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Abstract

The Erdős-Hajnal conjecture says that for every graph H, there exists c > 0 such that every H-free
graph G has a clique or stable set of size at least 2c log |G| (a graph is “H-free” if no induced subgraph
is isomorphic to H). The conjecture is known when H is a path with at most four vertices, but
remains open for longer paths. For the five-vertex path, Blanco and Bucić recently proved a bound
of 2c(log |G|)

2/3
; for longer paths, the best existing bound is 2c(log |G| log log |G|)

1/2
.

We prove a much stronger result: for any path P , every P -free graph G has a clique or stable set of
size at least 2(log |G|)

1−o(1)
. We strengthen this further, weakening the hypothesis that G is P -free by a

hypothesis that G does not contain “many” copies of P , and strengthening the conclusion, replacing
the large clique or stable set outcome with a “near-polynomial” version of Nikiforov’s theorem.



1 Introduction

Some terminology and notation: if G is a graph, G[X] denotes the induced subgraph with vertex set
X of a graph G; |G| denotes the number of vertices of G; G is the complement graph of G; and a
graph is H-free if it has no induced subgraph isomorphic to H. A well-known conjecture of Erdős
and Hajnal from 1977 [3, 4] says:

1.1 The Erdős-Hajnal Conjecture: For every graph H there exists c > 0 such that every H-free
graph G has a stable set or clique of size at least |G|c.

This remains open, and has been proved only for a very limited set of graphs H (although see [7] for
a variety of new graphs H that satisfy 1.1). In particular, it remains open for H = P5, the five-vertex
path.

How large a clique or stable set must a P5-free G graph have, in terms of |G|? If H is a graph,
for each n > 0 let fH(n) be the largest integer such that every H-free graph with at least n vertices
has a stable set or clique with size at least fH(n). Thus, the Erdős-Hajnal conjecture says that

1.2 Conjecture: For every graph H there exists c > 0 such that fH(n) ≥ nc for all n > 0.

Erdős and Hajnal [4] proved:

1.3 For every graph H, there exists c > 0 such that fH(n) ≥ 2c(logn)
1/2

for all n > 0.

In [2], with Bucić, we improved this: we showed:

1.4 For every graph H, there exists c > 0 such that fH(n) ≥ 2c(logn log logn)1/2 for all n > 0.

But when H = P5, more can be said. In a substantial breakthrough, in [1], Blanco and Bucić
improved 1/2 to 2/3; they proved:

1.5 There exists c > 0 such that fP5(n) ≥ 2c(logn)
2/3

for all n > 0.

In the present paper, we prove a much stronger result: P5 can be replaced by any path, and 2/3 can
be replaced by any d < 1 (d = 1 is the Erdős-Hajnal conjecture itself). More exactly:

1.6 For every path P , and all d < 1, there exists c > 0 such that fP (n) ≥ 2c(logn)
d

for all n > 0.

This is equivalent to saying that for every path P , fP (n) ≥ 2(logn)
1−o(1)

.
This will be further strengthened, in two ways both of which need more definitions. If ε > 0, a

subset S ⊆ V (G) is

• ε-sparse if G[S] has maximum degree at most ε|S|;

• (1− ε)-dense if G[S] is ε-sparse, where G is the complement graph of G; and

• ε-restricted if S is either ε-sparse or (1− ε)-dense.

A (mildly strengthened) result of Rödl [10] says:

1.7 For all 0 < ε ≤ 1/2, there exists δ > 0 such that for every H-free graph G, there is an
ε-restricted subset S ⊆ V (G) with |S| ≥ δ|G|.
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Fox and Sudakov [5] proposed the conjecture that the dependence of δ on ε is polynomial; or more
exactly:

1.8 Conjecture: For every graph H there exists c > 0 such that for every ε with 0 < ε ≤ 1/2 and
every H-free graph G, there exists S ⊆ V (G) with |S| ≥ εc|G| such that S is ε-restricted.

Every graph H satisfying this also satisfies the Erdős-Hajnal conjecture; and in the converse direction,
we proved in [6, 7] that all the graphs currently known to satisfy the Erdős-Hajnal conjecture also
satisfy conjecture 1.8.

As we said, 1.6 will be strengthened in two ways. The first strengthening is, we will prove that
every path “nearly” satisfies the Fox-Sudakov conjecture. More exactly:

1.9 For every path P and all d < 1, there exists c > 0 such that for all 0 < ε ≤ 1/2 and every

P -free graph G, there is an ε-restricted subset S ⊆ V (G) with |S| ≥ 2−c(log ε
−1)1/d |G|.

This first strengthening is crucial to the proof of 1.6.
The second strengthening is, we can replace the hypothesis of 1.9 that G is P5-free, with a weaker

hypothesis that G does not contain many copies of H. A copy of H in G is an isomorphism from H
to an induced subgraph of G. Let indH G be the number of copies of H in G. There is a theorem of
Nikiforov [9], strengthening Rödl’s theorem:

1.10 For every graph H and all ε > 0, there exists δ > 0 such that for every graph G, if indH(G) ≤
δ|G||H|, then there is an ε-restricted subset S ⊆ V (G) with |S| ≥ δ|G|.

We will prove that, when H is a path, this is satisfied taking δ to be a “near-polynomial” function
of ε. More exactly:

1.11 For every path P and all d < 1, there exists c > 0 such that for all 0 < ε ≤ 1/2, if δ satisfies

δ = 2−c(log ε
−1)1/d ,

then every graph G with indP (G) ≤ (δ|G|)|P |, there is an ε-restricted subset S ⊆ V (G) with |S| ≥
δ|G|.

This second strengthening is not crucial for the proof, but it has the advantage that the class of graphs
P (not necessarily paths) that satisfy 1.11 is closed under vertex-substitution, while we cannot prove
the same for the the class of graphs P that satisfy 1.9.

Thus, 1.11 is our main result. Obviously it implies 1.9, but that it implies 1.6 is not so obvious.
Let us see that, via the following.

1.12 Let G,H be graphs with |G| ≥ 2, and assume that a > 0 is such that for every ε > 0 with
ε ≤ 1/2, there is an ε-restricted S ⊆ V (G) with

|S| ≥ 2−a(log
1
ε
)1/d |G|.

Then G contains a clique or stable set of size at least 2c(log |G|)
d
, where c = (2a+ 2)−1.
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Proof. If 2c(log |G|)
d ≤ 2, then the result holds since G has a clique or stable set of size two; so we

assume that 2c(log |G|)
d
> 2. Let ε := 2−2c(log |G|)

d
; then ε ∈ (0, 14). Let δ > 0 be such that

log
1

δ
= a

(
log

1

ε

)1/d

= a(2c)1/d log |G| ≤ 2ac log |G|.

Then δ ≥ |G|−2ac. From the hypothesis, there is an ε-restricted S ⊆ V (G) with

|S| ≥ δ|G| ≥ |G|1−2ac = |G|2c = 22c log |G| ≥ 22c(log |G|)
d

= ε−1.

Thus, since S is ε-restricted, G[S] (and so G) contains a clique or stable set of size at least

|S|
ε|S|+ 1

≥ 1

2ε
≥ ε−1/2 = 2c(log |G|)

d
.

This proves 1.12.

It is easier to prove that graphs are near-viral than to prove they are viral, and we can prove
that several other types of graph are near-viral. We will return to this in a subsequent paper [8].

We can strengthen the current result by looking at ordered graphs. An ordered graph G is a
pair (G\,≤G), where G\ is a graph and ≤G is a linear order of its vertex set. Induced subgraph
containment for ordered graphs is defined in the natural way, respecting the orders of both graphs.
A zigzag path is an ordered graph (G\,≤G) where G\ is a path and the ordering is as in figure 1.
The proof of this paper works for ordered graphs, with minor adjustments; and it shows that every
zigzag path is near-viral (defining “near-viral” for ordered graphs in the natural way). We omit the
details.

Figure 1: A zigzag path

2 Blockades

As in previous papers of this series, we say a graph H is viral if there exists c > 0 such that for all
0 < ε ≤ 1/2 and every graph G with indH(G) ≤ (εc|G|)|H|, there is an ε-restricted subset S ⊆ V (G)
with |S| ≥ εc|G|. Let us say that a graph H is near-viral if for every d < 1, there exists c > 0 such
that for every ε ∈ (0, 12), if δ satisfies

log
1

δ
= c

(
log

1

ε

)1/d

,

then for every graph G with indH(G) ≤ (δ|G|)|H|, there is an ε-restricted S ⊆ V (G) with |S| ≥ δ|G|.
Thus, our main theorem 1.11 says that every path is near-viral.
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A blockade in a graph G is a finite sequence (B1, . . . , Bn) of (possibly empty) disjoint subsets of
V (G); its length is n and its width is mini∈[n]|Bi|. For k,w ≥ 0, (B1, . . . , Bn) is a (k,w)-blockade if

its length is at least k and its width is at least w. For x ∈ (0, 12), this blockade is x-sparse if Bj

is x-sparse to Bi for all i, j ∈ [n] with i < j, and (1 − x)-dense if Bj is (1 − x)-dense to Bi for all
i, j ∈ [n] with i < j.

Thus, there are three parameters we care about, the length, width, and sparsity (or density).
It is easier to prove that certain graphs contain blockades with some desired combination of the
three parameters, than to prove directly that they contain large ε-restricted sets. But the reason
blockades are useful is that if a graph G and all its large induced subgraphs admit blockades with
certain parameters, then G must contain a large ε-restricted set.

There are now several theorems of this type, with a family resemblance, but sufficiently different
to be confusing, and perhaps it would be helpful to summarize them here.

• Erdős and Hajnal [4] proved that for every graph H, there exists d > 0 such that for all
x ∈ (0, 1/2], every H-free graph admits an x-sparse or (1 − x)-dense (2, bxd|G|c) blockade.
From this they deduced their result 1.3.

• In [2], we (with Bucić) proved a strengthening, that for every graph H, there exists d > 0
such that for all x ∈ (0, 1/2], every H-free graph (or every graph G with indH(G) ≤ (xd|G|)|H|
admits an x-sparse or (1 − x)-dense (log(1/x), bxd|G|c)-blockade. This allowed us to deduce
1.4.

• If we could prove that for a graph H, there exists d > 0 such that for all x ∈ (0, 1/2], every
graph G with indH(G) ≤ (xd|G|)|H| admits an x-sparse or (1−x)-dense (1/x, bxd|G|c)-blockade,
then we could deduce that H is viral. It would be just as good if we could prove that for all
x ∈ (0, 1/2], every graph G with indH(G) ≤ (xd|G|)|H| admits an x-sparse or (1 − x)-dense
(k, b|G|/kdc)-blockade for some k ∈ [2, 1/x]. This was used in [6] to prove the main results of
that paper.

• Suppose that there exist a, b > 0 and d > 2 such that for all 0 < x < y ≤ 1/2, every ya-
restricted graph G with indH(G) ≤ (xbd

2 |G|)|H| admits either a yad-restricted subset of size at
least ybd

2 |G|, or an x-sparse or (1− x)-dense (1/y, bybd2 |G|c)-blockade. Then H is viral. This
was the method used in [7].

• Suppose we could prove that there exists d > 0 such that for all x, y with 0 < x < y ≤ 1/2,
every poly(y)-restricted graph G with indH(G) ≤ (xd|G|)|H| admits an x-sparse or (1−x)-dense
(1/y, bxd|G|c)-blockade. Then we could deduce that H is near-viral. This is the approach in
this paper.

The edge-density of a graph G is |E(G)| divided by
(|G|

2

)
(or 1 if |G| ≤ 1). Let us say a subset

S ⊆ V (G) is weakly ε-restricted if one of G[S], G[S] has edge-density at most ε. A function ` : (0, 12)→
R+ is subreciprocal if it is nonincreasing and 1 < `(x) ≤ 1/x for all x ∈ (0, 12). For a subreciprocal
function `, a graph H is `-divisive if there are c ∈ (0, 12) and d > 1 such that for every x ∈ (0, c) and

every graph G with indH(G) ≤ (xd|G|)|H|, there is an x-sparse or x-dense (`(x), bxd|G|c)-blockade
in G. Here is a theorem proved in [2].
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2.1 Let ` : (0, 12)→ R+ be subreciprocal, and let H be `-divisive. Then there exists C > 0 such that
for every ε ∈ (0, 12), if we define δ > 0 by

log
1

δ
=
C(log 1

ε )2

log(`(ε))
,

then for every graph G with indH(G) ≤ (δ|G|)|H|, there is a weakly ε-restricted S ⊆ V (G) with
|S| ≥ δ|G|.

This provides us with large subsets that are weakly ε-restricted, but we want ε-restricted subsets.
These are easy to find:

2.2 For ε ∈ (0, 12) and a graph G, if S ⊆ V (G) is weakly 1
4ε-restricted, then there exists an ε-

restricted T ⊆ S with |T | ≥ 1
2 |S|.

Proof. We may assume that G[S] has at most 1
4ε
(|S|

2

)
< 1

8ε|S|
2 edges. Let T be the set of vertices

in S with degree at most 1
2ε|S| in G[S]; then 1

2ε|S||S \ T | <
1
4ε|S|

2 and so |S \ T | < 1
2 |S|. Thus

|T | > 1
2 |S| and G[T ] has maximum degree at most 1

2ε|S| < ε|T |. This proves 2.2.

We need to make a corresponding adjustment to 2.1:

2.3 Let ` be subreciprocal, and let H be an `-divisive graph. Then there exists C > 0 such that for
every ε ∈ (0, 12), if we define δ > 0 by

log
1

δ
=
C(log 1

ε )2

log(`(ε))
,

then for every graph G with indH(G) ≤ (δ|G|)|H|, there is an ε-restricted S ⊆ V (G) with |S| ≥ δ|G|.

Proof. Choose C ′ such that 2.1 holds with C replaced by C ′. We claim that C := 18C ′ satisfies the
theorem. To show this, let ε ∈ (0, 12), let δ be as in 2.3, and let G be a graph with indH(G) ≤ (δ|G|)|H|.
We must show that there is an ε-restricted S ⊆ V (G) with |S| ≥ δ|G|.

Let ε′ := 1
4ε ∈ (ε3, ε), and define δ′ by

log
1

δ′
:=

C ′(log 1
ε′ )

2

log(`(ε′))
<
C ′(log 1

ε3
)2

log(`(ε′))
≤

9C ′(log 1
ε )2

log(`(ε))
=

1

2
log

1

δ
,

and so δ′ ≥
√
δ > 2δ. Since indH(G) ≤ (δ|G|)|H| ≤ (δ′|G|)|H|, there is a weakly ε′-restricted S ⊆ V (G)

in G with |S| ≥ δ′|G|. By 2.2, there is an ε-restricted T ⊆ S with |T | ≥ 1
2 |S| ≥

1
2δ
′|G| > δ|G|. This

proves 2.3.

For each integer s ≥ 0, let `s : (0, 12)→ R+ be the function defined by

`s(x) := 2(log
1
x
)

s
s+1

for all x ∈ (0, 12). Then `s is subreciprocal. We will show that:

2.4 Every path P is `s-divisive for all integers s ≥ 0.
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Let us deduce 1.11, which we restate:

2.5 Every path P is near-viral.

Proof (assuming 2.4). We must show that for all d < 1, there exists c > 0 such that for all
ε ∈ (0, 1/2), if δ satisfies

log
1

δ
= c

(
log

1

ε

)1/d

,

then for every graph G with indH(G) ≤ (δ|G|)|H|, there is an ε-restricted S ⊆ V (G) with |S| ≥ δ|G|.
Choose s with s+1

s+2 ≥ d. Since P is `s-divisive, by 2.3 there exists C > 0 such that for every

ε ∈ (0, 12), if we define δ′ > 0 by

log
1

δ′
=
C
(
log 1

ε

)2
log (`s(ε))

=
C
(
log 1

ε

)2(
log

(
1
ε

))s/(s+1)
= C

(
log

1

ε

) s+2
s+1

,

then for every graph G with indH(G) ≤ (δ′|G|)|H|, there is an ε-restricted S ⊆ V (G) with |S| ≥ δ′|G|.
We claim that we make take c = C. To see this, let ε ∈ (0, 1/2), let δ satisfy

log
1

δ
= C

(
log

1

ε

)1/d

,

and let G be a graph with indH(G) ≤ (δ|G|)|H|. Then

log
1

δ′
= C

(
log

1

ε

) s+2
s+1

≤ C
(

log
1

ε

)1/d

= log
1

δ

and so δ′ ≥ δ. Since indP (G) ≤ (δ′|G|)k, there is an ε-restricted S ⊆ V (G) with |S| ≥ δ′|G| ≥ δ|G|.
This proves 2.5.

3 In a sparse graph

The remainder of the paper is devoted to the proof of 2.4. Its proof proceeds by induction on s;
so we may assume that the path P is `s−1-divisive, and therefore V (G), and every large subset of
V (G), includes a somewhat smaller subset that is appropriately restricted. This subset might be
very dense or very sparse, but if ever the subset is very sparse, we can win easily, using the result of
this section. As usual with problems about excluding a path, our task is easier if the “host” graph
is sparse, and we use a modified version of the well-known “Gyárfás path argument”.

3.1 Let P be a path, let 0 < x ≤ y ≤ 1/(2|P |), and let G be a y2-sparse graph. Then either:

• indP (G) ≥ (x4|G|)|P |, or

• there is an x-sparse (1/y, bx5|G|c)-blockade in G.
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Proof. Let |P | = k ≥ 1. If k = 1 the first bullet holds, and if x5|G| < 1 then the second bullet
holds, so we assume that k ≥ 2 and |G| ≥ x−5. Choose an x-sparse blockade (B1, . . . , Bn−1, C) in
G with n maximum such that |B1|, . . . , |Bn−1|, |C| ≥ x5|G| and |C| ≥ (1− k(n− 1)y2)|G|. We may
assume that n < 1/y, and so

|C| ≥ (1− k(n− 1)y2)|G| = (1 + ky2 − kny2)|G| ≥ (1/2 + ky2)|G|.

We claim:

(1) For every X ⊆ C with |X| ≥ x4|G|, and Y ⊆ C \ X with |Y | ≥ (1 + 4x3 − kny2)|G|, some
vertex in X has at least 2x4|G| neighbours in Y .

Suppose not. Then |Y | ≥ (1 + 4x3 − kny2)|G| ≥ |G|/2, since kny2 ≤ 1/2. There are most
2x4|G| · |X| ≤ 4x4|X| · |Y | edges between X and Y , and so at most 4x3|G| vertices in Y have
at least x|X| neighbours in X. Thus there is a subset Y ′ of Y with cardinality at least

|Y | − 4x3|G| ≥ (1− kny2)|G| ≥ |G|/2 ≥ x5|G|

that is x-sparse to X. But then (B1, . . . , Bn−1, X, Y
′) contradicts the maximality of n. This proves

(1).

For t ≥ 1 an integer, let us say a t-brush is an induced path v1- · · · -vt of G[C], such that vt has
at least 2x4|G| neighbours in C that are different from and nonadjacent to each of v1, . . . , vt−1.

(2) For 1 ≤ t ≤ k − 2, if v1- · · · -vt is a t-brush of G[C], there are at least x4|G| vertices v such
that v1- · · · -vt-v is a (t+ 1)-brush.

Let X be the set of neighbours of vt in C that are different from and nonadjacent to each of
v1, . . . , vt−1; and let Y be the set of all vertices in C that are different from and nonadjacent to each
of v1, . . . , vt. Thus |X| ≥ 2x4|G| since v1- · · · -vt is a t-brush. Moreover, k ≥ 3 since 1 ≤ t ≤ k − 2,
and so, as G is y2-sparse,

|Y | ≥ |C|− (k−2)y2|G| ≥ (1−k(n−1)y2− (k−2)y2)|G| = (1+2y2−kny2)|G| ≥ (1+4x3−kny2)|G|

(because 4x3 ≤ 2y2). By (1), fewer than x4|G| vertices in X have fewer than 2x4|G| neighbours in Y .
All the others give (t+1)-brushes extending v1- · · · -vt; and since |X|−x4|G| ≥ x4|G|, this proves (2).

(3) There are at least |G|/2 1-brushes.

Suppose there is a set X of dx4|G|e vertices in C each with degree less than 2x4|G| in G[C]. Let
Y = C \X; then

|Y | ≥ |C| − x4|G| − 1 ≥ |C| − x4|G| − x5|G| ≥ (1− k(n− 1)y2 − x4 − x5)|G| ≥ (1 + 4x3 − kny2)|G|

(since ky2 ≥ 2x2 ≥ 4x3 + x4 + x5), contrary to (1). Thus there are fewer than x4|G| vertices that
have degree less than 2x4|G| in G[C]. All the others give 1-brushes, and since |C| − x4|G| ≥ |G|/2,
this proves (3).
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From (2) and (3), it follows inductively that for 1 ≤ t ≤ k − 1 there are at least x4(t−1)|G|t/2
t-brushes, and in particular, there are at least x4(k−1)|G|k−1/2 (k − 1)-brushes. Each extends to at
least 2x4|G| induced k-vertex paths; and so indP (G) ≥ (2x4|G|)x4(k−1)|G|k−1/2 = x4k|G|k. This
proves 3.1.

4 The dense case

As we discussed at the start of the previous section, for the inductive proof of 2.4, we will now be able
to assume that every large subset of V (G) includes a somewhat smaller subset that is very dense.
That motivates the following:

4.1 Let P be a path with |P | ≥ 1, and let 0 < x ≤ y ≤ 1/100. Let G be a graph such that for every
S ⊆ V (G) with |S| ≥ x3|P ||G|, there is a (1− y3)-dense subset S′ ⊆ S with |S′| ≥ x|S|. Then either:

• indP (G) ≥ (x3|P ||G|)|P |; or

• there is a (1− x)-dense (1/y, bx3|P ||G|c)-blockade in G.

Proof. In the proof of 3.1, we counted “t-brushes”, induced t-vertex paths in which the last vertex
had many neighbours that all had no neighbours in the earlier part of the path. The issue there was
to prove that, given a t-brush, there were many ways to extend it to a (t + 1)-brush. We will do
something similar here, but we need to redefine a t-brush. We will be working inside a graph that is
very dense, so there is no problem arranging that the last vertex of the path has many neighbours;
the issue is to arrange that there are many vertices with no neighbours in the path, and to maintain
this as we grow the path. A non-neighbour of v means a vertex different from and nonadjacent to v,
and the antidegree of v is the number of its non-neighbours.

Let k := |P | and a := 3k. We may assume that xa|G| ≥ 1, since otherwise the second bullet holds.
Define a1 := x/2, and b1 := x2y/8; and for 2 ≤ t ≤ k, define at := (x/2)bt−1 and bt := (x2/2)bt−1.
For 1 ≤ t ≤ k let us say a t-brush is an induced path of G with vertices v1- · · · -vt in order, such that
there exist subsets A,B ⊆ V (G) with the following properties:

• every vertex in A is adjacent to vt and is nonadjacent to v1, . . . , vt−1;

• every vertex in B has no neighbours in {v1, . . . , vt};

• |A| ≥ at|G| and |B| ≥ bt|G|;

• for every Y ⊆ B with |Y | ≥ xa|G|, there are at least y|A|/4 vertices in A that have at least
x|Y | non-neighbours in Y ; and

• every vertex in B has at most 3y3|A| non-neighbours in A.

We claim first:

(1) For every S ⊆ V (G) with |S| ≥ 2xa−1|G|, there exists C ⊆ S with |C| ≥ x(1 + y)|S|/2, such that
C is (1− 2y3)-dense, and for all disjoint X,Y ⊆ C with |X| ≥ (1− y/4)|C| and |Y | ≥ xa|G|, at least
y|X|/4 vertices in X have at least x|Y | non-neighbours in Y .
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Since |S| ≥ xa|G|, there exists S′ ⊆ S with |S′| ≥ x|S| such that S′ is (1−y3)-dense. Choose a (1−x)-
dense blockade (B1, . . . , Bn−1, C) in G[S′] with n maximum such that |B1|, . . . , |Bn−1|, |C| ≥ xa|G|
and |C| ≥ (1− (n− 1)y/2)|S′|. (This is possible because |S′| ≥ xa|G|, and so we can take n = 1 and
C = S′.) We may assume that n < 1/y, and so

|C| ≥ (1− (n− 1)y/2)|S′| = (1 + y/2− ny/2)|S′| ≥ (1 + y)|S′|/2 ≥ x(1 + y)|S|/2.

In particular, |C| ≥ |S′|/2, and consequently C is (1− 2y3)-dense.

S S′ B1 Bn−1 C

Figure 2: For step (1) of the proof of 4.1.

Suppose that X,Y ⊆ C are disjoint, with |X| ≥ (1− y/4)|C| and |Y | ≥ xa|G|. It follows that

|X| ≥ (1− y/4)(1 + y)|S′|/2 ≥ |S′|/2.

Since |Y | ≥ xa|G|, and (1− ny/2)|S′| ≥ |S′|/2 ≥ xa|G|, fewer than (1− ny/2)|S′| vertices in X are
(1 − x)-dense to Y , from the maximality of n. Since |C| ≥ (1 − (n − 1)y/2)|S′|, it follows that at
least y|S′|/2 − |Y | vertices in X have at least x|Y | non-neighbours in Y . But |Y | ≤ y|C|/4, since
X ∩ Y = ∅, and so y|S′|/2− |Y | ≥ y|S′|/2− y|C|/4 ≥ y|C|/4 ≥ y|X|/4. This proves (1).

(2) There are at least x|G|/2 1-brushes.

Since |G| ≥ 2xa−1|G|, (1) implies that there exists C ⊆ V (G) with |C| ≥ x(1 + y)|G|/2, such
that C is (1−2y3)-dense, and and for all disjoint X,Y ⊆ C with |X| ≥ (1−y/4)|C| and |Y | ≥ xa|G|,
at least y|X|/4 vertices in X have at least x|Y | non-neighbours in Y .

Suppose that there is a set Y of dxa|G|e vertices in C each with antidegree less than (x2y/8)|G|
in G[C]. Let X = C \ Y . Then

|Y | ≤ xa|G|+ 1 ≤ 2xa|G| ≤ 4xa−1|C| ≤ (x/4)|C| ≤ (y/4)|C|.

There are at most (x2y/8)|G| · |Y | nonedges between X,Y ; and yet from the choice of C, since
|X| ≥ (1− y/4)|C|, there are at least (y|X|/4)(x|Y |) = (xy/4)|X| · |Y | such nonedges. So

(xy/4)|X| · |Y | ≤ (x2y/8)|G| · |Y |,

and so 2|X| ≤ x|G|. But

|X| ≥ |C| − xa|G| − 1 ≥ |C| − 2xa|G| ≥ x(1 + y)|G|/2− 2xa|G| > x|G|/2,

a contradiction.
Thus there are fewer than xa|G| vertices that have antidegree less than (x2y/8)|G| in G[C]; and

so there are at least |C| − xa|G| ≥ x|G|/2 vertices in C with antidegree at least (x2y/8)|G| in G[C].
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We claim that each such vertex forms a 1-brush. Let v be such a vertex, and let A,B be its sets
of neighbours and non-neighbours in G[C]. Then b1|G| = (x2y/8)|G| ≤ |B| ≤ 2y3|C|, and so (since
1 ≤ xa|G| ≤ 2xa+1|C| ≤ y3|C|)

|A| ≥ |C| − 2y3|C| − 1 ≥ (1− 3y3)|C| ≥ (1− 3y3)x(1 + y)|G|/2 ≥ x|G|/2 = a1|G|.

Moreover, since C is (1− 2y3)-dense, every vertex in B has at most 2y3|C| ≤ 3y3|A| non-neighbours
in A. Finally, let Y ⊆ B with |Y | ≥ xa|G|. Since |A| ≥ (1− 3y3)|C| ≥ (1− y/4)|C|, the choice of C
implies that at least y|A|/4 vertices in A have at least x|Y | non-neighbours in Y . Hence v forms a
1-brush. This proves (2).

(3) Let 1 ≤ t ≤ k − 1, and let v1- · · · -vt be a t-brush. Then there are at least yat|G|/8 vertices
v such that v1- · · · -vt-v is a (t+ 1)-brush.

Choose A,B satisfying the five bullets in the definition of “t-brush”. Since bt = (x2/2)ty/4, and
t ≤ k − 1, and a ≥ 3k, it follows that

|B| ≥ bt|G| = (x2/2)ty|G|/4 ≥ x3k−4|G| ≥ 2xa−1|G|.

By (1), there exists C ⊆ B with |C| ≥ x(1 + y)|B|/2, such that C is (1 − 2y3)-dense, and for all
disjoint X,Y ⊆ C with |X| ≥ (1 − y/4)|C| and |Y | ≥ xa|G|, at least y|X|/4 vertices in X have at
least x|Y | non-neighbours in Y .

Since v1- · · · -vt is a t-brush, each vertex in C has at most 3y3|A| non-neighbours in A, and so at
most y|A|/8 vertices in A have at least 24y2|C| non-neighbours in C. On the other hand, there are
at least y|A|/4 vertices in A that have at least x|C| non-neighbours in C; and so there is a set D ⊆ A
with |D| ≥ y|A|/8, such that for each v ∈ D, the number of its non-neighbours in C is between x|C|
and 24y2|C|.

v1

v2

vt

A

B

D v

A′ B′

Figure 3: For step (3). C = A′ ∪B′.

Let v ∈ D. We claim that v1- · · · -vt-v is a (t+ 1)-brush. Let A′ be the set of all neighbours of v
in C, and let B′ = C \ A′. We will show that A′, B′ satisfy the five conditions in the definition of a
(t+ 1)-brush. The first two are immediate. For the third,

|A′| ≥ (1− 24y2)|C| ≥ (1− 24y2)x(1 + y)|B|/2 ≥ (x/2)bt|G| = at+1|G|,
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and
|B′| ≥ x|S| ≥ x(x/2)|B| ≥ (x2/2)bt|G| = bt+1|G|.

For the fourth condition, suppose that Y ⊆ B′ with |Y | ≥ xa|G|. From the choice of C, since
|A′| ≥ (1− 24y2)|C| ≥ (1− y/4)|C|, there are at least y|A′|/4 vertices in A′ that have at least x|Y |
non-neighbours in Y . Finally, for the fifth condition, since C is (1 − 2y3)-dense, each vertex in B′

has at most 2y3|C| ≤ 3y3|A′| non-neighbours in A′. This proves (3).

From (2) and (3), and some arithmetic which we omit, it follows that there are at least x3k
2 |G|k

k-brushes, and so indPk
(G) ≥ (xa|G|)k. This proves 4.1.

5 Decreasing density

We remind the reader that for each integer s ≥ 0, `s : (0, 12)→ R+ is the function defined by

`s(x) := 2(log
1
x
)

s
s+1

for all x ∈ (0, 12). Now we can complete the proof of 2.4, which we restate.

5.1 Every path P is `s-divisive for all integers s ≥ 0.

Proof. The proof is by induction on s. For s = 0, the result is due to Fox and Sudakov [5], extending
a theorem of Erdős and Hajnal [4]; indeed, they proved that every graph is `0-divisive. So, we assume
that s ≥ 1, and P is `s−1-divisive. By 2.3, with ` = `s−1, we deduce that there exists C > 0 such
that for every ε ∈ (0, 12), if we define δ > 0 by

log
1

δ
=

C(log 1
ε )2

log(`s−1(ε))
,

then for every graph G with indP (G) ≤ (δ|G|)|P |, there is an ε-restricted S ⊆ V (G) with |S| ≥ δ|G|.
But log(`s−1(ε)) = (log 1

ε )
s−1
s and so

log
1

δ
= C

(
log

1

ε

) s+1
s

.

We deduce:

(1) Let 0 < x ≤ 1/2 and let y := 1/`s(x). Then for every graph G with indP (G) ≤ (x9C |G|)|P |,
there is a y3-restricted subset S ⊆ V (G) with |S| ≥ x9C |G|.

Since x ≤ 1/2, it follows that `s(x) ≥ 2 and so y3 ≤ y ≤ 1/2. By setting ε = y3 and

log
1

δ
= C

(
log

1

y3

) s+1
s

= C log
1

x
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(that is, δ = x9C) we deduce that for every graph G with indP (G) ≤ (x9C |G|)|P |, there is a y3-
restricted S ⊆ V (G) with |S| ≥ x9C |G|. This proves (1).

Now, let d = 27C|P |+ 9C + 4, and choose c > 0 with c ≤ 1/2, and sufficiently small that

c9C ≤ 1

`s(c)
≤ min

(
1

2|P |
,

1

100

)
.

Let x ∈ (0, c) and let G be a graph with indP (G) ≤ (xd|G|)|P |. We will show that there is an
x-sparse or x-dense (`s(x), bxd|G|c)-blockade in G, and therefore that P is `s-divisive. Suppose (for
a contradiction) that there is no such blockade. Let y := 1/`s(x).

(2) For every S ⊆ V (G) with |S| ≥ xd−9C−4|G|, there exists a (1 − y3)-dense subset S′ ⊆ S with
|S′| ≥ x9C |S|.

Suppose not. By (1) applied to G[S], either indP (G[S]) > (x9C |S|)|P |, or there is an y3-sparse
subset S′ ⊆ S with |S|′ ≥ x9C |S|. In the first case,

indP (G) > (x9C |S|)|P | ≥ (xd|G|)|P |

(since x9C |S| ≥ xd|G|), a contradiction. In the second case, |S′| ≥ x9C |S|, and by 3.1 applied to
G[S′], either

• indP (G[S′]) ≥ (x4|S′|)|P |, or

• there is an x-sparse (1/y, bx5|S′|c)-blockade in G[S′].

The first is impossible since x4|S′| ≥ x9C+4|S| ≥ xd|G|. If the second holds, then G admits an
x-sparse (1/y, bx9C+1|G|c)-blockade and hence an x-sparse (1/y, bxd|G|c)-blockade since d ≥ 9C+ 1,
again a contradiction. This proves (2).

In particular, (1) implies that for every S ⊆ V (G) with |S| ≥ x27C|P ||G|, there is a (1− y3)-dense
subset S′ ⊆ S with |S′| ≥ x9C |S|, since x27C|P | = xd−9C−4. By 4.1, with x replaced by x9C (note
that x9C ≤ y ≤ 1/100 from the choice of c), we deduce that either:

• indP (G) ≥ (x27C|P ||G|)|P |; or

• there is a (1− x9C)-dense (1/y, bx27C|P ||G|c)-blockade in G.

The first is impossible since
(
x27C|P ||G|

)|P | ≥ (
xd|G|

)|P |
(because d < 27C|P |). Thus there is a

(1− x9C)-dense, and hence (1− x)-dense, (1/y, bxd|G|c)-blockade in G. This proves 5.1.
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[4] P. Erdős and A. Hajnal, “Ramsey-type theorems”, Discrete Applied Mathematics 25 (1989),
37–52.

[5] J. Fox and B. Sudakov, “Induced Ramsey-type theorems”, Advances in Mathematics 219 (2008),
1771–1800.

[6] T. Nguyen, A. Scott and P. Seymour, “Induced subgraph density. III. The pentagon and the
bull”, in preparation, arXiv:2307.06455.

[7] T. Nguyen, A. Scott and P. Seymour, “Induced subgraph density. IV. New graphs with the
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