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Abstract. A conjecture of Bollobás and Thomason asserts that,
for r ≥ 1, every r-uniform hypergraph with m edges can be parti-
tioned into r classes such that every class meets at least rm/(2r−1)
edges. Bollobás, Reed and Thomason [3] proved that there is a par-
tition in which every edge meets at least (1 − 1/e)m/3 ≈ 0.21m
edges. Our main aim is to improve this result for r = 3. We prove
that every 3-uniform hypergraph with m edges can be partitioned
into 3 classes, each of which meets at least (5m− 1)/9 edges. We
also prove that for r > 3 we may demand 0.27m edges.

Note: For the final version of this paper, see the journal
publication.

1. Introduction

Many classical partitioning problems ask for the maximum or min-
imum of a given quantity over all partitions of a combinatorial struc-
ture. For instance, the Max Cut problem asks for the maximum size
of a bipartite subgraph of a graph G; this is equivalent to solving the
problem of finding the minimum over partitions V (G) = V1 ∪ V2 of
e(G[V1]) + e(G[V2]). More generally, the Max k-Cut problem asks for
the maximum size of a k-partite subgraph of G, or equivalently for the
minimum over partitions V (G) = V1 ∪ · · · ∪ Vk of

∑k
i=1 e(G[Vi]). Max

Cut is NP-Hard [10], and has been the subject of much research both
in computer science and combinatorics (see Edwards [6], [7]; Erdős,
Gyárfás and Kohayakawa [9]; Alon [1]; Andersen, Grant and Linial [2];
Erdős, Faudree, Pach and Spencer [8]).

Partitioning problems such as Max Cut involve maximizing or min-
imizing a single quantity. However, in applications it is often the case
that many quantities must be maximized or minimized simultaneously
(one can think of many practical examples, such as sharing out sweets
among a group of children): we shall refer to such problems as judicious
partitioning problems. For instance, given a graph G and an integer k,
we ask for the minimum over all partitions V (G) = V1 ∪ · · · ∪ Vk of

max{e(G[V1]), . . . , e(G[Vk])}.
1
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In [4] it was proved that every graph G with m edges has a vertex-
partition into k classes, each of which contains at most m/

(
k+1
2

)
edges;

there is also a vertex-partition into k classes in which each class contains
at most (1 + o(1))m/k2 edges. Thus the asymptotic bound is just
over half the extremal bound: this seems to be a common feature
of judicious partitioning problems. In [5], the analogous problem for
hypergraphs was considered. It was shown that, for every integer k,
every 3-uniform hypergraph with m edges has a partition into k sets,
each of which contains at most (1 + o(1))m/k3 edges, and a similar
result was conjectured for r-uniform hypergraphs. (For r = 1 we get
the trivial problem of partitioning a set; however, the weighted version
of the problem is not trivial. Results for the weighted problem are
given by van Lint [11].)

In this paper we consider partitions in which every vertex class meets
many edges. More specifically, given an r-uniform hypergraph H with
m edges and an integer k ≥ 2, what is the maximum over all partitions
V (H) = V1 ∪ · · · ∪ Vk of

min{d(V1), . . . , d(Vk)},

where d(S) denotes the number of edges incident with S? Bollobás and
Thomason have conjectured that every r-uniform hypergraph with m
edges has a partition into r classes in which each class meets at least

rm

2r − 1

edges. For r = 2, this follows immediately from the first result cited
from [4] above. For r ≥ 3, Bollobás, Reed and Thomason [3] have
proved that there is a partition in which each class meets at least
(1− 1

e
)m/3 ≈ 0.21m edges. Our main aim in this paper is to address the

case r = 3. We prove that every 3-uniform hypergraph with m edges
has a partition into three sets, each of which meets at least (5m− 1)/9
edges (note that the conjectured bound is 3m/5). For r ≥ 3, we give
an improvement on the bound of [3], showing that there is a partition
into r sets, each of which meets at least 0.27m edges. We conclude
with some open problems.

For a hypergraph H and W ⊂ V (H) we write d(W ) for the number
of edges meeting W and e(W ) for the number of edges contained in W .
We shall also write di(W ) for the number of edges of size i meeting W
and ei(W ) for the number of edges of size i contained in W . Similarly,
d(Vj, Vk) denotes the number of edges meeting both Vj and Vk and
di(Vj, Vk) for the number of edges of size i meeting both Vj and Vk.
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2. The main result

Our main aim in this paper is to prove a result for 3-uniform hy-
pergraphs. The constant we obtain in Theorem 1 is 5/9, while the
conjectured bound has constant 3/5.

Theorem 1. Let G be a 3-uniform hypergraph with m edges. Then
there is a partition of V (G) into three sets, each of which meets at least

(1)
5m− 1

9
edges.

We shall use two lemmas in the proof of Theorem 1. The first lemma
asserts that we can find a ‘good’ random partition of a 3-uniform hyper-
graph, and the second is a general partitioning result for hypergraphs.
Much of the detail in Lemma 2 and the proof of Theorem 1 (for in-
stance, the 2s/9 term in (2)) is needed only for the constant term
in (1) and could be omitted if we were happy with a bound of form
(5m− C)/9.

Note that, by considering random partitions, it follows immediately
that for every 3-uniform hypergraph G there is some partition V (G) =
V1 ∪ V2 ∪ V3 with

d(V1) + d(V2) + d(V3) ≥
19

9
e(G).

The constant 19/9 is clearly best possible, as can be seen by consid-
ering large complete triple systems. However, we can improve on this
in two ways. First of all, if there are two vertices that share many
edges then we can consider random partitions in which those vertices
are in different classes: we obtain a slight improvement on 19e(G)/9.
Secondly, by partitioning a little more carefully, we may ensure that
the sums of degrees in each class do not differ by too much.

Lemma 1. Let G be a 3-uniform hypergraph with vertices v1, v2, . . . , vn,
where d(v1) ≥ d(v2) ≥ · · · d(vn), and suppose that there are s edges
that contain at least two of v1, v2 and v3. Then there is a partition
V (G) = V1 ∪V2 ∪V3 with v1, v2 and v3 in different vertex classes, such
that

(2) d(V1) + d(V2) + d(V3) ≥
19

9
e(G) +

2

9
s

and, for i 6= j,

(3)
∑
v∈Vi

d(v)−
∑
v∈Vj

d(v) ≤ max
v∈Vi
{d(v)}.
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Proof. Adding one or two isolated vertices if required, we may assume
that n = 3k for some integer k, so V (G) = {v1, . . . , v3k}, where d(v1) ≥
d(v2) ≥ · · · ≥ d(v3k). We pick independently, for j = 0, . . . , k − 1, a
random permutation σj ∈ Σ3 and, for i = 1, 2, 3, let

Vi = {v3j+σj(i) : j = 0, . . . , k − 1}.

Thus we have partitioned V (G) into three sets of size k, each of which
contains one vertex from {v3j+1, v3j+2, v3j+3}, for j = 0, . . . , k − 1. It
is easily seen that each edge meets each vertex class with probability
at least 19/27. Since v1, v2 and v3 belong to different vertex classes,
every edge containing at least two vertices from v1, v2 and v3 meets
each vertex class with probability at least 7/9 (there are two cases to
check: when the edge is {v1, v2, v3}, and when the third vertex is vi for
some i > 3). Thus

E

(
s∑
i=1

d(Vi)

)
≥ 19

9
(e(G)− s) +

7

3
s

= 199e(G) + 29s.

Hence there is a partition of this form that satisfies (2).
Furthermore, for 1 ≤ i, j ≤ 3,∑

v∈Vi

d(v)−
∑
v∈Vj

d(v) =
k−1∑
l=0

d(v3l+σl(i))−
k−1∑
l=0

d(v3l+σl(j))

=
k−1∑
l=0

(
d(v3l+σl(i))− d(v3l+σl(j))

)
≤ d(vσ1(i))

= max
v∈Vi

d(v),

since d(v3l+σl(j)) ≥ d(v3(l+1)+σl(i)), for l < k − 1. �

In an earlier paper [4], we found partitions of graphs such that each
vertex class contains few edges. A simple case of this is the assertion
that every multigraph G has a vertex partition V (G) = V1 ∪ V2 such
that each vertex class contains at most e(G)/3 edges; equivalently, each
vertex class meets at least 2e(G)/3 edges. We shall need the following
extension of this fact. Although we only need the result for k = 2, we
give a more general result since it is no harder to prove.

Lemma 2. Let k be an integer and let G be a hypergraph with mi edges
of size i, for i = 1, . . . , k. Then there is a partition of V (G) into two
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sets, each of which meets at least

(4)
m1 − 1

3
+

2m2

3
+

3m3

4
+ . . .+

kmk

k + 1

edges.

Proof. If G contains at least two edges of size one, we choose two such
edges, say {x} and {y}, and replace them with a single edge {x, y}.
Clearly, a partition that satisfies (4) for the new hypergraph also sat-
isfies (4) for the original hypergraph. We may therefore assume that
G has at most one edge of size 1, so m1 ≤ 1. It is therefore enough to
prove that we can find a partition V (G) = V1 ∪ V2 such that each Vi
meets at least

2m2

3
+ · · ·+ kmk

k + 1

edges.
Let λ2, . . . , λk be positive reals and let V (G) = V1 ∪ V2 be a vertex

partition minimizing

(5)
k∑
i=2

λi(ei(V1) + ei(V2)).

For v ∈ Vi, we shall write fj(v) for the number of edges of size j that
are contained in Vi and contain v, and gj(v) for the number of edges of
size j that meet Vi only in the vertex v. Now, for v ∈ V1, since moving
v from V1 to V2 does not decrease (5), we have

k∑
j=2

λj(fj(v)− gj(v)) ≤ 0.

Summing over v,

k∑
j=2

λj
∑
v∈V1

fj(v) ≤
k∑
j=2

λj
∑
v∈V1

gj(v)

and so

k∑
j=2

jλjej(V1) ≤
k∑
j=2

λjdj(V1, V2).
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Therefore
k∑
j=2

(j + 1)λjej(V1) ≤
k∑
j=2

λj(dj(V1, V2) + ej(V1))

≤
k∑
j=2

λjmj,

since mj = ej(V1) + dj(V1, V2) + ej(V2). Taking λj = 1/(j + 1), for
j = 2, . . . , k, we get

k∑
j=2

ej(V1) ≤
k∑
j=2

1

j + 1
mj.

Thus V2 meets at least
∑k

j=2mj −
∑k

j=2 ej(V1) ≥
∑k

j=2
j
j+1

mj edges.

Arguing similarly for V1, we obtain (4). �

The bound in Lemma 3 can very likely be improved. In particular,
we believe that the term (m1 − 1)/3 can be replaced by (m1 − 1)/2.

We can now proceed with the proof of Theorem 1.

Proof of Theorem 1. Let G be a 3-uniform hypergraph that has no par-
tition satisfying (1). Let m = e(G) and let cm be the largest integer
less than (5m− 1)/9, so cm = b(5m− 2)/9c. We must show that there
is a partition of V (G) into three sets, each of which meets more than
cm edges.

If there is a vertex v ∈ V (G) with d(v) > cm then we can take {v} as
one vertex class and, by Lemma 3, partition V (G)\{v} into two classes,
each meeting more than cm edges. Thus we may assume ∆(G) ≤ cm.
We may assume m > 4, since smaller cases are easily checked. Let
V (G) = V1 ∪ V2 ∪ V3 be the partition guaranteed by Lemma 2. For
i = 1, 2, 3, let wi = d(Vi), let di = maxv∈Vi{d(v)} and let vi ∈ Vi be a
vertex of degree di. We may assume that w1 ≤ w2 ≤ w3 and that v1,
v2 and v3 are in different vertex classes. Suppose that v2 and v3 have
t common edges. Thus a total of d2 + d3 − t edges meet v2 or v3. If
w1 > cm then we are done. Otherwise, we may assume w3 ≥ w2 > cm,
since if w2 ≤ cm then w1 + w2 + w3 < (2c + 1)m < (19/9)m, which
contradicts (2).

For 0 ≤ i ≤ 3, let Ei be the set of edges of G meeting V2 in exactly
i vertices, and set ei = |Ei|. The multiset {e \ V2 : e ∈ E0 ∪E1 ∪E2} is
the edge set of a multigraph H with vertex set V (G) \ V2 and ei edges
with 3− i vertices, for i = 0, 1, 2. Thus, from Lemma 3, we must have

(6)
e2 − 1

3
+

2e1
3

+
3e0
4
≤ cm,
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or else we could partition V (G) \ V2 into two sets, each meeting more
than cm edges, which together with V2 would give the required parti-
tion. Now ∑

v∈V2

d(v) = 3e3 + 2e2 + e1,

so it follows from (6) that∑
v∈V2

d(v) + 3cm ≥ 3e3 + 3e2 + 3e1 +
9e0
4
− 1

=
9

4
m+

3

4
e3 +

3

4
e2 +

3

4
e1 − 1.

Therefore ∑
v∈V2

d(v) ≥ 3

4
(e3 + e2 + e1) + (

9

4
− 3c)m− 1

=
3

4
w2 + (

9

4
− 3c)m− 1.(7)

A similar argument gives

(8)
∑
v∈V3

d(v) ≥ 3

4
w3 + (

9

4
− 3c)m− 1.

Now it follows from (3) that∑
v∈V1

d(v) ≥ max
i=2,3

{∑
v∈Vi

d(v)− di

}

≥ 1

2

(∑
v∈V2

d(v) +
∑
v∈V3

d(v)− d2 − d3

)
.

Therefore

3m =
∑
v∈V1

d(v) +
∑
v∈V2

d(v) +
∑
v∈V3

d(v)

≥ 3

2

(∑
v∈V2

d(v) +
∑
v∈V3

d(v)

)
− 1

2
(d2 + d3)

and so, by (7) and (8),

2m ≥
∑
v∈V2

d(v) +
∑
v∈V3

d(v)− 1

3
(d2 + d3)

≥ 3

4
(w2 + w3) + (

9

2
− 6c)m− 2− 1

3
(d2 + d3).
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Hence
3

4
(w2 + w3) ≤ (6c− 5

2
)m+

1

3
(d2 + d3) + 2.

Now w1 ≤ cm, so

w1 + w2 + w3 ≤ cm+ (8c− 10

3
)m+

4

9
(d2 + d3) +

8

3
.

It follows from (2) that

(9c− 10

3
)m+

4

9
(d2 + d3) +

8

3
≥ 19

9
m+

2

9
t,

so

(9) 9cm ≥ 49

9
m− 8

3
− 4

9
(d2 + d3) +

2

9
t.

Now if d2 + d3 − t ≤ cm then, since ∆(G) ≤ cm,

4

9
(d2 + d3)−

2

9
t ≤ 2

9
cm+

2

9
(d2 + d3) ≤

2

3
cm,

and so it follows from (9) that

9cm ≥ 49

9
m− 8

3
− 2

3
cm.

Thus
87

9
cm ≥ 49

9
m− 8

3
and so

cm ≥ 49

87
m− 8

29
,

which fails for all m > 4.
Otherwise d2 + d3 − t > cm. Consider the hypergraph H on V (G) \

{v2, v3} with edge set {e \ {v2, v3} : e ∈ E(G)}. It follows from Lemma
3 that there is a bipartition H1 ∪H2 of V (H) such that, for i = 1, 2,

d(Hi) ≥
e1(H)− 1

3
+

2e2(H)

3
+

3e3(H)

4

=
t− 1

3
+

2(d2 + d3 − 2t)

3
+

3(m− d2 − d3 + t)

4

=
3m

4
− d2 + d3 + 3t

12
− 1

3
.

If min{d(H1), d(H2)} > cm then {{v2, v3}, H1, H2} is a partition of
V (G) in which each class meets more than cm edges. Otherwise

3m

4
− d2 + d3 + 3t

12
− 1

3
≤ cm,

and so
d2 + d3 + 3t ≥ (9− 12c)m− 4,
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Thus, since max{d2, d3} ≤ cm, we have

(10) t ≥
(

3− 14

3
c

)
m− 4

3

It follows from (10) and (9) that

9cm ≥ 49

9
m− 8

3
− 4

9
(d2 + d3) +

2

9

(
3− 14

3
c

)
m− 8

27
.

Since max{d2, d3} ≤ cm, we obtain

cm ≥ 33

59
m− 16

59
,

which fails for all m > 4 except m = 13. The case m = 13 follows
by considering the possible values for t, d2 and d3 in the argument
above. �

In fact, taking cm = b(5m− 1)/9c in the proof of Theorem 1 shows
that for m 6= 11, 20, 29, 38 we can replace (5m− 1)/9 by 5m/9 in (1).

The bound given in Theorem 1 shows that in most cases we can get
quite close to the conjecture. For hypergraphs with a large number of
edges, however, we believe that it should be possible to do much better.
We will return to this at the end of the paper.

3. Partitioning r-uniform hypergraphs

For hypergraphs in general, we cannot get as close to the conjectured
rm/(2r − 1) as for 3-uniform hypergraphs. However, we can manage
about half of the conjectured bound.

Theorem 2. Let G be an r-uniform hypergraph with m edges. There is
a partition of V (G) into r sets such that each set meets at least 0.27m
edges.

We will make use of two lemmas in the proof of Theorem 4.

Lemma 3. Let 0 < c < 1 and let G be a hypergraph with maximum
degree less than cm. If A and B are disjoint sets of vertices with
min{d(A), d(B)} ≥ 2cm then there is a partition of A ∪ B into three
sets, such that two meet at least cm edges and the third meets at least
10cm/9 edges.

Proof. We may assume that each edge meets each of A and B in at most
one vertex (or else replace it with a smaller edge). Let A = A1∪A2∪A3

be a partition of A into three sets, any two of which meet at least cm
edges. Such a partition exists, since we can take A1 to be a maximal
subset of A meeting less than cm edges, A2 to be a maximal subset of
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A \A1 meeting less than cm edges and A3 = A1 \ (A1 ∪A2). Similarly,
let B = B1 ∪ B2 ∪ B3 be a partition of B into three sets, any two of
which meet at least cm edges.

Now we claim that Ai ∪ Bj meets at least 10cm/9 edges for some i
and j. Indeed, if this is not the case then

3∑
i,j=1

d(Ai ∪Bj) < 10cm.

Now since every edge meets each of A and B in at most one vertex,∑
i,j d(Ai, Bj) = d(A,B) ≤ min{d(A), d(B)} and so

∑
i,j

d(Ai ∪Bj) =
∑
i,j

(d(Ai) + d(Bj)− d(Ai, Bj))

= 3d(A) + 3d(B)− d(A,B)

≥ 10cm,

which is a contradiction.
Thus d(Ai ∪ Bj) ≥ 10cm/9 for some i and j, say i = j = 1. Then

A1 ∪B1, A2 ∪ A3, B2 ∪B3 gives the required partition of A ∪B. �

Lemma 4. Let 0 < c < 1, let G be a hypergraph with maximum degree
less than cm and suppose A and B are disjoint sets of vertices with
d(A) ≥ 3cm and d(A) + 4d(B) > 5cm. Then there is a partition of
A ∪ B into two sets, of which one meets at least cm vertices and the
other meets at least 2cm vertices.

Proof. If d(B) ≥ cm then A and B will do for our sets. Otherwise, we
may assume that each edge meets each of A and B at most once. Let
A = A1 ∪ · · · ∪ Ai be a partition of A obtained as follows: let A1 ⊂ A
be a maximal set with d(A1) < cm; let A2 ⊂ A \ A1 be maximal with
d(A2) < cm; and so on. We obtain a partition into i sets, for some
i ≥ 4, such that each sets meets less than cm edges and the union of
any two sets meets at least cm edges.

If i ≥ 6 then A1 ∪A2, A3 ∪A4, A5 ∪A6 each meet at least cm edges,
so A1∪A2, (A∪B)\ (A1∪A2) satisfy the assertion of the lemma, since
d((A∪B)\(A1∪A2)) ≥ d(A3∪A4∪A5∪A6) ≥ d(A3∪A4)+d(A5∪A6) ≥
2cm.
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If i = 5 then we claim that d(Aj ∪B) ≥ cm for some j ≤ 5. Indeed,
if not then we have

5cm >

5∑
j=1

d(Aj ∪B)

=
5∑
j=1

(d(Aj) + d(B)− d(Aj, B))

= d(A) + 5d(B)− d(A,B)

≥ d(A) + 4d(B),

since d(A,B) ≤ d(B), which contradicts the assumption that d(A) +
4d(B) > 5cm. Thus d(Aj ∪ B) ≥ cm for some j. The partition of
A∪B into Aj ∪B and A\Aj satisfies the assertion of the lemma, since
d(A \ Aj) = d(A)− d(Aj) ≥ 2cm.

Finally, if i = 4, we claim d(Aj ∪ B) ≥ cm for some j ≤ 4. If not,
then

4cm >
4∑
j=1

d(Aj ∪B)

=
4∑
j=1

(d(Aj) + d(B)− d(Aj, B))

= d(A) + 4d(B)− d(A,B)

≥ d(A) + 3d(B).

Now d(B) < cm, so this implies 5cm > d(A)+4d(B), which contradicts
the assumptions of the lemma. Thus d(Aj ∪B) ≥ cm for some j. Since
d(Aj) < cm, we have d(A\Aj) > 2cm. Therefore the partition of A∪B
into Aj ∪B and A \ Aj satisfies the assertion of the lemma. �

We now prove our bound for r-uniform hypergraphs.

Proof of Theorem 4. Let c = 0.27 and cr = 1 − (1 − 1
r
)r, and suppose

that G has no partition satisfying the conditions of Theorem 4. We
may clearly assume that ∆(G) < cm and r ≥ 4. Let P = {V1, . . . , Vr}
be a random partition of V (G) into r sets. Then

(11) E

(
r∑
i=1

d(Vi)

)
= rm(1− (1− 1

r
)r) = rmcr.

We may therefore choose a partition V1, . . . , Vr such that
∑r

i=1 d(Vi) >
rmcr.
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We begin by picking out pairs of sets that satisfy the conditions of
Lemma 6. Let A1, B1, . . . , As, Bs be a sequence of maximal length of
distinct sets in P such that d(Ai) < cm, d(Bi) ≥ 3cm and d(Bi) +
4d(Ai) ≥ 5c, and let S = {A1, B1, . . . , As, Bs}. We now partition the
remaining sets Vi depending on d(Vi). Define

T = {Vi : d(Vi) < cm and Vi 6∈ S}
U = {Vi : cm ≤ d(Vi) < 2cm}
V = {Vi : 2cm ≤ d(Vi) < 3cm}
W = {Vi : d(Vi) ≥ 3cm and Vi 6∈ S}

We have partitioned P as S ∪T ∪U ∪V ∪W . Let t = |T |, etc, so that

(12) r = 2s+ t+ u+ v + w.

It follows from Lemma 6 that, for i = 1, . . . , s, there is a partition
of Ai ∪ Bi into one set Ci meeting at least cm edges and one set Di

meeting at least 2cm edges. Adding the resulting sets to U and V , we
have disjoint sets U ′ = U ∪ {C1, . . . , Cs} of u+ s sets meeting at least
cm vertices, V ′ = V ∪ {D1, . . . , Ds} of v + s sets meeting at least 2cm
vertices andW ′ =W of w sets meeting at least 3cm vertices. Dividing
V ′ into pairs (with at most one set left over), it follows from Lemma 5
that each pair can be split into three sets, each of which meets at least
cm edges; also, since ∆(G) < cm, each set in W can be split into two
sets, each meeting at least cm edges. Therefore, we get at least

(13) (u+ s) +
3

2
(v + s− 1) + 1 + 2w = u+

5

2
s+

3

2
v + 2w − 1

2

sets meeting at least cm edges. We shall show that this gives at least
r sets. Note that, by (11),

(14) (1 + c)sm+ ctm+ 2cum+ 3cvm+ wm ≥
r∑
i=1

d(Vi) > rmcr.

Furthermore, if T is nonempty, then set c∗m = max{d(Vi) : Vi ∈ T }:
any Vi ∈ W satisfies d(Vi) + 4c∗m < 5c (since otherwise Vi and some
set from T would be in S), and so d(Vi) < (5c− 4c∗)m.

Case 1. W = ∅. We have nonegative s, t, u, v such that

(15) 2s+ t+ u+ v = r

and

(16) (1 + c)s+ ct+ 2cu+ 3cv > rcr
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and we want to prove

(17) u+
5

2
s+

3

2
v ≥ r +

1

2
.

Suppose this is not the case, so we have

(18) u+
5

2
s+

3

2
v ≤ r.

Since c > 1
4
, (15), (16) and (18) are also satisfied by taking s′ = 0,

t′ = t, u′ = u+ s and v′ = v + s. Thus we may assume

t+ u+ v = r(19)

ct+ 2cu+ 3cv > rcr(20)

and

(21) u+
3

2
v ≤ r.

Substituting (19) into (20), gives

c(r − u− v) + 2cu+ 3cv > rcr,

and so

(22) cu+ 2cv > r(cr − c).
Subtracting c times (21) from (22) gives

c

2
v > r(cr − 2c).

But it follows from (21) that v < 2r/3, so

c

2
(
2

3
r) > r(cr − 2c),

which gives

c >
3cr
7
> 0.27,

which is a contradiction.

Case 2. W 6= ∅. Recall that c∗m = max{d(Vi) : Vi ∈ T } if T is
nonempty; if T = ∅ then set c∗ = 0. We have nonnegative s, t, u, v, w
such that

2s+ t+ u+ v + w = r

and, since d(Vi) ≤ c∗m for Vi ∈ T and d(Vi) ≤ (5c− 4c∗)m for Vi ∈ W ,

(1 + c)s+ c∗t+ 2cu+ 3cv + (5c− 4c∗)w > rcr,

and we want to prove

u+
5

2
s+

3

2
v + 2w ≥ r +

1

2
.
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Suppose this is not the case. As before, we may assume s = 0, so we
have

t+ u+ v + w = r(23)

u+
3

2
v + 2w ≤ r.(24)

and

(25) c∗t+ 2cu+ 3cv + (5c− 4c∗)w > rcr

Now subtracting 2c times (24) from (25) gives

(26) c∗t+ (c− 4c∗)w > r(cr − 2c).

It follows from (24) that w ≤ r/2. Since 5c− 4c∗ ≥ 3c by definition of
W , we have c∗ ≤ c/2; also, from (23) we have t ≤ r − w, so

c∗t+ (c− 4c∗)w ≤ c

2
(r − w) + cw

=
c

2
r +

c

2
w

≤ 3c

4
r.

Substitution into (26) gives

3c

4
> r(cr − 2c),

so
c >

rcr
2r + (3/4)

> 0.27,

which is a contradiction. �

Note that there is some leeway in Case 2, so the bound 0.27 could
be improved by an improvement in Case 1.

4. Open problems.

In this paper we have considered partitions of r-uniform hypergraphs
into r classes. It is of interest to ask more generally about partitions
into k classes. For graphs we conjecture that for every graph G with
m edges and every integer k ≥ 2 there is a partition of G into k sets,
each of which meets at least

2m

2k − 1

edges. If this is correct then K2k−1 shows the constant to be best
possible, and may well be the unique extremal graph.

Asymptotically, it seems likely that it should be possible to obtain
partitions that are almost as good as partitions of complete graphs.
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We conjecture that, for integers r, k ≥ 2, every r-uniform hypergraph
with m edges has a vertex-partition into k sets, each of which meets at
least

(1 + o(1))

(
1− (1− 1

r
)k
)

edges.
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[9] P.Erdős, A. Gyárfás and Y. Kohayakawa, The size of largest bipartite sub-
graphs, to appear

[10] M.R. Garey, D.S. Johnson and L.J. Stockmeyer, Some simplified NP-Complete
graph problems, Theor. Comp. Sci. 1 (1976), 237-267
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