3.2 and 3.3]. Since Trκ(Cx)|t0(B0,κ(Cx)) = 0, a theorem of Lang (see [11, Th.

9.15]) implies that Sec0
U(BCU

/CU)x(t0) consists of torsion sections. Furthermore, by the

Lang-Néron theorem, Sec0
U(BCU

/CU)x(t0) is finite. Hence Sec0
U(BCU

/CU)x is quasi-finite.

Since quasi-finiteness is a constructible property (see [13, IV.9.6.1 (vii)]) and g−1(T0) ∩ U
is dense in U (because g is finite and T0 is dense in H0), this implies that the scheme

Sec0
U(BCU

/CU) is quasi-finite over an open subset of U . Now replace U by one of its open
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subschemes so that Sec0
U(BCU

/CU) becomes quasi-finite over U . Let b00 be an upper bound

for the cardinality of the fibres of Sec0
U(BCU

/CU)→ U . Using (a), we conclude that we have

#(n0 · Tor(B0(κ(x)))) ≤ b00

for all x ∈ U(t0). In particular b00! · n0 · Tor(B0(κ(x))) is the trivial group. Thus by the

structure of finite subgroups of abelian varieties, we have

#Tor(B0(κ(x)))) ≤ (b00! · n0)2 dim(BCU
/CU ).

and we choose b0 := (b00! · n0)2 dim(BCU
/CU ). Finally we let as before V be the open set

H0\g(H\U). By construction, we have g−1(V ) ⊆ U . Thus every point of V (t0) lifts to a

point of U(t0) (since g is finite) and we see that V has the required properties.

B Ampleness of the Hodge bundle and inseparable

points

The terminology of this section is independent of the terminology of the rest of the article

and its appendices. In this appendix, we shall prove a mild extension of the main result of

[54].

Let k be a perfect field and let S be a geometrically connected, smooth and proper curve

over k. Let K := κ(S) be its function field. Suppose from now on that k has characteristic

p > 0.

Let π : A → S be a smooth commutative group scheme and let A := AK be the generic

fibre of A. Let εA/S : S → A be the zero-section and let ω := ε∗A/S(Ω1
A/S) be the Hodge

bundle of A over S.

Theorem B.1. Suppose that A/S is semiabelian and that A is an abelian variety. Suppose

that µ̄min(ω) > 0. Then there exists `0 ∈ N such the natural injection A(Kp−`0 ) ↪→ A(Kperf)

is surjective (and hence a bijection).

N.B. In [54, Th. 1.1], Theorem B.1 was proven under the assumption that A is principally

polarised and that k is algebraically closed. In can be shown that the condition µ̄min(ω) > 0

is equivalent to the requirement that ω is an ample bundle (see [54, Introduction] for detailed

references).

Proof. Notice first that in our proof of Theorem B.1, we may replace K by a finite extension

field K ′ without restriction of generality. We may thus suppose that A is endowed with an

m-level structure for some m > 3 with (m, p) = 1.
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If Z → W is a W -scheme and W is a scheme of characteristic p, then for any n > 0 we shall

write Z [n] → W for the W -scheme given by the composition of arrows

Z → W
Fn
W→ W.

Now fix n > 1 and suppose that A(Kp−n
)\A(Kp−n+1

) 6= ∅.

Fix P ∈ A(pn)(K)\A(pn−1)(K) = A(Kp−n
)\A(Kp−n+1

). The point P corresponds to a com-

mutative diagram of k-schemes

A

��
Spec K [n]

P
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Fn
K // Spec K

such that the residue field extension K|κ(P (Spec K [n])) is of degree 1 (in other words P is

birational onto its image). In particular, the map of K-vector spaces P ∗(Ω1
A/k) → Ω1

K[n]/k

arising from the diagram is non zero.

Now recall that there is a canonical exact sequence

0→ π∗K(Ω1
K/k)→ Ω1

A/k → Ω1
A/K → 0.

Furthermore the map F n,∗
K (Ω1

K/k)
Fn,∗
K→ Ω1

K[n]/k
vanishes. Also, we have a canonical iden-

tification Ω1
A/K = π∗K(ωK) (see [8, chap. 4., Prop. 2]). Thus the natural surjection

P ∗(Ω1
A/k)→ Ω1

K[n]/k
gives rise to a non-zero map

φn = φn,P : F n,∗
K (ωK)→ Ω1

K[n]/k.

The next crucial lemma examines the poles of the morphism φn.

We let E be the reduced closed subset, which is the union of the points s ∈ S, such that

the fibre As is not complete.

Lemma B.2. The morphism φn extends to a morphism of vector bundles

F n,∗
S (ω)→ Ω1

S[n]/k(E).

Proof. (of B.2). First notice that there is a natural identification Ω1
S[n]/k

(logE) = Ω1
S[n]/k

(E),

because there is a sequence of coherent sheaves

0→ ΩS[n]/k → Ω1
S[n]/k(logE)→ OE → 0
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where the morphism onto OE is the residue morphism. Here the sheaf Ω1
S[n]/k

(logE) is the

sheaf of differentials on S[n]\E with logarithmic singularities along E. See [29, Intro.] for

this result and more details on these notions.

We may also suppose without restriction of generality that A is principally polarised. Indeed,

consider the following reasoning. By Zarhin’s trick, the abelian variety B := (A×K A∨)4 is

principally polarised. Also, B can be endowed with an m-level structure compatible with

the given m-level structure on A, since A∨ is isogenous to A. Let B := (A×K A∨)4, where

(abusing language) we have written A∨ for the connected component of the zero-section of

the Néron model of A∨. The group scheme A∨ is also semiabelian, since A∨ is isogenous to

A over K. The morphism P × 0 × 0 × · · · × 0 (seven times) gives a point in B(pn)(K) and

there is a commutative diagram

F n,∗
K (ωB,K)

φn,P×0×... //

��

Ω1
K[n]/k

F n,∗
K (ωA,K)

φn,P // Ω1
K[n]/k

=

OO
(12)

where the vertical arrow on the left is the pull-back map induced by the closed immersion

λ 7→ λ× 0× 0× · · · × 0 (seven times). Now since B is principally polarised, we know that if

Lemma B.2 holds for principally polarised abelian varieties, the upper row of the diagram

(12) extends to a morphism F n,∗
S (ωB)→ Ω1

S[n]/k
(E) (note that the set of points, where B is

not complete coincides with the set of points, where A is not complete). Since F n,∗
S (ωA) is

a direct summand of F n,∗
S (ωB), we see that Lemma B.2 holds for A if it holds for B, thus

completing the reduction of Lemma B.2 to the principally polarised case.

The rest of the proof of Theorem B.1 is identical word for word with the proof of Theorem

1.1 in [54] (from the beginning of the proof of Lemma 2.1).

C Specialisation of the Mordell-Weil group

The terminology of this section is independent of the terminology of the rest of the article

and its appendices.

In this section, we shall prove a geometric analog of Néron’s result on the specialisation of

the generic Mordell-Weil group to a fibre in a family of abelian varieties over number fields

(see [35, chap. 9, Cor. 6.3]). The following results are reminiscent of some results proven

by Hrushovski in a mixed characteristic context (see [23]) and they are probably already

known to many people but we include complete proofs for lack of a reference.
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Let l0 be an algebraically closed field. Let U be a smooth and connected quasi-projective

variety over l0. Let B be an abelian scheme over U . Suppose given an immersion ι : U ↪→ PN

for some N ≥ 0. Let K be the function field of U and let B := BK .

Proposition C.1. Suppose that B(U) is finitely generated. For almost all linear subspaces

L ⊆ PN of codimension dim(U)− 1, the intersection C := L ∩ U is smooth, connected, non

empty, the specialisation map

B(U)→ BC(C)

is injective and Trκ(C)|l0(Bκ(C)) = 0.

Recall that the linear subspaces L ⊆ PN of codimension dim(U) − 1 are classified by the

Grassmannian Gr(dim(U) − 1, N), which is smooth and projective over l0. The words

”almost all” stand for ”for all the l0-rational points of some dense Zariski open subset of

Gr(dim(U)− 1, N)”.

Recall that by a theorem of Weil, the restriction map B(U)→ B(K) is a bijection. Thus, by

the Lang-Néron theorem, the condition that B(U) = B(K) is finitely generated is equivalent

to the condition TrK|l0(B) = 0 .

For the proof of Proposition C.1, we shall need a few lemmata:

Lemma C.2. Let N be a finite étale group scheme over U . Let t ∈ H1
et(U,N) and suppose

that t 6= 0. Then for almost all linear subspaces L ⊆ PN of codimension dim(U) − 1, the

intersection C := L∩U is smooth, connected, non empty and the restriction tC ∈ H1
et(C,NC)

of t to C does not vanish.

Proof. Let T → U be a torsor under N . Note that the torsor T is non trivial iff for all

the irreducible components T ′ of T , the (automatically flat and finite) morphism T ′ → U

has degree > 1. The same remark applies to the restriction of T to a smooth and connected

closed subscheme of U .

Let (Ti) be the set of irreducible components of T .

By Bertini’s theorem in Jouanolou’s presentation (see [30, p. 89, Cor. 6.11]), for almost all

linear subspaces L ⊆ PN of codimension dim(U)− 1,

- the intersection C := L ∩ U is smooth, connected and non empty;

and

- all the Ti,C are irreducible.

Let C be in this class. Suppose that T → U is not trivial. By construction, the irreducible

components of TC are the Ti,C . Since Ti,C → C is flat and finite of the same degree as
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Ti → U , we see that the irreducible components of TC all have degree > 1 over C. Hence

the torsor TC is not trivial.

Lemma C.3. Let N be a finite étale group scheme over U . Suppose that N(U) = 0.

Then for almost all linear subspaces L ⊆ PN of codimension dim(U) − 1, the intersection

C := L ∩ U is smooth, connected, non empty and NC(C) = 0.

Proof. Let (Ni) be the set of irreducible components of N , excluding the component of

the identity. The condition that N(U) = 0 is equivalent to the condition that for all i, the

morphism Ni → U has degree > 1.

As before, by Bertini’s theorem, for almost all linear subspaces L ⊆ PN of codimension

dim(U)− 1,

- the intersection C := L ∩ U is smooth and connected;

and

- all the Ni,C are irreducible.

Let C be in this class. By construction, the irreducible components of NC outside of the

component of the identity are the Ni,C . Since Ni,C → C is flat and finite of the same degree

as Ni → U , we see that the irreducible components of NC outside of the component of the

identity all have degree > 1 over C. Hence NC(C) = 0.

Lemma C.4. Let G ⊆ B(U) be a finite group. For almost all linear subspaces L ⊆ PN

of codimension dim(U) − 1, the intersection C := L ∩ U is smooth and connected and the

reduction map

G→ BC(C)

is injective.

Proof. Left to the reader.

Finally, we need an elementary but very insightful lemma, due to in essence to Néron. The

following version is due to Hrushovski (see [23, lemma 1]):

Lemma C.5 (Néron-Hrushovski). Let r : G → H be a map of abelian groups. Let l be

a prime number. Suppose that Torl(H) = 0 and that the induced map G/lG → H/lH is

injective. Then ker r ⊆
⋂
j≥0 l

jG.

Proof. Let g ∈ ker r. Suppose for contradiction that g 6∈
⋂
j≥0 l

jG. Let m ≥ 0 be the

smallest natural number such that g 6∈ lmG. Then there is g′ ∈ G such that lm−1g′ = g
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and thus r(g′) ∈ Torl(H) so that from the assumptions we have r(g′) = 0. Since the

map G/lG → H/lH is injective, there is g′′ ∈ G such that lg′′ = g′. Hence g = lmg′′, a

contradiction.

Proof. (of Proposition C.1). Let l be a prime number such that Torl(B(U)) = 0 and such

that l is not the characteristic of l0. Note that for any closed subscheme C of U , we have an

injection δC : B(C)/lB(C) ↪→ H1
et(C, ker [l]B,C) and this injection is functorial for restrictions

to smaller closed subschemes C1 ↪→ C. According to Lemmata C.3, C.2 and C.4, for almost

all linear subspaces L ⊆ PN of codimension dim(U)− 1,

- the intersection C := L ∩ U is smooth and connected;

- the restriction map H1(U, ker [l]B)→ H1(C, ker [l]B,C) is injective on the image of δU ;

- (ker [l]B,C)(C) = 0;

- the restriction map Tor(B(U))→ B(C) is injective.

Let C be in this class. By construction, the map B(U)/lB(U)→ B(C)/lB(C) is injective and

Torl(B(C)) = 0. Let F be a free subgroup of B(U), which is a direct summand of Tor(B(U)).

We have F ∩
(
∩j≥0 l

jB(U)
)

= 0 since B(U) is finitely generated and F is free. Applying

Lemma C.5 to G = B(U) and H = B(C), we see that the restriction map F → B(C) is

injective. Since the restriction map Tor(B(U)) → B(C) is also injective, we thus see that

the restriction map B(U) → B(C) is injective. Finally, we have Trκ(C)|l0(Bκ(C)) = 0, for

otherwise, we would have Torl(B(C)) 6= 0.
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Publications.

[40] J. S. Milne, Algebraic groups, Cambridge Studies in Advanced Mathematics, vol. 170, Cambridge Uni-

versity Press, Cambridge, 2017. The theory of group schemes of finite type over a field.

[41] , Arithmetic duality theorems, 2nd ed., BookSurge, LLC, Charleston, SC, 2006.

[42] James S. Milne, Étale cohomology, Princeton Mathematical Series, vol. 33, Princeton University Press,

Princeton, N.J., 1980.

[43] J. S. Milne, Abelian varieties, Arithmetic geometry (Storrs, Conn., 1984), Springer, New York, 1986,

pp. 103–150.
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