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Abstract

Let A be a semiabelian variety over an algebraically closed field of arbitrary
characteristic, endowed with a finite morphism ψ : A → A. In this paper we
give an essentially complete classification of all ψ-invariant subvarieties of A.
For example, under some mild assumptions on (A,ψ) we prove that every ψ-
invariant subvariety is a finite union of translates of semiabelian subvarieties.
This result is then used to prove the Manin-Mumford conjecture in arbitrary
characteristic and in full generality. Previously, it had been known only for the
group of torsion points of order prime to the characteristic of K. The proofs
involve only algebraic geometry, though scheme theory and some arithmetic
arguments cannot be avoided.

0 Introduction

Let A be a semiabelian variety over an algebraically closed field K of arbitrary
characteristic p, endowed with an isogeny ϕ : A → A. Consider the morphism
of schemes ψ : A → A, x 7→ ϕ(x) + a for some a ∈ A. In this paper we give
an essentially complete classification of all closed algebraic subvarieties X ⊂ A
satisfying ψ(X) = X. There are three types of building blocks:

(a) ϕ-invariant semiabelian subvarieties,

(b) subvarieties on which ψ induces an automorphism of finite order, and

(c) subvarieties on which some power of ψ induces the Frobenius morphism cor-
responding to a model over a finite subfield of K.

In Theorem 3.1 we show that every ψ-invariant closed subvariety is built up in a
precise way from such blocks. Under some mild assumptions on (A,ϕ) that forbid
building blocks of type (b) and (c), we deduce in Theorem 3.4 that every ψ-invariant
subvariety is a finite union of translates of semiabelian subvarieties. Special cases
of this result were proved by Bogomolov [2, Th. 3] and Hrushovski [9, Cor. 4.1.14].

The similarity between this result and the Manin-Mumford conjecture is no
accident. Indeed, one of the main purposes of this article is to give another proof
of that conjecture, using algebraic geometry alone. (One could also proceed in
the other direction: see Proposition 6.1.) In Theorems 3.6 and 3.7 we deduce two
versions of the conjecture in arbitrary characteristic. The weaker version 3.7 states
that if no nontrivial subquotient of A can be defined over a finite subfield of K,
then every closed algebraic subvariety X ⊂ A, whose intersection with the set of
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torsion points of A is Zariski dense in X, is a finite union of translates of semiabelian
subvarieties. The most general previously existing result is due to Hrushovski [8],
who proved the conjecture for the group of torsion points of order prime to the
characteristic of K.

This setup to prove the Manin-Mumford conjecture actually goes back to Hru-
shovski [9], [4]. When studying his proof, we came to suspect that one of his main
intervening results [9, Cor. 4.1.13], which can be phrased in terms of algebraic ge-
ometry but which he proved with the help of model theory, may be approached
with algebraic geometry alone. In an earlier article [13] we achieved this in the
case of abelian varieties in characteristic zero. In this article we cover the general
case: see Theorem 3.5. It became clear that after several reduction steps inspired
by Hrushovski, the central remaining problem is the classification of ψ-invariant
subvarieties of semiabelian varieties, i.e., Theorem 3.1 explained above. Therefore
most of this article deals with that problem on its own terms.

The proof of Theorem 3.1 is somewhat involved, but follows natural basic prin-
ciples. It uses only algebraic geometry, though the modern terminology of schemes
and some arguments of arithmetic flavor cannot be avoided. In contrast, no math-
ematical logic or Arakelov geometry is employed. The proof applies uniformly to
all cases, without any distinction between abelian and semiabelian varieties, and
with only few case distinctions according to the characteristic p. The case p > 0 is
substantially more difficult, because of problems arising from inseparable isogenies,
but the arguments for p = 0 are simply a proper subset of the general ones.

The main results are formulated in Section 3, where they are also reduced to
Theorem 3.1. Sections 1, 2, and 4 introduce terminology and some useful ingredients
to the proof. After decomposing X and taking quotients we may assume that X is
irreducible and the translation stabilizer StabA(X) is finite. The main part of the
proof begins in Section 5, where first consequences of these assumptions are derived.
Section 6 deals with torsion points and shows that the finite ψ-orbits in X form a
Zariski dense subset of X. This important fact is then used in two ways.

Section 7 deals with the “infinitesimally pure” case where ϕ differs by a separable
isogeny from the identity or Frobenius. In this case we prove that finite ψ-orbits
arise only when some power ψn acts trivially on X, or as Fp-valued points when ψn

is the Frobenius morphism corresponding to a model of X over a finite field Fpr . We
also show that X is contained in a translate of a ϕ-invariant semiabelian subvariety
on which ϕn is either the identity or the Frobenius morphism corresponding to a
model over Fpr . This is why, when A possesses no such subquotient, the original X
was a finite union of translates of semiabelian subvarieties. One should note that A
may still possess other subquotients that are defined over a finite field, because the
determining factor is the relation between ϕ and Frobenius, not just the presence
of Frobenius. Section 7 also finishes the proof in characteristic zero, because there
all isogenies are separable.

The next two sections deal with the general case of characteristic p > 0. The
purpose of Section 8 is to study the action of ψn on the formal completion of X
at a fixed point. We show that this completion possesses a direct product decom-
position according to weights relating ψ and Frobp. This decomposition can be
viewed as an analogue of the decomposition of the tangent space into generalized
eigenspaces, which might have been used fruitfully in characteristic zero. It is the
central structural result making our proof work in characteristic p. The passage
from the infinitesimal decomposition to a global decomposition is achieved in Sec-
tion 9, thereby finishing the proof of Theorem 3.1 in the general case.

Finally, in Section 10 we discuss the situation for arbitrary connected commu-
tative algebraic groups instead of semiabelian varieties.
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1 Conventions

Throughout this article we fix the following notation. Let K be an algebraically
closed field of characteristic p ≥ 0. If p > 0, then Fp denotes the algebraic closure
of the prime field in K, and for every integer r > 0 we denote by Fpr the unique
subfield of cardinality pr. The homomorphism x 7→ xp on any Fp-algebra is denoted
by σ.

Unless indicated otherwise, all schemes are of finite type over K, all morphisms
are morphisms of schemes over K, and all fiber products are taken over K. The
reduced subscheme of a scheme X is denoted by Xred. A reduced scheme of finite
type over K is called a variety over K and is often identified with the set of its
K-valued points.

If p > 0, every scheme X over Fp possesses a natural endomorphism which
is the identity on points and σ on local rings. It is called the absolute Frobe-
nius endomorphism of X and denoted again by σ : X → X. For a scheme X
over K the endomorphism σr : X → X factors through a natural morphism
Frobpr : X → (σr)∗X := X ×K,σr K over K, called the relative Frobenius mor-
phism of X. If X = X0 ×Fpr K for a scheme X0 over Fpr , the identity on X0

induces a natural isomorphism (σr)∗X ∼= X over K that identifies Frobpr on X
with the endomorphism σr × idK . The relative Frobenius morphism of any semi-
abelian variety is an isogeny.

2 Semiabelian varieties with an isogeny

Throughout this article we consider semiabelian varieties A over K together with
a fixed isogeny A → A, always denoted ϕ. A reduced subscheme X ⊂ A is called
ϕ-invariant if ϕ(X) = X. A quotient of a ϕ-invariant semiabelian subvariety A′ ⊂
A by a subgroup scheme G ⊂ A′ satisfying ϕ(G) ⊂ G is called a ϕ-invariant
subquotient of A. The induced isogeny A′/G→ A′/G is then again denoted ϕ.

A homomorphism h : A → A′ between two semiabelian varieties with fixed
isogenies is called ϕ-equivariant if it satisfies ϕ ◦ h = h ◦ ϕ. If there exists a ϕ-
equivariant isogeny, we say that A and A′ are ϕ-isogenous. Note that this relation
is symmetric, because for any ϕ-equivariant isogeny h : A → A′ there exists an
isogeny h′ : A′ → A such that h′ ◦ h = n · idA for some positive integer n, and h′ is
automatically ϕ-equivariant.

Definition 2.1 (a) We call A pure of weight 0 if ϕ is an automorphism of finite
order on A.

(b) We call A positive if A possesses no ϕ-invariant subquotient of positive di-
mension that is pure of weight 0.

(c) We call A pure of weight α = r/s for positive integers r and s, not necessarily
relatively prime, if p > 0 and ϕs = Frobpr for some model of A over Fpr .

(d) We call A strictly mixed if A possesses no ϕ-invariant subquotient of positive
dimension that is pure of some weight α ≥ 0.
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Remark 2.2 Condition (c) is invariant under replacing Fpr by a finite extension,
because r and s are then multiplied by the same number. Similarly, if ϕ is replaced
by a power ϕn for n ≥ 1, the notion of purity is preserved, except that the weight
is multiplied by n. Therefore condition (d) does not change.

Remark 2.3 (a) Being pure of positive weight is not invariant under isogenies. For
example, a supersingular abelian variety of dimension > 1 is always isogenous to
one defined over a finite field, but need not itself be definable over a finite field.

(b) Being pure of some weight is not invariant under extensions, because ϕ can
have a nontrivial unipotent part in End(A)⊗Z Q.

(c) If A and A′ are pure of distinct weights, then A and A′ cannot have a common
ϕ-invariant subquotient.

(d) If A is positive or strictly mixed, then so is any semiabelian variety ϕ-
isogenous to A and any ϕ-invariant subquotient of A.

Proposition 2.4 Assume that A is pure of weight r/s, and fix a model A0 of A
over Fpr such that ϕs = Frobpr . Then every ϕ-invariant closed subvariety X ⊂ A
arises by base change from a closed subvariety X0 ⊂ A0.

Proof. Let L0 be an ample invertible sheaf on A0, and let L be its pullback to A.
Let I ⊂ OA denote the ideal sheaf ofX, and choose n� 0 so that IL⊗n = I⊗L⊗n is
generated by global sections. The ϕ-invariance of X implies that (σr × idK)(X) =
X = (σr × σr)(X), and so X = (idA0 × σr)(X). This equality induces a σr-
linear automorphism on H0(A, IL⊗n); hence this space arises from a subspace
I0 ⊂ H0(A0,L⊗n0 ). If X0 ⊂ A0 denotes the closed subscheme defined by the ideal
I0L⊗−n0 ⊂ OA0 , we clearly have X = X0 ×Fpr K, as desired. q.e.d.

We also consider the morphism ψ : A → A, x 7→ ϕ(x) + a for some a ∈ A.
A subscheme X ⊂ A is called ψ-invariant if ψ(X) = X.

Proposition 2.5 If A is positive, then every ψ-invariant subvariety is a translate
of a ϕ-invariant subvariety.

Proof. Since A is positive, the morphism ϕ − idA : A → A has finite kernel
and is therefore surjective. Thus there exists b ∈ A with ϕ(b) − b = a. Therefore
ϕ(X + b) = ϕ(X) + a+ b = ψ(X) + b = X + b, as desired. q.e.d.

Proposition 2.6 (a) For every irreducible closed subvariety X ⊂ A there exists
a unique smallest semiabelian subvariety AX ⊂ A containing a translate of X.

(b) If X is ψ-invariant, then AX is ϕ-invariant.

Proof. For d� 0 consider the morphism

X2d −→ A, (x1, . . . , x2d) 7→ x1 − x2 + x3 −+ · · · − x2d.

Since X and hence X −X := {x− y | x, y ∈ X} is irreducible, and 0 ∈ X −X, the
image of this morphism is the closed algebraic subgroup AX ⊂ A that is generated
by X − X if d � 0. Now any semiabelian subvariety containing a translate of X
contains X − X, so it must contain AX . As AX contains the translate X − x for
any x ∈ X, we find that AX has the property (a). If X is ψ-invariant, the above
morphism is equivariant with respect to the diagonal action (ψX)2d on X2d and the
action of ϕ on A; hence AX is ϕ-invariant, proving (b). q.e.d.
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3 Main Results

The following theorem will be proved in the subsequent sections. (In the case
where ϕ is multiplication by an integer > 1 it was shown by Bogomolov [2, Th. 3].
It can also be viewed as a generalization to arbitrary characteristic of the case
σ = id of Hrushovski’s result [9, Cor. 4.1.14, p. 90].) In this section, we deduce
some consequences from it. The definition of StabA(X) is given in Section 4. The
ψ-invariance of X implies that ϕ

(
StabA(X)

)
⊂ StabA(X).

Theorem 3.1 Let A be a semiabelian variety over an algebraically closed field,
endowed with an isogeny ϕ : A → A. Consider the morphism ψ : A → A, x 7→
ϕ(x)+a for some a ∈ A, and let X ⊂ A be an irreducible closed algebraic subvariety
satisfying ψ(X) = X. Let B denote the identity component of StabA(X)red. Then
there exist finitely many ϕ-equivariant homomorphisms hα : Aα → A/B, where Aα
is pure of weight α ≥ 0, and irreducible closed subvarieties Xα ⊂ Aα satisfying
ϕ(Xα) + aα = Xα for some aα ∈ Aα, such that

h :=
∑
α
hα :

∏
α
Aα −→ A/B

has finite kernel and, for some point ā ∈ A/B,

X/B = ā+ h
(∏
α
Xα

)
.

Remark 3.2 The subvarieties Xα ⊂ Aα are determined only up to translation.
Thus for α > 0 we may, by Proposition 2.5, require that aα = 0, i.e., that Xα is
ϕ-invariant. Then by Definition 2.1 and Proposition 2.4 both Xα ⊂ Aα are defined
over a finite field.

Remark 3.3 If ϕ : A → A is an arbitrary endomorphism, then ϕn(A) for any
n � 0 is the largest ϕ-invariant semiabelian subvariety on which ϕ is an isogeny.
Any algebraic subvariety X ⊂ A with ψ(X) = X then satisfies X = ψn(X) =
ϕn(X)+ψn(0) ⊂ ϕn(A)+ψn(0); hence it can be described by applying Theorem 3.1
to X − ψn(0) ⊂ ϕn(A) in place of A.

Theorem 3.4 Let A be a semiabelian variety over an algebraically closed field,
endowed with an isogeny ϕ : A → A. Assume that A is strictly mixed in the sense
of 2.1 (d). Then any closed algebraic subvariety X ⊂ A satisfying ϕ(X) + a = X
for some a ∈ A is a finite union of translates of semiabelian subvarieties.

Proof. Set ψ(x) := ϕ(x) + a. Then every irreducible component Y of X is the
image under ψ of some irreducible component of X. As the set of these irreducible
components is finite, it is therefore permuted by ψ. Thus some positive power ψn

maps Y to itself. By Remark 2.2 we may replace ϕ by ϕn, and consequently ψ
by ψn, and then we may apply Theorem 3.1 to Y in place of X. The resulting
homomorphisms hα must be trivial, because A is strictly mixed, and so Y = B+a′

for a semiabelian subvariety B and a point a′ ∈ A. q.e.d.

The next consequence generalizes another theorem of Hrushovski [9, Cor. 4.1.13,
p. 90] to arbitrary characteristic. It follows from Theorem 3.1 and Proposition 2.4
in exactly the same way as [13, Thm. 2.4] was deduced from [13, Thm. 2.1].

Theorem 3.5 Let A be a semiabelian variety over an algebraically closed field K
of characteristic p ≥ 0, and let X be an irreducible closed algebraic subvariety. Let
ρ be an automorphism of K, such that both X ⊂ A can be defined over the fixed
field Kρ. The automorphism of the abstract group A(K) induced by ρ is again
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denoted by ρ. Let P (T ) ∈ Z[T ] be a monic polynomial with integral coefficients,
no root of which is a root of unity. Let Γ denote the kernel of the homomorphism
P (ρ) : A(K) → A(K), and assume that X(K) ∩ Γ is Zariski dense in X. Let B
denote the identity component of StabA(X)red.

(a) If p = 0, then X is a translate of B.

(b) If p > 0, there is a homomorphism with finite kernel h : A′ → A/B, a
model A′0 of A′ over a finite subfield Fpr ⊂ K, an irreducible closed subvariety
X ′

0 ⊂ A′0, and a point ā ∈ A/B, such that

X/B = ā+ h
(
X ′

0 ×Fpr K
)
.

Now let Tor(A) denote the set of torsion points of A(K). The following two
consequences are versions of the Manin-Mumford conjecture. (Compare Bogomolov
[3], Raynaud [14], [15], Hrushovski [9], [8], Ullmo, Szpiro, Zhang [17], [19].)

Theorem 3.6 Let A be a semiabelian variety over an algebraically closed field K
of characteristic p ≥ 0. Let X be an irreducible closed algebraic subvariety such
that X(K)∩Tor(A) is Zariski dense in X. Let B denote the identity component of
StabA(X)red.

(a) If p = 0, then X is a translate of B.

(b) If p > 0, there is a homomorphism with finite kernel h : A′ → A/B, a
model A′0 of A′ over a finite subfield Fpr ⊂ K, an irreducible closed subvariety
X ′

0 ⊂ A′0, and a point ā ∈ A/B, such that

X/B = ā+ h
(
X ′

0 ×Fpr K
)
.

Proof. (Compare Hrushovski [9, §5], [4], [13].) Choose a subfield L ⊂ K that is
finitely generated over its prime field, such that both X ⊂ A can be defined over L.
Let S be an integral scheme of finite type over SpecZ whose function field is L.
After shrinking S we may assume that A is the generic fiber of a semiabelian scheme
A → S. For any abelian group G and any prime number ` we let Tor`(G) ⊂ Tor(G)
denote the group of torsion points of G of `-power order, and Tor`(G) the subgroup
of torsion points of order prime to `. Note that Tor(G) = Tor`(G) ⊕ Tor`(G).
Now consider a closed point s ∈ S of residue characteristic `, and let k̄s denote
an algebraic closure of its residue field ks. The reduction map then induces an
isomorphism of groups Tor`(A) ∼−−→ Tor`(As(k̄s)).

Suppose first that p > 0, then necessarily ` = p. As the p-rank of the fiber
As is a constructible function of s ∈ S, we may choose s so that the p-ranks of
As and A coincide. The reduction map then induces an isomorphism Torp(A) →
Torp(As(k̄s)), and hence an isomorphism Tor(A) → Tor(As(k̄s)). Let q = pr be
the cardinality of ks; then σr : x 7→ xq induces an endomorphism of As. It is
known [18] that all complex roots of its characteristic polynomial P (T ) ∈ Z[T ] have
absolute value

√
q on the abelian part, respectively q on the toric part of As. By

construction P (σr) = 0 as an endomorphism of As, and so also as an endomorphism
of Tor(As(k̄s)). Consider the unique lift of σr on k̄s to the strict henselization ofOS,s
in K, and extend this in any way to an automorphism ρ of K. Then the reduction
isomorphism Tor(A) → Tor(As(k̄s)) is equivariant with respect to ρ and σr, and we
deduce that P (ρ) = 0 on Tor(A). In other words, we have Tor(A) ⊂ Γ := KerP (ρ),
and so X(K) ∩ Γ is Zariski dense in X. Thus Theorem 3.6 is a direct consequence
of Theorem 3.5 in this case.

In the case p = 0 we leave aside the `-torsion for a moment. The same arguments
yield an automorphism ρ of K over L and a monic polynomial P (T ) ∈ Z[T ] whose
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roots are no roots of unity, such that P (ρ) = 0 on Tor`(A). Following [4] we repeat
the same arguments with another closed point s′ ∈ S of residue characteristic `′ 6= `,
obtaining an automorphism ρ′ of K over L and a monic polynomial P ′(T ) ∈ Z[T ]
whose roots are no roots of unity, such that P ′(ρ′) = 0 on Tor`

′
(A). From these

two automorphisms we will construct a third one that possesses the right properties
on all of Tor(A). For this let L`, L` ⊂ K be the fields generated over L by the
coordinates of all points in Tor`(A), resp. in Tor`(A). Both are infinite Galois
extensions of L. This intersection is known to be finite over L by Serre. (See [16,
pp. 33–34, 56–59] when L/Q is finite and A is an abelian variety. From [16, p. 54],
[4, § 3.3] we understand that his arguments extend to the general case.) Thus
after replacing L by L` ∩ L`, we may assume that L` and L` are linearly disjoint
over L. The subfield of K generated by the coordinates of all points in Tor(A) is
then canonically isomorphic to L` ⊗L L`. The automorphism of L` ⊗L L` induced
by ρ⊗ ρ′ then extends to some automorphism ρ′′ of K over L. Now P (ρ) vanishes
on Tor`(A); hence so does P (ρ′′). Similarly, P ′(ρ′) vanishes on Tor`(A) ⊂ Tor`

′
(A);

hence so does P ′(ρ′′). Thus with P ′′(T ) := P (T )P ′(T ) we deduce that P ′′(ρ′′)
vanishes on Tor(A). In other words, we have Tor(A) ⊂ Γ := KerP ′′(ρ′′), and so
again Theorem 3.6 reduces to Theorem 3.5 in this case. q.e.d.

Theorem 3.7 Let A be a semiabelian variety over an algebraically closed field K,
and let X ⊂ A be a closed algebraic subvariety. If K has positive characteristic,
assume that no nontrivial subquotient of A is defined over a finite subfield of K.
Then

X(K) ∩ Tor(A) =
⋃
i∈I

Xi(K) ∩ Tor(A),

where I is a finite set and each Xi is the translate by an element of A of a semi-
abelian subvariety of A, immersed in X.

Proof. After replacing X by the Zariski closure of X(K) ∩ Tor(A), we may pass
to an irreducible component of X as in the proof of 3.4; the result then follows from
Theorem 3.6. q.e.d.

For a discussion of arbitrary connected commutative algebraic groups instead of
semiabelian varieties see Section 10.

4 Translation stabilizer

Let A be a semiabelian variety over K, and consider an irreducible closed subvariety
X ⊂ A. In this section we recall, resp. prove some basic facts related to the
translation stabilizer of X. This is the closed subgroup scheme StabA(X) ⊂ A
that is characterized uniquely by the fact that for any scheme S over K and any
morphism a : S → A, translation by a on the product A × S maps the subscheme
X ×S to itself if and only if a factors through StabA(X). It exists by [7, exp. VIII,
Ex. 6.5 (e)]. The identity component of the reduced subscheme StabA(X)red is a
semiabelian subvariety.

Proposition 4.1 For every closed subgroup scheme G ⊂ StabA(X) we have

StabA/G(X/G) = StabA(X)/G.

Proof. Consider a morphism ā : S → A/G. Since the morphism A → A/G is
faithfully flat by [7, exp. VIB, Prop. 9.2], so is the induced morphism pr1 : T :=
S×A/GA→ S, and the quotient of T by G is S again. Moreover ā is determined by
the morphism a := pr2 : T → A. Now ā is an S-valued point of StabA/G(X/G) if
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and only if translation by ā on the scheme (A/G)×S maps the subscheme (X/G)×S
to itself. By faithful flatness this is equivalent to saying that translation by a on
A × T maps the subscheme X × T to itself. But this means that a is a T -valued
point of StabA(X), and taking quotients by G it means that ā is an S-valued point
of StabA(X)/G, as desired. q.e.d.

Remark 4.2 In 3.1 it suffices to prove the theorem for X/B ⊂ A/B in place of
X ⊂ A. Thus by Proposition 4.1 it suffices to prove the theorem when B = 0, i.e.,
when StabA(X) is finite.

Remark 4.3 Theorem 3.1 is also invariant under ϕ-isogenies. Indeed, consider a
ϕ-equivariant isogeny h : A′ → A and a ψ-invariant closed algebraic subvariety
X ⊂ A. Then h−1(X)red is again invariant under a translation of ϕ, and since X
is irreducible, all irreducible components of h−1(X)red are translates of each other.
Thus any single irreducible component X ′ is invariant under a translation of ϕ.
Furthermore we have h(X ′) = X and, if B′ denotes the identity component of
StabA′(X ′)red, we have h(B′) = B. Thus if Theorem 3.1 holds for X ′ ⊂ A′, then it
follows for X ⊂ A.

Remark 4.4 Theorem 3.1 is invariant under replacing X by an arbitrary trans-
late. Thus for the proof we can replace A by the semiabelian subvariety AX from
Proposition 2.6, where desired.

For later use we recall the jet maps associated to X, following Abramovich [1,
§2.1]. For any integer m ≥ 0 and any point x ∈ X(K) we have natural K-linear
maps

Lm := OA,0/mm+1
A,0

∼−−→ OA,x/mm+1
A,x � OX,x/mm+1

X,x ,

where the isomorphism on the left hand side results from translation by x. For
x ∈ Xreg, the dimension dm of the right hand side is a fixed number depending
only on dim(X) and m. Thus any such point determines a point fm(x) in the
Grassmannian Grassdm

(Lm) of quotients of Lm of dimension dm. For the following
result see [1, §2.1].

Proposition 4.5 The map fm : Xreg → Grassdm
(Lm) is a morphism, which for

m � 0 factors through a morphism Xreg/StabA(X) → Grassdm
(Lm) that is a

locally closed immersion over an open dense subscheme. In other words, if Y ⊂
Grassdm(Lm) denotes the closure of its image, then the morphism Xreg/StabA(X)
→ Y is a birational equivalence.

5 Bijectivity

From now on we consider the situation of Theorem 3.1. Let ψX : X → X denote
the morphism induced by ψ. By |S| we mean the number of closed points of a
scheme S.

Proposition 5.1 The number of points in every sufficiently general fiber of ψX is
|StabA(X) ∩Ker(ϕ)|.

Proof. Since ψ(X) = X by assumption, we have X ⊂ ψ−1(X). For dimension
reasons X is therefore an irreducible component of ψ−1(X). By definition of ψ
this is equal to ϕ−1(X − a). Now write ϕ as the composite of a separable isogeny
ϕs : A → A′ with a totally inseparable isogeny ϕi : A′ → A. Then ϕi induces a
homeomorphismX ′ := ϕ−1

i (X−a) → X−a, and ϕs induces an étale Galois covering
ϕ−1(X−a) → X ′ with Galois group Ker(ϕs) = Ker(ϕ)red. Since X is an irreducible
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component of ϕ−1(X − a) and different irreducible components meet at most in a
subscheme of codimension ≥ 1, it follows that the restriction of ϕs to X → X ′ is an
étale Galois covering with Galois group StabKer(ϕ)red(X) = StabA(X) ∩ Ker(ϕ)red

over an open dense subscheme of X ′. This implies the desired assertion. q.e.d.

Proposition 5.2 If StabA(X) is finite, then ψX is generically bijective.

Proof. (Compare [2], [12, §1.2].) By induction on n the preceding proposi-
tion shows that the number of points in every sufficiently general fiber of ψnX is
|StabA(X) ∩ Ker(ϕ)|n. On the other hand, by applying the proposition directly
to ψnX instead of ψX this number is also equal to |StabA(X) ∩ Ker(ϕn)|. Letting
n→∞ shows that |StabA(X)∩Ker(ϕ)| = 1 if StabA(X) is finite. By the preceding
proposition ψX is then generically bijective. q.e.d.

Proposition 5.3 If StabA(X) is finite, then ψX is bijective.

Proof. By the preceding proposition ψX is generically bijective. Let X ′ be the
normalization of X. Then ψX induces a finite morphism ψX′ : X ′ → X ′ that is
again generically bijective. The corresponding function field extension is purely
inseparable; hence it is dominated by Frobenius Frobpr for some r. By normality,
it follows that Frobpr on X ′ actually factors through ψX′ . Like Frobpr , it follows
that ψX′ is bijective everywhere.

Now letX ′′ be the fiber product ofX ′ with itself overX, and let ψX′′ : X ′′ → X ′′

be the restriction of ψX′ × ψX′ . Then we have a commutative diagram

X ′′
pr1 //
pr2

//

ψX′′

��

X ′ //

ψX′

��

X

ψX

��
X ′′

pr1 //
pr2

// X ′ // X.

As ψX′ is proper and bijective, and X ′′ is a closed subscheme of X ′ × X ′, the
morphism ψX′′ is proper and injective. On the one hand it is therefore injective on
the finite set of irreducible components of X ′′, and hence surjective on this set. But
on the other hand its image is closed, so it is equal to X ′′, and ψX′′ is bijective.
Since set-theoretically X is the quotient of X ′ by the equivalence relation defined
by X ′′, we deduce that the ψX is bijective, as desired. q.e.d.

Proposition 5.4 Let AX ⊂ A be the ϕ-invariant semiabelian subvariety associated
to X by Proposition 2.6. If StabA(X) is finite, then the endomorphism AX → AX
induced by ϕ is bijective.

Proof. For d� 0 consider the morphism X2d � AX from the proof of 2.6. Setting
Y := X2d and Ỹ := Y ×AX

Y ⊂ X4d, we obtain a commutative diagram

Ỹ
pr1 //
pr2

//

(ψX)4d

��

Y //

(ψX)2d

��

AX

ϕ

��
Ỹ

pr1 //
pr2

// Y // AX .

As ψX : X → X is proper and bijective by Proposition 5.3, so are the vertical
morphism in the middle and the morphism (ψX)4d : X4d → X4d. Thus the vertical
morphism on the left is proper and injective. On the one hand it is therefore injective
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on the finite set of irreducible components of Ỹ , and hence surjective on this set.
But on the other hand its image is closed, so it is equal to Ỹ . The vertical morphism
on the left is therefore bijective. Since set-theoretically AX is the quotient of Y by
the equivalence relation defined by Ỹ , we deduce that the vertical map on the right
is bijective, as desired. q.e.d.

6 Torsion points and ψ-orbits

Consider the following groups of torsion points:

Torϕ(A) := {a ∈ Tor(A) | ∃n ≥ 1 : ϕn(a) = a},

Torϕ(A) := {a ∈ Tor(A) | ∃n ≥ 1 : ϕn(a) = 0}.

Using the fact that Ker(m · idA) is finite for every m ≥ 1 one easily shows that

Tor(A) = Torϕ(A)⊕ Torϕ(A).

Proposition 6.1 If A is positive and X is ϕ-invariant, then X∩Torϕ(A) is Zariski
dense in X.

This result shows that the classification of ϕ-invariant subvarieties and the
Manin-Mumford conjecture are intimately related. In fact, Theorem 3.1 can proba-
bly be deduced from Theorem 3.6. In our setup, however, we proceed in the reverse
direction.

Proof. Suppose first that K = Fp for p > 0 and that StabA(X) is finite. Then
every closed point of X is torsion. Choose a finite subfield Fpr ⊂ Fp over which X ⊂
A and ϕ = ψ can be defined. Since ψX is bijective by Proposition 5.3, it is bijective
on the finite set X(Fprn) for every n ≥ 1. It follows that X(Fprn) ⊂ Torϕ(A) and
hence X

(
Fp

)
⊂ Torϕ(A), which is trivially Zariski dense.

If StabA(X) is not finite, let B be the identity component of StabA(X)red. One
easily shows that the sequence

0 → Torϕ(B) → Torϕ(A) → Torϕ(A/B) → 0

is exact. Let ` be any prime number not dividing deg(ϕ) and not equal to p.
Then the group Tor`(B) of `-power torsion points of B is contained in Torϕ(B)
and Zariski dense in B. Let Y ⊂ X be the Zariski closure of X ∩ Torϕ(A). From
Tor`(B) ⊂ StabA(Y ) we can then deduce B ⊂ StabA(Y ). But Y/B is the Zariski
closure of (X/B) ∩ Torϕ(A/B), which by the earlier case is X/B. Thus Y = X, as
desired.

In the general case there exist a finitely generated integral Z-algebra R ⊂ K,
a semiabelian scheme A → S := SpecR, an isogeny Φ : A → A, and a closed
subscheme X ⊂ S satisfying Φ(X ) = X , such that (A,ϕ,X) ∼= (Aη,Φη,Xη) for the
K-valued point η corresponding to the embedding R ↪→ K. After shrinking S, if
necessary, we may assume that S is regular, that X → S is flat, and that every
geometric fiber Xs is irreducible. Let s be a geometric point above a closed point
of S.

Lemma 6.2 Every point in X reg
s ∩ TorΦs(As) lifts to a point in Xreg ∩ Torϕ(A).

Proof. For n ≥ 1 let X reg
n denote the intersection of diag(X reg) and graph(Φn)

within X reg×SX reg. By construction X reg×SX reg is regular of dimension dim(S)+
2 dim(X), and we have taken the intersection of two closed subschemes of codimen-
sion dim(X). Thus every irreducible component of X reg

n has dimension ≥ dim(S).
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On the other hand ϕn − idA is an isogeny because A is positive; hence Φn − idA
is an isogeny in every fiber. Since X reg

n can be embedded in Ker(Φn − idA), it is
quasifinite over S. For dimension reasons we thus find that every irreducible com-
ponent of X reg

n has dimension dim(S) and dominates S. Therefore every point in
every fiber of X reg

n can be lifted to a point in the generic fiber. Letting n → ∞
proves the lemma. q.e.d.

Now let Y ⊂ X be the Zariski closure of X ∩ Torϕ(A), and let Y be its closure
in the whole family X . If Y 6= X, then Ys 6= Xs for all sufficiently general points s.
But by the lemma Ys contains X reg

s ∩TorΦs(As), and for Fp-valued points we have
already seen that the latter is Zariski dense in Xs. Thus Ys = Xs for all points s
defined over some Fp. This shows that Y = X, as desired. q.e.d.

The next result concerns the opposite case where A has no nontrivial positive
subquotient.

Proposition 6.3 Assume that A is a successive extension of ϕ-invariant subquo-
tients that are pure of weight 0. If StabA(X) is finite, then some power ψnX for
n ≥ 1 is the identity.

Proof. After raising ϕ and ψ to a positive power we may assume that ϕ acts
trivially on the given subquotients of A. Then the endomorphism ϕ− idA is nilpo-
tent. Next suppose that the proposition has been proved for X/StabA(X) ⊂
A/StabA(X) in place of X ⊂ A. Then some power ψnX induces the identity on
X/StabA(X). It therefore permutes the d := |StabA(X)| points in every StabA(X)-
orbit; hence ψnd!X fixes every point of X, as desired. Using Proposition 4.1 we are
thus reduced to the case that StabA(X) is trivial.

Then by Proposition 4.5 we may fix m � 0 so that the jet map fm : Xreg →
Grassdm(Lm) is a birational equivalence to a closed subvariety Y ⊂ Grassdm(Lm).
As ϕ− idA is nilpotent, ϕ induces a unipotent automorphism of Lm := OA,0/mm+1

A,0 .
For simplicity we denote this automorphism and the associated automorphism of
Grassdm

(Lm) again by ϕ. By construction we then have fm ◦ ψX = ϕ ◦ fm, and so
Y is invariant under ϕ. We now distinguish two cases.

If p > 0, every unipotent automorphism of Lm has finite order. Thus ϕ has finite
order on Y ; hence ψX has finite order, as desired. If p = 0 we let G ⊂ AutK(Lm)
be the Zariski closure of the subgroup generated by ϕ. Then the action of ϕ on the
Grassmannian factors through the natural algebraic action of G, and the ϕ-invariant
closed subvariety Y is also invariant under G. Suppose that ϕ acts nontrivially on Y .
Then so does G, and since G is the Zariski closure of the subgroup generated by
a nontrivial unipotent automorphism in characteristic zero, we have G ∼= Ga,K .
Every non-trivial G-orbit in Y is therefore isomorphic to G. Choose such an orbit
which meets the open subset U ⊂ Y over which fm : Xreg → Y is an isomorphism.
The equivariance of fm implies that U is invariant under ϕ; hence the entire orbit is
contained in U . Lifting this orbit via fm yields an embedding A1

K
∼= G ↪→ Xreg ⊂ A.

But a semiabelian variety A does not possess a nonconstant morphism A1
K → A.

Thus ϕ must act trivially on Y , and so ψX acts trivially on X, as desired. q.e.d.

Proposition 6.4 If StabA(X) is finite, then the union of all finite ψ-orbits in X
is Zariski dense in X.

Remark. The assumption that StabA(X) is finite in the two preceding propositions
cannot be dropped, because ψ might involve a translation by a point of infinite order.

Proof. Let A′ ⊂ A be the largest ϕ-invariant semiabelian subvariety contained in
Ker(ϕn!− idA)n for some n� 0, and consider the ϕ-invariant short exact sequence

0 −→ A′ −→ A
π−→ A′′ −→ 0.

11



Then A′′ is positive and X ′′ := π(X) is invariant under the induced morphism
ψ : A′′ → A′′. Let us write it in the form ψ(x′′) = ϕ(x′′) + a′′. The proof
of Proposition 2.5 shows that ϕ(X ′′ + b′′) = X ′′ + b′′ for some b′′ ∈ A′′ with
ϕ(b′′) − b′′ = a′′. From Proposition 6.1 we deduce that the finite ϕ-orbits form a
Zariski dense subset of X ′′ + b′′. Therefore the finite ψ-orbits form a Zariski dense
subset of X ′′. To prove the proposition it suffices to show that for all n ≥ 1 and
all fixed points x′′ of ψn in some dense open subset U ′′ ⊂ X ′′, the finite ψn-orbits
form a Zariski dense subset of X ∩ π−1(x′′).

To show this we set X ′
x := (X−x)∩A′ for every x ∈ X; we then have X ′

x+x =
X ∩ π−1(π(x)). Let B′

x be the identity component of StabA′(X ′
x)

red. This is a
semiabelian subvariety of A′ which varies in a flat family for x in some dense open
subset U ⊂ X. Now recall that every flat family of semiabelian subvarieties of a
semiabelian variety is locally constant for the Zariski topology. Indeed, for every
n relatively prime to p, the kernel of n · id is finite étale over the base and hence
locally constant, and thus so is the set of all torsion points of order prime to p; but
this set is dense in the fiber, and so the whole fiber is locally constant. As X is
irreducible, it follows that all B′

x are equal for x ∈ U . Therefore translation by these
B′
x maps a dense open subset of X to itself; hence it stabilizes X. But StabA(X)

is finite by assumption, so we may deduce that StabA′(X ′
x) is finite for all x ∈ U .

Any nonempty open subset U ′′ ⊂ π(U) will suffice for our purposes.
Indeed, suppose that x ∈ U and that ψn(π(x)) = π(x) for n ≥ 1. Then ψn

maps X ′
x + x = X ∩ π−1(π(x)) to itself. Thus a translate of ψn, and hence of ϕn,

maps X ′
x to itself. Since StabA′(X ′

x) is finite, we can now apply Proposition 6.3 to
X ′
x ⊂ A′, with ϕn in place of ϕ. It follows that some power ψnm for m ≥ 1 acts

trivially on X ′
x + x, and so its fixed points are Zariski dense, as desired. q.e.d.

7 The infinitesimally pure case

In this section we prove Theorem 3.1 when A and ϕ behave infinitesimally as if they
were pure according to 2.1, i.e., when some power ϕs differs from the identity or
from Frobenius only by a separable isogeny. The two remaining sections will reduce
the general case to this infinitesimally pure case.

The arguments are based on the jet map fm : Xreg → Grassdm
(Lm). We

assume that StabA(X) is finite. Then by Proposition 4.5 we may fix m � 0 so
that fm induces a quasifinite dominant morphism from Xreg to a closed subvariety
Y ⊂ Grassdm

(Lm). Let AX ⊂ A be the ϕ-invariant semiabelian subvariety from
Proposition 2.6, which is the unique smallest one containing a translate of X. The
first result finishes the proof in characteristic zero:

Proposition 7.1 If StabA(X) is finite and ϕ is separable, then AX is pure of
weight 0 in the sense of 2.1. In particular, Theorem 3.1 is true when ϕ is separable.

Proof. If ϕ is separable, then so is the induced isogeny on any ϕ-invariant quotient
of A. Thus by Remark 4.2 the theorem in the separable case is reduced to the case
that StabA(X) is finite. In that case, we simply set A0 := AX and let X0 be any
translate of X that is contained in A0; Theorem 3.1 is then clearly true in this case.
Thus it suffices to prove the first assertion.

So assume now that ϕ is separable and StabA(X) is finite. Then ϕ induces an
automorphism of Lm = OA,0/mm+1

A,0 and thus of Grassdm
(Lm), which for simplicity

we again denote by ϕ. By construction we then have fm ◦ ψX = ϕ ◦ fm, and so Y
is ϕ-invariant. As StabA(X) is trivial, Proposition 6.4 implies that the union of all
finite ϕ-orbits in Y is Zariski dense in Y .
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Lemma 7.2 Some power ϕn for n ≥ 1 acts trivially on Y .

Proof. Let G ⊂ AutK(Lm) be the Zariski closure of the subgroup generated
by ϕ. Then the action of ϕ on the Grassmannian factors through the natural
algebraic action of G, and by construction every finite ϕ-orbit is a finite G-orbit
and vice versa. Now G is an algebraic group of finite type over K, so its number of
connected components is finite, say n. The stabilizer of any point from a finite orbit
contains the identity component; hence the length of every finite G-orbit divides n.
Therefore the length of every finite ϕ-orbit in Grassdm(Lm) divides n.

As the union of all finite ϕ-orbits in Y is Zariski dense in Y , we find that the
same assertion holds for all ϕ-orbits of length dividing n. Thus the set of fixed
points of ϕn in Y is Zariski dense in Y . It is also closed, so it is equal to Y ; hence
ϕn acts trivially on Y . q.e.d.

Now recall that the morphism Xreg → Y is equivariant and quasifinite, say of
degree r. Since ψnX permutes the at most r points in every fiber, we deduce that
ψnr!X acts trivially on Xreg, and hence also on X. The equivariance of the morphism
X2d � AX from the proof of Proposition 2.6 implies that ϕnr! acts trivially on AX .
Thus AX is pure of weight 0, as desired. q.e.d.

Proposition 7.3 If StabA(X) is finite and there exist positive integers r and s such
that ϕs on A is the composite of Frobpr with a separable isogeny λ : (σr)∗A → A,
then AX is pure of weight r/s in the sense of 2.1. In particular, Theorem 3.1 is
true in this case.

Proof. If AX is pure of weight α := r/s, we simply set Aα := AX and let Xα be
any translate of X that is contained in Aα; then clearly Theorem 3.1 is true in this
case. Thus it suffices to prove the first assertion.

Since ψs is a translate of ϕs, the assumption implies that ψs is the composite of
Frobpr : A→ (σr)∗A with a separable morphism µ : (σr)∗A→ A that is a translate
of λ. Here µ is a finite étale covering. On the other hand ψX : X → X is bijective
by Proposition 5.3. Thus µ restricts to a bijective morphism µX : (σr)∗X → X
which is also an étale covering; hence µX is an isomorphism. On the other hand,
since λ is separable, it induces an isomorphism (σr)∗Lm ∼−−→ Lm and hence an
isomorphism

(σr)∗ Grassdm
(Lm) ∼= Grassdm

(
(σr)∗Lm

) ∼−−→ Grassdm
(Lm),

denoted again by λ. Since

(σr)∗fm : (σr)∗Xreg −→ (σr)∗ Grassdm(Lm) ∼= Grassdm

(
(σr)∗Lm

)
is the jet map for (σr)∗X ⊂ (σr)∗A, we have a commutative diagram

(σr)∗Xreg
(σr)∗fm //

µXo
��

(σr)∗ Grassdm
(Lm)

λo
��

Xreg
fm // Grassdm

(Lm).

Thus by construction of Y the morphism λ induces an isomorphism (σr)∗Y ∼−−→ Y .

Lemma 7.4 There exists a model Xreg
0 of Xreg over Fpr such that µX |Xreg =

idXreg
0
× σr on Xreg ∼= Xreg

0 ×Fpr K.
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Proof. Let X ′ be the normalization of Y in the function field of X. Since Xreg is
normal and Xreg → Y is quasifinite, X ′ contains Xreg as an open dense subscheme.
We first prove the assertion for X ′ in place of Xreg.

As the Picard group of Grassdm
(Lm) is Z, its smallest ample invertible sheaf L

is unique up to automorphism. In particular we have λ∗L ∼= L ∼= (σr)∗L. Since the
morphism f ′m : X ′ → Y ↪→ Grassdm

(Lm) is finite, the invertible sheaf f ′∗mL is again
ample. Thus with Sn := H0(X ′, f ′∗mL⊗n), which is a finite dimensional K-vector
space for every n ≥ 0, we have X ′ = Proj

⊕
n Sn.

Next observe that µX induces an isomorphism µX′ : (σr)∗X ′ ∼−−→ X ′. By
construction, for every n it induces an isomorphism

Sn = H0(X ′, f ′∗mL⊗n) −→ H0
(
(σr)∗X ′, µ∗X′f ′∗mL⊗n

)
∼= H0

(
(σr)∗X ′, (σr)∗f ′∗mL⊗n

)
∼= (σr)∗Sn.

Viewing it as a σ−r-linear automorphism of Sn, the set of fixed points Sn0 is an
Fpr -subspace such that Sn0 ⊗Fpr K ∼= Sn. Clearly the direct sum of these spaces is
a graded algebra turning X ′

0 := Proj
⊕

n Sn0 into a model of X ′ over Fpr , and by
construction µX′ = idX′

0
× σr on X ′ ∼= X ′

0 ×Fpr K.
Finally, Xreg is a µX′ -invariant open dense subscheme of X ′. Applying the

same construction as above to the reduced closed complement, or by repeating the
arguments in the proof of 2.4, we deduce that this complement comes from a closed
subvariety of X ′

0. Thus Xreg comes from an open subvariety Xreg
0 ⊂ X ′

0 having the
desired properties. q.e.d.

Next recall that ϕ induces a bijection AX → AX by Proposition 5.4. Thus the
homomorphism λ′ : (σr)∗AX → AX induced by λ is both separable and bijective, so
it is an isomorphism. In order to perform constructions as in the preceding lemma,
we need to know:

Lemma 7.5 There exists a λ′-invariant ample divisor on AX .

Proof. Let u : (Xreg)2d → AX be the restriction of the morphism X2d � AX from
the proof of Proposition 2.6. Choose any ample effective divisor D ⊂ AX . After
replacing it by a translate, if necessary, we may assume that the closure of u(u−1(D))
is D. Now E := u−1(D) is a closed subscheme of (Xreg)2d = (Xreg

0 )2d ×Fpr K,
defined over K. Let E′

0 be a specialization of E that is defined over Fp, and let
D′ ⊂ AX be the closure of u(E′

0×Fp
K). If the specialization is sufficiently general,

D′ will still have codimension 1. Moreover, since the translation stabilizer lies in a
constructible family, for E′

0 near E the translation stabilizer of D′ is no bigger than
that of D, which is finite. Thus D′ is again an ample divisor. If E′

0 is defined over
Fprs , then D′ is invariant under (λ′)s. The sum of all s distinct translates (λ′)i(D′)
is then a λ′-invariant ample divisor on AX . q.e.d.

The next lemma then finishes the proof of Proposition 7.3:

Lemma 7.6 There exists a model AX0 of AX over Fpr such that λ′ = idAX0 × σr

on AX ∼= AX0 ×Fpr K. In particular AX is pure of weight r/s.

Proof. The assertion about λ′ is complementary to that in Definition 2.1; hence the
second assertion follows from the first. To prove the first let D be the λ′-invariant
ample divisor on AX given by Lemma 7.5. If AX is an abelian variety, i.e., if it
is proper, we can argue as in Lemma 7.4: The space Sn := H0(AX ,OAX

(nD))
is then finite dimensional with a semilinear automorphism induced by λ′. It thus
acquires a model Sn0 over Fpr . Thus AX = Proj

⊕
n Sn acquires the model AX0 :=
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Proj
⊕

n Sn0 over Fpr with all the desired properties. But in the general case the
space Sn can be infinite dimensional, so we need a different argument.

For this recall that the morphism u : (Xreg)2d → AX above is dominant. Let
U ⊂ (Xreg)2d be the largest open subscheme on which u is flat. Then the morphism
v := u+ u : V := U ×U → AX is flat and surjective, and therefore faithfully flat of
finite presentation. We are interested in the descent diagram

W := V ×AX
V

pr1 //
pr2

// V
v // AX .

By equivariance, the subscheme U is invariant under µ2d
X ; so as in the proof of

Lemma 7.4 we deduce that it comes from an open subscheme U0 ⊂ (Xreg
0 )2d. Thus V

acquires the model V0 := U0×U0 over Fpr . Moreover, the morphism v is equivariant
in the sense that v ◦ µ4d

X = λ′ ◦ v. Therefore the closed subscheme W ⊂ V × V is
invariant under µ8d

X , and so it, too, acquires a model W0 over Fpr . By construction
the above morphisms pri yield morphisms over Fpr

W0

pr1 //
pr2

// V0.

We can use this to construct a descent datum for AX , as follows. Let ÃX , Ṽ ,
and W̃ be derived from AX , V , and W , respectively, by taking the fiber product
×Spec Fpr SpecK. Then we can construct the following commutative diagram:

W̃
//

����

// Ṽ //

����

ÃX

����
W

//

��

// V
v //

��

AX

W0
// // V0

Here the middle and left columns describe how V0 and W0 are obtained from V and
W by descent. The two vertical morphisms on the right hand side are obtained by
descent of morphisms from the vertical morphisms in the middle. Using the fact
that v is faithfully flat, one easily shows that these morphisms constitute a descent
datum for AX relative to SpecK → SpecFpr . This descent datum is effective
by [6, éxp. VIII Cor. 7.8], because it leaves invariant the ample divisor given by
Lemma 7.5. The resulting model AX0 of AX over Fpr has the desired properties.

q.e.d.

8 Infinitesimal decomposition

In this section we assume p > 0. We are interested in the behavior of the formal
completions of A and X under ϕ. To this end we derive some results on p-divisible
formal groups with an isogeny ϕ and on ϕ-invariant formal subschemes. The main
point will be a direct product decomposition according to the different weights
relating ϕ and Frobp.

We begin by recalling the classification of Dieudonné modules (see [11], [5]). Let
W denote the ring of Witt vectors of K. This is a complete discrete valuation ring
containing Z, whose maximal ideal is generated by p and whose residue field is K.
Let WQ denote its quotient field. The Frobenius automorphism σ : x 7→ xp of K
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lifts in a canonical way to automorphisms of W and WQ that are again denoted
by σ.

For our purposes a Dieudonné module is a free W -module of finite type M
together with an injective σ-linear endomorphism F , i.e., an injective endomorphism
of additive groups satisfying F (xm) = σxF (m) for all x ∈W and m ∈M . Similarly,
a rational Dieudonné module is a finite dimensional WQ-vector space MQ together
with a σ-linear automorphism F . A homomorphism of Dieudonné modules (rational
or not) is simply a W -linear map that commutes with F . Typical examples of
rational Dieudonné modules are

Mr,s
Q := WQ[F ]

/
WQ[F ](F s − pr)

for relatively prime integers s > 0 and r. The rational number β = r/s is called the
slope of Mr,s

Q . In fact, all rational Dieudonné modules are classified by slopes (see
[11, Thm. 2.1]):

Theorem 8.1 (a) Every rational Dieudonné module is isomorphic to a direct
sum

⊕
iM

ri,si

Q for suitable pairs (ri, si).

(b) Hom(Mr,s
Q ,Mr′,s′

Q ) = 0 for (r, s) 6= (r′, s′).

Now let MQ be a rational Dieudonné module endowed with a bijective homo-
morphism ϕ : MQ → MQ. Theorem 8.1 implies that the isotypic decomposition
MQ =

⊕
βM

β
Q according to slopes β is invariant under ϕ. On the other hand

we can look at the decomposition of Mβ
Q under ϕ. For this note that by Hensel’s

lemma, all algebraic conjugates over WQ of an eigenvalue of ϕ have the same p-adic
valuation. Thus there exists a unique ϕ-invariant decomposition Mβ

Q =
⊕

γM
β,γ
Q

such that all eigenvalues of ϕ on Mβ,γ
Q have valuation γ.

Lemma 8.2 Assume that β > 0 and γ ≥ 0, and consider integers r ≥ 0 and s > 0
with r/s = γ/β. Then there exists a free W -submodule Mβ,γ generating Mβ,γ

Q ,
which is mapped to itself by F and ϕ, such that ϕs(Mβ,γ) = F r(Mβ,γ). If β ≤ 1,
we can require in addition that pMβ,γ ⊂ F (Mβ,γ).

Proof. We take any W -submodule of finite type N that generates Mβ,γ
Q and set

Mβ,γ :=
∑
i,j∈Z

ir+js≥0

ϕiF j(N).

If β ≤ 1, we choose N so that pN ⊂ F (N); this then implies that pM ′
α ⊂ F (M ′

α).
We must prove that Mβ,γ is finitely generated over W ; all the other desired prop-
erties follow easily from the construction. Choose an integer n ≥ 1 such that nβ
and nγ are integers, and set W ′ := W ( n

√
p) and W ′

Q := WQ( n
√
p). Extend σ to

these rings by setting σ( n
√
p) = n

√
p. In terms of any chosen basis of N we can write

ϕ = pγ · C · ϕ′ · C−1, where C is an invertible matrix over W ′
Q and ϕ′ an invertible

matrix over W ′. Similarly, we can write F = pβ · B · F ′σ · B−1, where B is an
invertible matrix over W ′

Q and F ′ is an invertible matrix over W ′. Thus

ϕiF j = piγ · C · ϕ′i · C−1 · pjβ ·B · (F ′σ)j ·B−1

= p(ir+js)β/s · C · ϕ′i · C−1 ·B · (F ′σ)j ·B−1.

Since ir+ js ≥ 0 in the above sum and the remaining terms have bounded denomi-
nators, we deduce that Mβ,γ is contained in p−mN for some m� 0 and is therefore
finitely generated over W , as desired. q.e.d.
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Proposition 8.3 Let M be a Dieudonné module satisfying Fn(M) ⊂ pM for some
n ≥ 1, endowed with an injective homomorphism ϕ : M →M . Then there exists a
Dieudonné submodule M ′ ⊂M containing pnM for some n, which possesses a direct
sum decomposition M ′ =

⊕
αM

′
α indexed by certain rational numbers α = r/s ≥ 0

such that ϕ(M ′
α) ⊂ M ′

α and ϕs(M ′
α) = F r(M ′

α). If, moreover, pM ⊂ F (M), we
can require in addition that pM ′

α ⊂ F (M ′
α).

Proof. The assumption onM implies that all slopes β ofMQ := M⊗WWQ are > 0;
besides, the valuations γ of all eigenvalues of ϕ are ≥ 0. Thus Lemma 8.2 applies to
all constituents Mβ,γ

Q . After rescaling every Mβ,γ by a power of p the submodule
M ′ :=

⊕
β

⊕
γM

β,γ is contained in M , and its direct summands M ′
α :=

⊕
βM

β,αβ

have all the desired properties. q.e.d.

Next, we translate this result into one of formal groups. Let R := K[[x1, . . . , xd]]
denote the ring of power series in d variables over K. For our purposes a commu-
tative formal group of dimension d over K is a formal scheme G ∼= Spf R together
with a morphism µ : G × G → G representing the group operation and a morphism
ι : G → G representing the inverse, which satisfy the usual axioms for commutative
groups. Turning Spf R into a formal group is equivalent to giving the dual ring
homomorphism µ∗ : R → R ⊗̂R, which is described by power series and is called
a formal group law. A homomorphism of commutative formal groups f : G → G′
is a morphism of formal schemes that commutes with the group operations. A
homomorphism of commutative formal groups of the same dimension that is also
an epimorphism is called an isogeny. The kernel of an isogeny is a finite formal
subscheme; so it is a finite commutative group scheme in the usual sense.

One example of a homomorphism G → G is the multiplication by p. In the
following we assume throughout that this is an isogeny, i.e., we restrict attention to
p-divisible formal groups.

There is a contravariant equivalence of categories G 7→ M(G) from the cate-
gory of (p-divisible) commutative formal groups over K to the full subcategory of
Dieudonné modules M satisfying Fn(M) ⊂ pM ⊂ F (M) for some n ≥ 1 (see [11,
Thm. 1.4] or [5, ch. III, §1.4]). The extra condition on M implies that all slopes
β of MQ satisfy 0 < β ≤ 1. A homomorphism of commutative formal groups
is an isogeny if and only if it induces an isomorphism on the associated rational
Dieudonné modules.

Now let G be a (p-divisible) commutative formal group over K, endowed with
an isogeny ϕ : G → G.

Definition 8.4 We call G pure of weight α = r/s for integers r ≥ 0 and s > 0,
not necessarily relatively prime, if ϕs is the composite of Frobpr : G → (σr)∗G with
an isomorphism (σr)∗G ∼−−→ G.

Theorem 8.5 There exists a ϕ-invariant isogeny G →
∏
α Gα, where the Gα are

finitely many formal groups with an isogeny ϕ that are pure of weight α ≥ 0.

Proof. The Dieudonné module M of G carries an injective endomorphism induced
by ϕ, to which we can apply Proposition 8.3. The resulting Dieudonné submodule⊕

αM
′
α ⊂ M then corresponds to an isogeny of formal groups G →

∏
α Gα, which

is equivariant with respect to isogenies ϕ induced on all factors Gα. To prove that
Gα is pure of weight α = r/s, set rM ′

α := M ′
α with the new action of x ∈ W by

(x,m) 7→ σ−r

x ·m and the same action of F . This is the Dieudonné module of the
formal group (σr)∗Gα, and the homomorphism of Dieudonné modules rM ′

α → M ′
α

induced by F r corresponds by the equivalence of categories to the Frobenius isogeny

17



Frobpr : Gα → (σr)∗Gα. The relation ϕs(M ′
α) = F r(M ′

α) = F r(rM ′
α) now means

that ϕs factors through F r and an isomorphism

M ′
α

∼−−→ rM ′
α

F r−−−→M ′
α

and so the corresponding isogeny ϕ factors through Frobpr and an isomorphism

Gα
Frobpr−−−−−−→ (σr)∗Gα ∼−−→ Gα,

as desired. q.e.d.

Next we will exploit purity.

Proposition 8.6 If G is pure of weight r/s > 0, there exists an isomorphism G ∼=
Spf K[[x1, . . . , xd]] such that (ϕs)∗(xi) = xp

r

i for all 1 ≤ i ≤ d.

Proof. To begin with choose any identification G = Spf R with R = K[[x1, ..., xd]].
By assumption there exists a σ−r-linear automorphism ψ of R such that (ϕs)∗(f) =
ψ(f)p

r

for all f ∈ R. Let m be the maximal ideal of R. We claim that there
exist power series f1, . . . , fr ∈ m generating m and satisfying ψ(fi) = fi for all
i = 1, . . . , r. Then after replacing the xi by these fi the desired assertion holds.

To find the fi note first that ψ induces a σ−r-linear automorphism of the finite
dimensional K-vector space m/m2. Since r > 0, Lang’s theorem [10] for GLd(K)
implies that there is a basis of vectors fixed by ψ. Thus the corresponding elements
fi ∈ m form a system of formal parameters of R and satisfy ψ(fi) ≡ fi modm2.
Next we use successive approximation:

Lemma 8.7 Let n ≥ 2 and let fi ∈ m be a system of formal parameters of R such
that ψ(fi) ≡ fi modmn for all i. Then there exist gi ∈ mn such that ψ(fi + gi) ≡
fi + gi modmn+1 for all i.

Proof. The desired congruence is equivalent to ψ(gi)− gi ≡ fi − ψ(fi) modmn+1,
where both sides now lie in mn. In other words, we must solve the equation ψ(ḡi)−
ḡi = vi :=

(
fi − ψ(fi)modmn+1

)
within the finite dimensional vector space V :=

mn/mn+1. Here ψ is a σ−r-linear automorphism of V , and so Lang’s theorem [10]
for the vector group V implies the existence of a solution. q.e.d.

Clearly the elements fi + gi again form a system of formal parameters of R.
Thus after replacing fi by fi+ gi and repeating the process for all n ≥ 2, we obtain
a convergent sequence of formal parameters, whose limit has the desired properties.

q.e.d.

Theorem 8.8 Assume that G ∼=
∏
α Gα, where every Gα is pure of weight α. Let

X ⊂ G be a formally smooth closed formal subscheme satisfying ϕ(X ) ⊂ X . Then
X =

∏
α Xα for closed formal subschemes Xα ⊂ Gα.

Proof. After replacing ϕ by a suitable power we may assume that for all α =
r/s occurring in the product we have s = 1. Identify every Gr ∼= Spf Rr, where
Rr = K[[xr,1, . . . , xr,dr ]]. By Proposition 8.6 we may assume that ϕ∗(xr,i) = xp

r

r,i

whenever r > 0. For r = 0 the map ϕ∗ : R0 → R0 is an automorphism. By
assumption we have G = Spf R, where R is the completed tensor product of the
rings Rr. Let I ⊂ R be the ideal of X ; the ϕ-invariance of X means that ϕ∗(I) ⊂ I.

Let mr denote the maximal ideal of Rr, and m the maximal ideal of R. We
first consider the decomposition R = R0 ⊕

∑
r>0Rmr. On the first summand ϕ∗

is an automorphism; on the second it is nilpotent modulo mn for every n. Since
ϕ∗(I) ⊂ I, it follows that Imodmn is a direct sum of an ideal in R0 modmn

0 and
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an ideal in
∑
r>0Rmr modmn. Letting n → ∞, by completeness we find that

I = I0 ⊕ I0 for I0 = I ∩R0 and an ideal I0 ⊂
∑
r>0Rmr.

To find the desired decomposition of X recall that R/I is formally smooth.
Thus a subset of our chosen parameters xr,i maps to a complete system of formal
parameters of R/I. After reindexing the xr,i for every r, if necessary, we may assume
that this subset consists of the xr,i for all 1 ≤ i ≤ er. Set R′r := K[[xr,1, . . . , xr,er ]]
for r > 0, and R′0 := R0/I0, and let R′ be the completed tensor product of all R′r.
By construction every R′r inherits an endomorphism ϕ∗; hence so does R′, making
the natural map R′ → R/I an equivariant isomorphism. Setting Xr := Spf R′r, this
isomorphism determines a product decomposition X =

∏
r Xr.

It remains to prove that each Xr is contained in Gr. For this consider the
morphism Xr → Gr′ for any r 6= r′. By construction it is ϕ-equivariant, so by
comparing the behavior of ϕ on both sides one easily finds that this morphism is
zero. This shows that Xr → G factors through a closed embedding Xr ↪→ Gr, as
desired. q.e.d.

9 The general case

In this section we finish the proof of Theorem 3.1 in the general case. If p = 0 we
are already done by Proposition 7.1, so we assume p > 0. We proceed by induction
on dim(A). By Remark 4.2 we may thus assume that StabA(X) is finite. Let G
denote the formal completion of A at 0, and denote its isogeny induced by ϕ again
by ϕ. Let G →

∏
α Gα be the isogeny provided by Theorem 8.5. Its kernel is a

finite subgroup scheme of A, by which we can also divide A. Thus the isogeny of
formal groups comes from an isogeny of semiabelian varieties A→ A′ (compare [11,
Prop. 1.6]). After replacing A by A′ using Remark 4.3, we may therefore assume
that G =

∏
α Gα with Gα pure of weight α ≥ 0 in the sense of 8.4. In the rest of the

proof we will keep this A fixed.

Let ψ(x) = ϕ(x) + a for some a ∈ A, and let X ⊂ A be an irreducible closed
algebraic subvariety satisfying ψ(X) = X, such that StabA(X) is finite. By Propo-
sition 6.4 we may choose a point x0 ∈ Xreg satisfying ψn(x0) = x0 for some n ≥ 1.
After replacing X by the translate X − x0 and a by a+ϕ(x0)− x0, which does not
affect Theorem 3.1, we may assume that x0 = 0. Thus 0 ∈ Xreg and ψn(0) = 0,
and hence ϕn(X) = ψn(X) = X. Now observe that, if we were to replace ϕ by ϕn,
then the decomposition G =

∏
α Gα would remain the same except that the indices

α would be multiplied by n. Thus we may apply Theorem 8.8 to the formal com-
pletion X of X at 0, with ϕn in place of ϕ. We deduce that X =

∏
α Xα for closed

formal subschemes Xα ⊂ Gα. It remains to algebraize each Xα and the formal
subgroup of Gα generated by it.

Lemma 9.1 For every α there exists an irreducible closed subvariety Xα ⊂ X such
that 0 ∈ Xreg

α and whose formal completion at 0 equals Xα.

Proof. Fix α and set Gα :=
∏
α′ 6=α Gα′ and Xα :=

∏
α′ 6=α Xα′ . For every n ≥ 0 let

Xα
n denote the nth infinitesimal neighborhood of 0 ∈ Xα. Consider the transporter

Y nα := TranspA
(
Xα
n , X

)
.

This is a closed subscheme of A that is characterized uniquely by the fact that for
any scheme S over K and any morphism a : S → A, translation by a on the product
A × S maps the subscheme Xα

n × S to X × S if and only if a factors through Y nα .
Its existence is guaranteed by [7, exp. VIII, Ex. 6.5 (e)], because Xα

n is finite and S
is the spectrum of a field. As n→∞, the Y nα form a decreasing sequence of closed
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subschemes. Since A is noetherian, their intersection Yα is therefore equal to Y nα
for all n� 0.

As Xα
n ⊂ X, we clearly have 0 ∈ Y nα . Its formal completion Ynα at 0 can be

characterized as the corresponding transporter within the formal group G, and it
decomposes:

Ynα = TranspG
(
Xα
n ,Xα ×Xα

)
= TranspGα

(
{0}red,Xα

)
× TranspGα

(
Xα
n ,Xα

)
= Xα × TranspGα

(
Xα
n ,Xα

)
.

For n� 0 this is independent of n; and hence

0 ∈ TranspGα

(
Xα
n ,Xα

)
= StabGα(Xα) ⊂ StabG(X ).

Since X is irreducible, the latter is simply the formal completion of StabA(X),
which by assumption is finite. Now we have

Xα ⊂ Ynα ⊂ Xα · (finite),

which implies that the formal completion of some irreducible component Xα of Y red
α

is equal to Xα, as desired. q.e.d.

Following Proposition 2.6, let now Aα ⊂ A be the smallest ϕ-invariant semi-
abelian subvariety containing a translate of Xα. Since 0 ∈ Xα, we already have
Xα ⊂ Aα. By the proof of 2.6, Aα is the image of the morphism

X2d
α −→ A, (y1, . . . , y2d) 7→ y1 − y2 + y3 −+ · · · − y2d

for any d � 0. As the corresponding morphism of formal completions X 2d
α → G

factors through Gα, it follows that the formal completion of Aα is contained in Gα.

Lemma 9.2 For every α the semiabelian subvariety Aα is ϕ-invariant.

Proof. The semiabelian subvariety of A generated by all the Aα is the smallest
one whose formal completion at 0 contains X ; hence it is the smallest semiabelian
subvariety containing X. It thus coincides with the smallest semiabelian subvariety
AX containing a translate of X. Since AX is ϕ-invariant by Proposition 2.6, and
so is the decomposition G =

∏
α Gα, we deduce that the formal completion of every

Aα is ϕ-invariant. Thus Aα is ϕ-invariant, as desired. q.e.d.

Let now h :
∏
αAα → A be the homomorphism induced by the inclusions

Aα ↪→ A. Since h is injective on the formal completions at 0, its kernel is finite.
Moreover, since h

(∏
α Xα

)
= X , and both

∏
αXα and X are irreducible, we must

have h
(∏

αXα

)
= X. As in Remark 4.3 we can deduce that

∏
αXα ⊂

∏
αAα is

invariant under a translate of ϕ; and this implies that every single Xα ⊂ Aα is
invariant under a translate of ϕ.

Furthermore, by 8.4 for every α there are integers r ≥ 0 and s > 0 with
α = r/s, such that ϕs|Gα is the composite of Frobpr with an isomorphism. Thus
Ker(ϕs|Gα) = Ker(Frobpr |Gα), and the same is true for the restriction to the for-
mal completion of Aα. The identity component of Ker(ϕs|Aα) is therefore equal to
Ker(Frobpr |Aα). This in turn implies that ϕs|Aα is the composite of Frobpr with
a separable isogeny.

Depending on the case we can now apply Proposition 7.1 or 7.3 to Xα ⊂ Aα,
showing that Aα is pure of weight α. This finishes the proof of Theorem 3.1 in the
general case. q.e.d.
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10 Arbitrary commutative algebraic groups

It is natural to ask whether the results of Section 3 extend from semiabelian varieties
to arbitrary connected commutative algebraic groups. It turns out that Theorems
3.1 and 3.4 do not generalize and that Theorems 3.6 and 3.7 generalize only in
characteristic zero.

Counterexample 10.1 Let A be a product of n copies of the additive group. As
algebraic variety this is simply the affine space AnK . Let X ⊂ A be the affine
cone over an arbitrary irreducible projective variety in Pn−1

K . Let t ∈ K∗ be an
arbitrary scalar and define ϕ : A → A, (x1, . . . , xn) 7→ (tx1, . . . , txn). This is an
automorphism of A that obviously satisfies ϕ(X) = X. If a is not a root of unity,
then all assumptions of Theorems 3.1 and 3.4 are satisfied, except that A is now a
unipotent group. Thus these theorems do not generalize.

The same example shows that Theorem 3.6 does not generalize in characteristic
p > 0, because all points of A are (p-)torsion but not all subvarieties can be defined
over a finite subfield of K. Theorem 3.7 is, of course, vacuous in characteristic p > 0
unless A is an abelian variety.

However, the Manin-Mumford conjecture itself does generalize in characteristic
zero, as was already known by Hrushovski [9]:

Theorem 10.2 Let A be a connected commutative algebraic group over an alge-
braically closed field K of characteristic 0.

(a) Let X ⊂ A be an irreducible closed algebraic subvariety such that X(K) ∩
Tor(A) is Zariski dense in X. Then X is a translate of an algebraic subgroup
of A.

(b) Let X ⊂ A be a closed algebraic subvariety. Then

X(K) ∩ Tor(A) =
⋃
i∈I

Xi(K) ∩ Tor(A),

where I is a finite set and each Xi is the translate by an element of A of an
algebraic subgroup of A, immersed in X.

Proof. Construct ρ and P (T ) as in the proof of 3.6. Note that for this it suffices
to look at the semiabelian part of A, because that determines Tor(A) completely.
Next, if degP (T ) = n, then as in [13] one passes to An and the Zariski closure
Y ⊂ An of

Xn ∩
{

(a, ρ(a), . . . , ρn−1(a))
∣∣ a ∈ Tor(A)

}
,

and one must prove the conclusion for Y in place of X. As in [13] one shows that
Y is invariant under an isogeny ϕ : An → An which does not have roots of unity as
eigenvalues. Thus Y ⊂ An and ϕ satisfy the assumptions of 3.4, except that An is
not necessarily semiabelian, and in addition we know that Y (K)∩Tor(An) is Zariski
dense in Y . Renaming Y ⊂ An as X ⊂ A, it suffices to prove the generalization
of Theorem 3.4 to arbitrary connected commutative algebraic groups under the
additional assumption that X(K) ∩ Tor(A) is Zariski dense in X.

The proof of this proceeds exactly as in the preceding sections. In fact, the
reduction to irreducible X, and all the results of Sections 4 and 5, extend directly
to arbitrary A. For the results of Section 6 this is not so, but the conclusion of
Proposition 6.4 holds anyway by our additional assumption, because all torsion
points lie in finite ψ-orbits. To finish, then, we only need Proposition 7.1 which
again directly generalizes to arbitrary A. q.e.d.
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Math. (2) 147 (1998), no. 1, 167–179.
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