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Abstract

For graphs G and H, an H-colouring of G is a map ¢ : V(G) —
V(H) such that ij € E(G) = ¢(i)¥(j) € E(H). The number of
H-colourings of G is denoted by hom(G, H).

We prove the following: for all graphs H and § > 3, there is a
constant x(d, H) such that, if n > x(d, H), the graph Ks,_; max-
imises the number of H-colourings among all connected graphs with
n vertices and minimum degree §. This answers a question of Engbers.

We also disprove a conjecture of Engbers on the graph G that
maximises the number of H-colourings when the assumption of the
connectivity of G is dropped.

Finally, let H be a graph with maximum degree k. We show that,
if H does not contain the complete looped graph on k vertices or
Kj 1, as a component and § > dg(H), then the following holds: for
n sufficiently large, the graph K;,_s maximises the number of H-
colourings among all graphs on n vertices with minimum degree §.
This partially answers another question of Engbers.

1 Introduction

Let GG be a simple, loopless graph and let H be a simple graph, possibly with
loops. A graph homomorphism from G to H is a map ¢ : V(G) — V(H)
such that ij € E(G) = (i)Y (j) € E(H). An H-colouring of G is a graph
homomorphism from G to H. We denote by hom(G, H) the number of H-
colourings of G.

Given a class of graphs G and a fixed graph H, it is natural to ask which
G € G maximises hom(G, H). Various classes of graphs have been considered
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(see Cutler [1] for a survey). For instance, a number of authors, such as
Galvin [6], have studied the class of all d-regular graphs for fixed ¢; others,
including Loh, Pikhurko and Sudakov [7], have investigated the class of all
graphs with n vertices and m edges. In this paper, we consider the class of all
graphs with minimum degree at least 9. This class was studied by Engbers
[4, 5] who raised a number of questions and conjectures. We will answer two
of these and provide a partial answer to a third.

In Section 2, we consider the case when G is the set of all connected
graphs on n vertices with minimum degree at least §. For this G and any
non-regular graph H, Engbers [5] showed that, for any fixed § > 2 and n
sufficiently large, hom(G, H) is maximised uniquely by G = K;s,,—s. In this
paper, we will extend this result by showing that it holds for all § > 3 and
for all graphs H. This answers a question posed by Engbers [5]. In the case
where § = 2 and H is any graph, Engbers [4] showed that the number of
H-colourings is maximised by one of Kj,_a, 2R3 or TKyo (depending on
the structure of H).

An H-colouring of G requires that each component of G is mapped to
a component of H. As we are only considering connected graphs G, each
H-colouring of G maps G to a single component of H. We therefore begin
with the case when H is connected.

Theorem 1.1. For every 6 > 3 and every connected graph H, there exists
a constant k(6, H) such that the following holds: if n > k(0,H) and G s
a connected graph on n vertices with minimum degree at least §, then we
have hom(G, H) < hom(Ks,,—s, H). Further, if H is not a complete looped
graph or a complete balanced bipartite graph, we have equality if and only if
G = K§7n,5.

Extending this result to all graphs H follows as an easy corollary. If H has h
components Hy, ... Hy, then hom(G, H) = hom(G, Hy) + - - - + hom(G, Hy)
because G is a connected graph. For n sufficiently large, G = Kj,_s max-
imises hom(G, H;) for each component H; and so G = Kj,,_s also maximises
hom(G, H).

Corollary 1.2. For every 6 > 3 and every graph H, there exists a con-
stant (0, H) such that the following holds: if n > k(6,H) and G is a con-
nected graph on n wvertices with minimum degree at least §, then we have
hom(G, H) < hom(Ks,,_s, H). Further, if H has a component which is nei-
ther a complete looped graph nor a complete balanced bipartite graph, we have
equality if and only if G = Ks,,_s.

We may identify a proper g-colouring of a graph GG with a graph homomor-
phism from G into K,. Therefore, counting the number of proper g-colourings
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of G corresponds to counting the number of proper graph homomorphisms
from G into K,. As K, is a connected graph, the following corollary also fol-

lows immediately from Theorem 1.1. This answers another question posed
by Engbers [5].

Corollary 1.3. Fix 6 > 3 and q¢ > 2. Then, for n sufficiently large, Ks,_s
uniquely maximizes the number of proper q-colourings amongst all connected
graphs on n vertices with minimum degree at least d.

A natural extension to Corollary 1.2 is to allow G to have more than one
component. Here the picture is less complete.

If H is the graph consisting of a single edge with one of the vertices
looped, then counting the number of H-colourings of a graph G is equivalent
to counting the number of independent sets in G. Extending previous work
on this topic, Cutler and Radcliffe [2] gave complete results for all values of
n and ¢. In particular, if n > 20, then K;,_s is the unique graph which
maximises hom(G, H).

Galvin [6] conjectured that, for any H, if G was a d-regular graph on n
vertices, then hom(G, H) < max{hom(Kjs, H)"/* hom(Ks,, H)"/O+D}. If
this were true, it would mean that, whenever 26(0 4 1)|n, the §-regular graph
on n vertices which maximises the number of H-colourings is either 5 Ks s or
547 Ks41. Galvin’s conjecture was shown to be false by Sernau [8]. He pro-
duced an infinite family of counterexamples as follows: fix ¢ and any simple
loopless graph H with no (§ + 1)-clique. Take any connected J-regular graph
G on n < 26 vertices with hom(G, H) > 0. He proved that there existed k €
N such that hom(G, kH) > max{hom(Ks,, kH)"+Y hom(Kss, kH)"*}
and hence that Galvin’s conjecture was false.

Engbers [4] considered a similar question to Galvin but only when the
order of G was sufficiently large. He asked which graph on n vertices with
minimum degree ¢ maximises the number of H-colourings as the value of n
increases.

For general H and § = 1 or § = 2, Engbers showed that hom(G, H)
is maximised by one of 5 Ksi1, 35Ks5 or Ksps (where the graph that
maximises hom(G, H) depends on the structure of H). These results led him
to make the following conjecture.

Conjecture 1.4 [4]. Fiz 6 > 1 and any graph H. Let G be a graph on n
vertices with minimum degree at least §. There exists a constant c(d, H) such
that, for n > ¢(0, H), we have

hom(G, H) < max { hom(Ks41, H)51, hom (K5, H) %, hom(Ks,,—s5, H) }.



In Section 3, we will use similar ideas to Sernau to construct counterexamples
to Conjecture 1.4 whenever 6 > 3.

On the other hand, we can show that Conjecture 1.4 does hold in certain
circumstances. In Section 4, we will consider the case when the graph H is
fixed and 0 and n are sufficiently large. In particular, for each £ € N, we
consider the family H; of all graphs with maximum degree k£ that do not
contain the complete looped graph on k vertices or K}, ; as a component. We
will prove the following theorem.

Theorem 1.5. Fix any k € N. For every graph H € Hj and every § >
do(H), the following holds: there exists a constant ng(d, H) such that, if
n > nog(d, H) and G is a graph on n vertices with minimum degree &, then
hom(G, H) < hom(Ks,,—s, H). Equality holds if and only if G = Ks,_s.

The graph Kj,_s need not maximise the number of H-colourings if H has
maximum degree k and contains either the complete looped graph on k ver-
tices or K}y as a component (i.e. H ¢ Hy). This is discussed in more detail
in Section 5.

Convention. Throughout this paper, G will be a simple graph without
loops. We will adopt the same convention for vertex degrees as Engbers [5]:
for any vertex v € V(H), we define d(v) = {w € V(H) : vw € E(H)}|. In

particular, adding a loop to a vertex in H increases the degree by one.

2 Proof of Theorem 1.1

The following definition was introduced by Engbers [4]. We will use it in the
proof of Theorem 1.1 as well as in Section 4.

Definition. For any graph H with maximum degree k and § > 1, we define
S(6, H) to be the set of vectors in V (H)? such that the elements of the vector
have k neighbours in common. We define s(d, H) = |S(d, H)|. As H has at
least one vertex of degree k, we have s(0, H) > 1.

We will need the following theorem of Erdds and Poésa.

Theorem 2.1 [3]. There is a function f : N — R such that, given any d € N,
every graph contains either d disjoint cycles or a set of at most f(d) vertices
meeting all its cycles.

We will frequently use the following lemma of Engbers.



Lemma 2.2 [4]. Suppose H is not the complete looped graph on k vertices
or Ky . Then, for any two vertices ¢, j of H and for r > 4, there are at
most (k? — 1)k™* H-colourings of P, that map the initial vertex of that path
to i and the terminal vertex to j.

We will also need the following simple observation.

Proposition 2.3. Let G and H be graphs with G connected and X C V(G).
Suppose the vertices of X have already been mapped to vertices of H. The

remaining vertices of G can be mapped into V(H) in such a way that there
are at most A(H) choices for each vertex of V(G)\X.

Proof. Because G is connected, there is a path from each vertex of V(G)\X
to X. We order the vertices of V(G)\ X by increasing distance from X. Each
vertex v € V(G)\X either has a neighbour in X or a neighbour before it in
the ordering. Therefore, when we come to colour v, one of its neighbours has
already been coloured so there are at most A(H) choices for v. 0J

Proof of Theorem 1.1. Let 6 > 3 be fixed and let H be a connected graph
with maximum degree k& € N. We have |V (H)| > k. There are two special
cases to look at before we consider a general H.

1. H is the complete looped graph on k vertices.
If G is any graph on n vertices, we find that hom(G, H) = k" because
any vertex of G can be mapped to any vertex of H. Hence, as any
graph on n vertices with minimum degree J maximises the number of
H-colourings, we have hom(G, H) < hom(Ks,,_s, H) as required.

2. H= K.
H is bipartite so hom(G, H) # 0 if and only if G is bipartite. For
any connected bipartite graph G' on n vertices, hom(G, H) = 2k™.
This means that any connected bipartite graph on n vertices with
minimum degree 9 maximises the number of H-colourings and hence

hom(G, H) < hom(Ks,_s, H) as required.

As the theorem is true in these two cases, we may assume that H is not the
complete looped graph on £ vertices or Kj ;. We may also assume that £ > 2
as we have already dealt with the cases when H is a single looped vertex and
when H = K, ;. Hence we may apply Lemma 2.2 when required.

Let G be a graph on n vertices with minimum degree § that has the
maximum number of H-colourings. We know that H has at least one vertex
v of degree k. When considering H-colourings of K;,_s, we can map the
vertex class of size d to v and the other vertex class to the neighbours of v.
Hence, hom(Kjs,, 5, H) > k.



We will proceed to determine the structure of G. The assumption that G
has most H-colourings tells us that hom(G, H) > hom(Kj,,_s, H). We will
show that, for n sufficiently large, we must have G = Kj,,_;.

Claim 1: G has a bounded number of disjoint cycles.

Suppose that G has d disjoint cycles. We colour G in the following way. Pick
any vertex of G and map it to any vertex of H. Take a shortest path from the
starting vertex to a vertex on one of the disjoint cycles. There are at most k
ways to map each vertex on this path to vertices of H. We then consider the
other vertices on the cycle (as the end vertex of the path has already been
mapped to a vertex of H). Lemma 2.2 gives at most (k* — 1)k'=3 ways to
map these vertices to H, where t is the number of vertices in the cycle. We
then repeat this process of finding a shortest path from the already mapped
vertices to one of the disjoint cycles and mapping the vertices in the path and
cycle to H. Once all of the vertices in disjoint cycles have been considered,
any remaining vertices can be mapped greedily with at most k choices for
each by Proposition 2.3. Therefore

hom(G, H) < |V (H)|(K* — 1)%k" 21 < |V (H) k" e 52

This is strictly smaller than k"~% whenever d > k?log |V (H)|+k?(0—1) log k.
As hom(G, H) is maximal, it follows that G has bounded number of disjoint
cycles. This bound only depends on H and §. Hence we have proved the
claim.

Applying Theorem 2.1 to G, we find that there exists a constant o = «/(9, H)
such that G can be made acyclic by removing at most a vertices. We can
therefore partition the vertices of GG into a set A of size at most o and a set
F such that G[F] is a forest.

We will show that we can make F'into an independent set by moving at
most a constant number of vertices from F' to A. This constant depends only
on ¢ and H and not on the number of vertices in G.

We say that a component of a graph is non-trivial if it contains at least
one edge.

Claim 2: The forest F' has a bounded number of non-trivial components.

Suppose F' has a non-trivial components, Gy,...G,. Each G; is a tree and
so contains a maximal path P;. As every vertex in G has degree at least
0 > 3, each end-vertex of P; must have a neighbour in A. We colour G in
the following way. First map A into H. There are at most |V (H)|4! ways to
do this. We then consider each G; in turn. By Lemma 2.2, there are at most



(k* — 1)kP1=2 ways to colour P; and at most k ways to colour each of the
other vertices of G;. Finally, we consider the remaining vertices of G, each
of which has at most k& possible choices by Proposition 2.3. Hence

hom (G, H) < |V(H)|AI(k? — 1)%k"AI72 < |V (H)|*k" e

This is strictly less than £"~° whenever a > k*alog |V (H)| + k*(§ — a) log k.
The maximality of hom(G, H) means that there exists a constant depending
only on 0 and H that bounds the number of non-trivial components of F'
and hence proves the claim.

Let T" be any non-trivial component of F. Define T” to be the subtree ob-
tained from T by deleting all of the leaves. We will show that the size of T”
is bounded by a constant that only depends on 6 and H. This is done in two
steps: first we show that the maximal length of a path in 7" is bounded and
then we show that 7" can only have a bounded number of leaves. Together,
these two claims bound the size of T".

Claim 3: The length of the longest path in T is bounded.

Suppose the longest path P in T is ujviusvs ... and has length b. We may
write b = 20’ + r where r € {0,1}. The minimum degree of G is at least
0 > 3 and T is acyclic. Therefore, each vertex of P has a neighbour which is
not on P. Further, every leaf of T" must have a neighbour in A.

We colour the vertices of GG as follows. First, colour A. Next, we colour the
vertices of P using the following algorithm. Initially, ¢ = 1. The algorithm
colours vertices u; and v; at step i (and possibly some other vertices of T
that do not lie on P).

At the i*" step, consider vertices u; and v; on P. If i = 1, u; is an end-
vertex of P and so has a neighbour in A; if ¢ # 1, u; has v;_; as a neighbour.
Hence, we know u; is adjacent to a vertex which has already been coloured.
Consider the vertex v;. If v; has a neighbour in A, we have a path of length
4 starting and ending at vertices which have already been coloured. Lemma
2.2 tells us there are at most k% — 1 choices for u; and v; (see Figure 1). If v;
does not have a neighbour in A, it must have another neighbour in 7" which
does not lie on P. Take a maximal path (); in T, which starts at v; and avoids
P. The end-vertex of @); that is not v; must be a leaf in T" and hence has a
neighbour in A (see Figure 1). We therefore have a path of length |Q;| + 3
which starts and ends with vertices that have already been coloured and has
u; U Q; as the internal vertices. Lemma 2.2 gives at most (k? — 1)kl@:—1
ways to colour the path u; UQ;. We then proceed to the (i 4 1)™ step of the
algorithm.



—— vertices already coloured
—— vertices coloured in this step

Figure 1: On the left, v; has a neighbour in A; on the right, v; does not.

After O steps, we have coloured 2b" vertices of P (and possibly some other
vertices of T'). We finish by colouring all of the remaining vertices of GG, each
of which has at most & choices by Proposition 2.3. Therefore

hom (G, H) < |V (H)(k2 = 1)k -2 < |V ()[k e,

This is strictly less than £"~° whenever ¥ > k*alog |V (H)|+ k(6 — ) log k.
Because hom(G, H) is maximal, there exists a constant depending only on §
and H which bounds the length of a maximal path in any non-trivial com-
ponent of F' as required.

Claim 4: T has a bounded number of leaves.

Suppose T” has [ leaves. Each leaf of T” has at least two neighbours which
are not in 7" because the minimum degree of GG is at least § > 3. At least one
of these neighbours is a leaf of T. Similarly, every leaf of T" has a neighbour
in A.

We colour G by first colouring the vertices of A. For each leaf v of T7,
there are two possibilities. If v has two neighbours u and w which are leaves
of T, there is a path of length 5 with end vertices in A and internal vertices
u, v and w. By Lemma 2.2 there are at most (k? — 1)k ways to colour the
path wvw. If v only has one neighbour v which is a leaf of T, then v must
also have a neighbour in A because it has at least § neighbours and only one
of these can be in 7" (see Figure 2). Apply Lemma 2.2 to the path with end
vertices in A and internal vertices v and v. There are at most k? — 1 choices



for the colours of v and v.
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—— vertices already coloured
—— vertices coloured in this step

Figure 2: On the left, v has two leaves as neighbours; on the right, v has one.

Once each leaf of 7" has been assigned to a vertex of H, there are at
most k choices for each of the remaining vertices of G' by Proposition 2.3.
Therefore

hOHl(G, H) S |V(H>"A|(k2 _ 1>lkn*‘A|*2l < ‘V(H)’ak'niaeik%_

This is strictly less than k"% whenever | > k*alog [V (H)| + k*(0 — a) log k.
The maximality of hom(G, H) means that the maximum number of leaves
T’ can have is bounded above by a constant depending only on § and H as
required.

Claims 3 and 4 show that, for each non-trivial component 1" of F', the subtree
T’ consisting of T without its leaves has maximal size bounded by a constant
t(6, H). Claim 2 shows that there are at most a(d, H) non-trivial components
of F for some constant a(6, H).

We can make F' into an independent set by moving some (possibly all) of
the vertices of each T” from F to A. If any non-trivial component has 7" = (),
then T is a single edge and in this case we just move one of the end vertices
from F to A. Hence, by moving at most a(d, H)t(d, H) vertices from F' to A,
we can turn the forest into an independent set.

We have now partitioned the vertices of G into sets of vertices L and R
where |L| < (6, H) + a(6, H)t(d, H) and R is an independent set. The size
of L is bounded above by a constant that only depends on ¢ and H; it does
not depend on the size of G.



Each vertex in R has at least 6 neighbours in L because of the minimum
degree of the vertices in (G. By the pigeonhole principle, there exists a set
Y C L of size § such that Y is contained in the neighbourhood of at least
(n — |L|)/(‘§|) > cn vertices of R for some constant ¢ = ¢(d, H). Hence, G
contains the subgraph K c,.

If G does not contain Kj,_s as a subgraph, then Y is not a dominating set
for G. Therefore, the subgraph induced by G\Y has a non-trivial component.
If G\Y contains a non-trivial tree, take a maximal path X in this tree.
Otherwise, choose X to be a cycle together with a shortest path from the
cycle to Y.

We may colour the vertices of GG in such a way that Y is always coloured
first. Recall the definition of S(J, H) given at the beginning of Section 2.

If Y is coloured using a vector from S(d, H), we then colour the vertices
of X. There are at most (k% — 1)k!*I=2 ways do this. Finally, we colour the
remaining vertices, each of which has at most k& choices by Proposition 2.3.
This gives at most s(d, H)(k* — 1)k" =2 such colourings.

Alternatively, if Y is not coloured using a vector from S(é, H), then there
are at most k£ — 1 ways to map each of the other cn vertices of the Kj,,
subgraph into H. There are then at most &k choices for each of the remaining
vertices of G by Proposition 2.3. There are at most |V (H)[°(k — 1)kn—0—n
such colourings.

Combining the above gives

hom(G, H) < s(0, H)(k* — 1)k" 72 4+ |V (H)[*(k — 1)k
s(6, HYk" ™ — s(6, H)k"°72 + |V(H)|°(k — 1)"gn—on—?
< s(6, H)k" ™

for sufficiently large values of n.

If G contains Kj,,_s as a subgraph and G # K;,,_s, then we know that ¢
contains at least one extra edge between two vertices in the same partition
class. Clearly, every mapping of G into H is also a mapping of Kj,_s; into
H. We will show below that the converse is not true.

If 75 is an edge in H, then mapping the size  partition class of K, _s
to ¢ and the other partition class to j is a proper mapping of Ks, s into
H. However, it is only a proper mapping of G to H if the partition class
containing the extra edge is mapped to a looped vertex. Therefore, if H has
a non-looped vertex, hom(G, H) < hom(Kjs,,_s).

Suppose every vertex of H is looped. We assumed that H was connected
and not the complete looped graph so there will be non-adjacent vertices j
and k£ which have a common neighbour i. We may map the partition class
with the extra edge to vertices 7 and k and the other partition class to 1.
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If the extra edge has one endpoint in j and the other in k, we do not get
a proper H-colouring of G but it is a valid H-colouring of Kj,_s. Hence
hom(G, H) < hom(Kj,,_s).

Therefore, if hom(G, H) is maximal and n is sufficiently large, then we
must have G = Kj,,_s. O

3 Counterexample to Conjecture 1.4

We write T;(z) for the t-partite Turdn graph on x vertices (i.e. the complete
t-partite graph on z vertices with the vertex classes as equal as possible).

For every 0 > 3, we will construct a graph H such that, for infinitely
many values of n, the number of H-colourings is uniquely maximised by a
disjoint union of complete multipartite graphs. This shows that Conjecture
1.4 does not hold. For simplicity, we first assume that (¢ — 1)|d for some
3<t <.

Theorem 3.1. Fiz 6 > 3 and 3 <t < ¢ such that § = (t — 1) for some
a € N. Then there ezists a constant ko(6) such that the following holds for all
values of m € N: if k > ko(0) and G is any graph on n = mta vertices with
minimum degree at least §, then we have hom(G, kK;) < hom(mT(ta), kK;)
with equality if and only if G = mT(ta).

Proof. Fix § > 3 and 3 < t < § as above where 6 = (t — 1)a. Take k
sufficiently large that (k)Y (@) > ¢ft/(ta+l),

Clearly, hom(K;y1,kK;) = 0 and so we only need to consider graphs
which are K, -free.

Any K, i-free graph with minimum degree at least ¢ has at least ta
vertices. Turdn’s theorem tells us that Tj(t«) is the only such graph with
exactly ta vertices. It is easy to see that hom(T}(ta), kK;) = tlk.

Let m € N and take G to be any graph on n = mta vertices with minimum
degree at least 9. We may assume that G has a components Gy,...G,
with |G| > -+ > |G,| > ta. Then hom(G,kK;) = [[;_, hom(G;, kKy).
If |G1] = ta, then |G;| = ta for all ¢ and hence G = mT;(ta).

Suppose that |G| > ta. We know that, if |G;| = ta, then G; = Ti(ta)
and hom(G;, kKt) = tlk. If |G;| > ta, then we may colour the vertices of G;
greedily to get hom(G;, kK;) < th(t — 1)/~ < ktIGl. We chose k such that
(t1k)Y/ (1) > tE1/(te+1) - Using this and the fact that |G;| > ta + 1, we have
hom (G, kK,) < (t1k)IG:l/(t®) " Combining these two observations, we get

hom(G, kK;) = [ [ hom(G;, kK,) < (1)) = (k)™ = hom(mT,(tev), kK;).

i=1
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Therefore, if G is any graph on n = mta vertices with minimum degree at
least d, we have hom(G, kK;) < hom(mT;(ta), kK;). We have equality if and
only if G = mT(ta). O

We may use the techniques above to show that, if (t—1)|(041), then a similar
result holds — there is a graph H such that the number of H-colourings is
uniquely maximised by a union of complete t-partite graphs. Therefore, for
every 0 > 3, by taking ¢t = 3, we can produce a counterexample to Conjecture
1.4.

In all of the examples we have seen so far, the number of H-colourings
has been maximised by the union of complete multipartite graphs. We will
now give an example where this is not the case.

Take 6 = 7 and ¢t = 4 and choose k as in Theorem 3.1. Let H = kKy,
m € N and take G to be any graph on n = 10m vertices with minimum degree
at least 7. As before, we may assume that G is 4-colourable. If G has a com-
ponent with at least 11 vertices, then we can show, in a similar way to The-
orem 3.1, that hom(G, kK,) < hom(mT,(10), kK,). Any union of complete
multipartite graphs except m7,(10) is either not 4-colourable or contains a
component with at least 11 vertices. Therefore, mT,(10) maximises the num-
ber of H-colourings among unions of complete multipartite graphs. However,
the number of H-colourings is not maximised overall by mT}y(10). Let 7" be
the graph formed from 74(10) by removing a perfect matching between the
two vertex classes of size 2. Then hom(mT”, kK,) = 2hom(mT,(10), kK,).

4 Proof of Theorem 1.5

We will need the following simple observation.

Proposition 4.1. Fix d € N. Let G be any graph with minimum degree at
least 3d. Then G has at least d disjoint cycles.

Proof. If d = 1, the minimum degree of GG is at least 3 and so G contains
a cycle. If d > 1, take C to be a shortest cycle in G. Each vertex in G
has at most 3 neighbours on C' or else we would be able to find a shorter
cycle. Removing the vertices in C' reduces the minimum degree by at most
3. Therefore, by induction, we can find at least d — 1 disjoint cycles in
G\V(O). O

Before proving Theorem 1.5, we will prove a couple of useful lemmas. Recall
the definitions of S(d, H) and s(d, H) given at the start of Section 2.
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Lemma 4.2. Fix 6 > 1 and k > 2. Fix H to be any graph with maximum
degree k. Then there exists a constant $(0, H) such that, for n > (6, H),
we have hom(Ks,,_s, H) < s(d, H)k" 179,

Proof. The graph Kj,_s has two vertex classes. Denote the class of size ¢
by Z. When we are counting the number of H-colourings of Kj,,_s5, we will
colour vertices in Z first and then the remaining vertices may be coloured
greedily. There are two possibilities: either Z is coloured so that all of the
vertices used in H have k common neighbours (i.e. we use a vector from
S(6,H)) or the vertices in H used to colour Z have strictly fewer than k
neighbours in common.

First, we consider the case where Z is coloured using a vector from
S(d, H). When we come to colour the vertices of G\Z, there are exactly
k choices for each one. Therefore, there are exactly s(d, H)k"~° such colour-
ings.

Next, we consider the case where Z is coloured so that the vertices used
do not have k common neighbours in H. This leaves at most £ — 1 ways to
map the vertices of G\ Z into H. Hence, there are at most |V (H)|°(k—1)""°
such colourings.

Combining the above gives

hom(Ks,, s, H) < (6, H)k"™° + |V (H)|*(k — 1)"°.
Hence, for n sufficiently large, we have

hom(Ks,_s, H) < s(6, H)k"™° 4 k"~

<s
< s(6, H)k"179.
This proves the required result. O

Lemma 4.3. Fiz H to be any graph with maximum degree k € N that does
not have the complete looped graph on k wvertices or Ky as a component.
There ezists a constant 8o(H) such that, if § > do(h) and G is a connected
graph on n vertices with minimum degree §, then hom(G, H) < k™1

Proof. The minimum degree condition on G ensures that n > § + 1. The
restrictions on H mean that k& > 2.

Let H have h components Hy, ... H,. As G is connected, any H-colouring
of G maps G to a single component H; and so hom(G, H) = Z?Zl hom(G, H;).
We therefore first count the number of H;-colourings of G for each i € [h].
There are three cases to consider.
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Case 1. Let H; be a complete looped graph on [ vertices where [ < k.
Then hom(G, H;) = I" < (k—1)". This is strictly less than k"~"~! whenever

(h+1)logk
n> log k—log(k—1) *

Case 2. Let H; = K;; where | < k. Then hom(G, H;) = 21" < 2(k — 1)™.
log 2+(h+1) log k

This is strictly less than k"~"~! whenever n > Tog k—Tog (h—1) "

Case 3. Let H; be any connected graph which is not the complete looped
graph on [ vertices or K;; for some [ < k. Suppose G has d vertex disjoint
cycles C1,...Cy4. We colour GG in the following way:

1. Pick any vertex of G and map it to any vertex of H;.

2. Find a shortest path P from the already coloured vertices of G to an
uncoloured vertex on one of the cycles C;. There are at most k ways
to map each vertex on this path to vertices of H;.

3. The end vertex of P has already been mapped to a vertex of H; so we
consider the other vertices on the cycle C;. Lemma 2.2 gives at most
(k? — 1)k!%1=3 ways to map these vertices to H;.

4. If, for some j' € {1,...d}, the cycle C; has not yet been coloured, go
back to step 2.

5. Colour any remaining uncoloured vertices in a greedy fashion. By
Proposition 2.3, there are at most k choices for each vertex.

By colouring G in this way, we find that
hom(G, H;) < |V (Hy)|(K* — 1)%270 < |V(H,) k" e 72
This is strictly less than £"~"~! whenever d > k%log |V (H;)| + k*hlogk.

Choose 0 > max {3k?log |V (H)| + 3k*hlog k,%} and note that
n >0+ 1. If H; is in either Case 1 or Case 2, then n is large enough that
hom(G, H;) < k"1, If H; is in Case 3, then, by Proposition 4.1, we have
that the number of disjoint cycles in G is at least k*log |V (H)| + k*hlog k

and hence hom(G, H;) < k""~1. Then

h
hom(G, H) = > hom(G, H;) < hk"™" ' < k",
i=1
Hence, if H does not contain the complete looped graph on £ vertices or
K} as a component, we have hom(G, H) < k™! for ¢ sufficiently large as
required. 0
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We are now ready to prove the main result.

Proof of Theorem 1.5. Let H be any graph with maximum degree k that does
not have the complete looped graph on £ vertices or Ky as a component.
This allows us to apply Lemma 4.3 as required.

Choose 0 > do(H) where 6o(H) is the constant found in Lemma 4.3.
Set \(0, H) = max{x(0, H), 5(d, H)} where x(5, H) is the constant found in
Theorem 1.1 and £(0, H) is the constant found in Lemma 4.2. Now, choose
n>(—1)(A,H)—1).

Let G be a graph on n vertices with minimum degree § that has the
maximum number of H-colourings. Clearly, hom(G, H) > hom(Ks,,_s, H) >
s(6, H)kn=° > k9,

Let G have t components G1,...G;. An H-colouring of G comprises of
separate H-colourings of each component G; and therefore hom(G, H) =
HZ:1 hom(G;, H). As G has the most H-colourings among all graphs on n
vertices with minimum degree J, we must also have that G; has the most
H-colourings among all graphs on |G;| vertices with minimum degree § for
each i € {1,...t}.

Claim 1: G has a bounded number of components.
By Lemma 4.3, we have that hom(G;, H) < kl%I=! for each i € {1,...t} so

t t
hom(G, H) = [[hom(G;, H) < [[ %™ = k",
=1 =1

If t > §, then we have hom(G, H) < k"% < hom(Kj,,_s, H) and this contra-
dicts our assumption that G has the maximum number of H-colourings.

Hence we know that G has at most § — 1 components. By the pigeonhole
principle, there is a component of G with at least A(d, H) vertices. With-
out loss of generality, we may assume this component is GG;. By Theorem
1.1, we have that G; = K;|g,|-s and, applying Lemma 4.2, we find that
hom(Gy, H) < s(8, H)kIG11+1=9,

Claim 2: G has exactly one component.
Suppose t > 1. We know hom(Gy, H) < s(6, H)k'?+1=9 By Lemma 4.3, we
have hom(Gy, H) < kI%I=1. Hence
hom(G U Gy, H) < s(8, H)EIGHIT1=0E|G21=1
— S(é, H)k|G1\+|G2\f6
< hom(Kjsa,|+(Ga|—6, H).-
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Replacing Gy U Gy by K5, |+|G.|—s increases the number of H-colourings of
GG, which contradicts our assumption that G has the maximum number of
H-colourings.

We have seen that GG has exactly one component (G; and that this component
is Ks)@,|—s. In other words, if G has the maximum number of H-colourings,
then G' = Kj,,_s as required. O

5 Conclusion

We have shown that, given any graph H and any § > 3, for sufficiently
large n, the graph G = Kj,_s maximises hom(G, H) among all connected
graphs on n vertices with minimum degree §. If H has a component which
is neither a complete looped graph nor a complete balanced bipartite graph,
then Kj,_s is the unique such maximising graph.

We have also considered the more general question which was asked by
Engbers [5]: what happens if we consider all graphs on n vertices with min-
imum degree §, rather than just those which are connected? We will look
at the case where H is fixed and § > do(H). By making § sufficiently large
in relation to |H|, we are able to identify the maximising graph for certain
graphs H.

In what follows, we take G' to be any graph on n vertices with minimum
degree 9. We assume that G has t components Gy, ... G;.

If H is fixed with maximum degree k and ¢ is sufficiently large, then the
graph which maximises the number of H-colourings depends on the structure
of H. Some of the different possible graphs which maximise hom(G, H) are
given below.

1. H s h disjoint copies of the complete looped graph on k wvertices.

It is easy to see that hom(G, H) = [[._, |V (H)|kl%!=" = h*k". When
h = 1, hom(G, H) = k™ for any graph G on n vertices and so ev-
ery graph G maximises the number of H-colourings. When h > 1,
hom(G, H) is maximised when G has as many components as possible.
The minimum number of vertices in a component of G is § + 1 which
occurs when the component is Ky 1. Writing n = a(d + 1) + b where
b e {0,...9}, we have that hom(G, H) is maximised by any graph with
a components, e.g. (a — 1)Kz U Ksipp1.

2. H is h disjoint copies of K.
It is easy to see that, if a graph is not bipartite, it is not possible to
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map it into H. Therefore

hom(G, H) = [T hom(Gy, H) = (2h)'k™ if G; is bipartite
A if GG; is not bipartite.

Clearly, the number of H-colourings is maximised when G is bipartite
and has as many components as possible. The smallest possible bipar-
tite component of G is K5 which has 20 vertices. Writing n = 2ad +b
where b € {0,...26 — 1}, we have that hom(G, H) is maximised by any
bipartite graph with a components, e.g. (a — 1)Kss5 U K51

3. No component of H is the complete looped graph on k vertices or K.
In Section 4, we showed that, for any § > do(H ), there exists a constant
no(0, H) such that, if n > ng(0, H), then K, s uniquely maximises the
number of H-colourings.

From the examples given above, it is clear to see that there is not a simple
answer to the question of which graph G maximises hom(G, H) when H is
fixed and ¢ is sufficiently large. We make the following conjecture.

Conjecture 5.1. For any graph H and any 6 > §o(H), there ezists a con-
stant no(0, H) such that the following holds: if G is a graph with minimum
degree 0 and at least ng(0, H) vertices, then

|G|

hom(G, H) < max { hom(Ky1, H)#1, hom(Ks g, H) = hom(K; s, H)}.

This conjecture implies that, for a fixed graph H and ¢ sufficiently large, the
following holds: for sufficiently large n satisfying suitable divisibility condi-
tions, the number of H-colourings is always maximised by one of ;5 Ksi1,
%K&g or K(;,n_g.
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