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Abstract

Menger’s theorem tells us that if S, T are sets of vertices in a graph G, then (for k ≥ 0) either there
are k + 1 vertex-disjoint paths between S and T , or there is a set of k vertices separating S and
T . But what if we want the paths to be far apart, say at distance at least c? One might hope
that we can find either k + 1 paths pairwise far apart, or k sets of bounded radius that separate
S and T , where the bound on the radius is some ` that depends only on k, c (the “coarse Menger
conjecture”). We showed in an earlier paper that this is false for all k ≥ 2 and c ≥ 3. To do so we
gave a sequence of finite graphs, counterexamples for larger and larger values of ` with k = 2, c = 3.
Our counterexamples contained subdivisions of uniform binary trees with arbitrarily large depth as
subgraphs.

Here we show that for any binary tree T , the coarse Menger conjecture is true for all graphs that
contain no subdivision of T as a subgraph, that is, it is true for graphs with bounded path-width
(and, further, for graphs with bounded coarse path-width). This is perhaps surprising, since it is
false for bounded tree-width.



1 Introduction

Let S, T be sets of vertices of a graph G. (In this paper, all graphs are finite and have no loops or
multiple edges.) Menger’s theorem [7] tells us that either there are k + 1 pairwise vertex-disjoint
paths between S and T , or there is a set X of at most k vertices such that every S-T path in G
meets X. But what if we want the paths to be pairwise far apart? In this case, the question is much
harder. Bienstock [3] showed that it is NP-hard to decide whether, given four vertices s1, s2, t1, t2 of
a graph G, there are two paths between between {s1, s2} and {t1, t2} that have distance ≥ 2, that is,
they are vertex-disjoint and there is no edge joining them. This was recently extended by Baligács
and MacManus [2], who showed the same thing for distance ≥ c, for each c ≥ 3.

Since the problem is NP-complete, one would not expect to find a necessary and sufficient condi-
tion for the existence of k + 1 S-T paths at distance at least c; but still one could hope for some sort
of obstruction that is necessary for excluding k+1 S-T paths at distance at least c, and sufficient for
excluding k + 1 S-T ps at distance more than some larger number depending on k, c. Two groups of
researchers, Albrechtsen, Huynh, Jacobs, Knappe and Wollan [1], and independently Georgakopoulos
and Papasoglu [5], proposed such a statement:

1.1 Coarse Menger Conjecture: For all integers k ≥ 0 and c ≥ 1 there exists ` ≥ 0 with the
following property. Let G be a graph and let S, T ⊆ V (G). Then either

• there are k + 1 paths between S, T , pairwise at distance at least c; or

• there is a set X ⊆ V (G) with |X| ≤ k such that every path between S, T contains a vertex with
distance at most ` from some member of X.

Both groups showed that this is true for k = 1, and Gartland, Korhonen and Lokshtanov [4] and
Hendrey, Norin, Steiner, and Turcotte [6] proved it for bounded degree graphs when c = 2. However,
we showed in [8] that the coarse Menger conjecture is false for all k ≥ 2, for any fixed c ≥ 3. Indeed,
it remains false even if we weaken the bound |X| ≤ k in the second bullet to |X| ≤ m, where m is
any constant depending on k, c [12].

Thus, we need to lower our sights a little, and one way to do so is to work in restricted classes
of graphs. The counterexamples of [8] have unbounded genus, and contain (as subgraphs) uniform
binary trees of arbitrary depth, and therefore they have unbounded “path-width” (defined in the
next section). It might be true that the coarse Menger conjecture holds for graphs of bounded genus,
but this is open; see [13] for some progress in this direction. Here we prove that the coarse Menger
conjecture is true for graphs of bounded path-width.

More exactly, we will prove:

1.2 Let k, d ≥ 0 and c ≥ 1 be integers. Then there exists ` ≥ 0, such that for every graph G with
path-width at most d, and all S, T ⊆ V (G), either:

• there are k + 1 paths between S, T , pairwise at distance at least c; or

• there is a set X ⊆ V (G) with |X| ≤ k such that every path between S, T contains a vertex with
distance at most ` from some member of X.

Thus the coarse Menger conjecture is true for graphs of bounded path-width, and we will deduce in
the conclusion that it also holds for graphs of “bounded coarse path-width”. Curiously, the coarse
Menger conjecture is not true for graphs of bounded tree-width, since the counterexamples of [8]
have tree-width six.
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2 Subdivisions and path-width

The uniform binary tree of depth d ≥ 2 is the tree H such that for some r ∈ V (H), r has degree
two, all other vertices have degree one or three, and every vertex of degree one has distance exactly
d− 1 from r. Thus, H has 2d − 1 vertices. We denote this tree by Hd.

If H is a graph, a subdivision of H is a graph obtained from H by replacing each of its edges
by a path of length at least one joining the same pair of vertices, where these paths are pairwise
vertex-disjoint except for their ends. For n ≥ 0, let us say an n-subdivision of H is a subdivision
obtained by replacing each edge by a path of length ≤ n (and at least one). (This is inconsistent
with the standard term “1-subdivision”, which means replacing each edge with a path of length two,
but convenient for us.)

Let us define path-width. A graph G has path-width at most d if and only if there is a sequence
W1, . . . ,Wn of subsets of its vertex set, satisfying:

• |Wi| ≤ d + 1 for 1 ≤ i ≤ n;

• G[W1] ∪ · · · ∪G[Wn] = G; and

• Wi ∩Wk ⊆Wj for 1 ≤ i ≤ j ≤ k ≤ n.

We do not really need this definition. The only thing about bounded path-width that concerns
us is a theorem of Robertson and Seymour [14]:

2.1 For every integer d ≥ 2, there exists k, such that every graph that contains no subdivision of
Hd as a subgraph has path-width at most k; and conversely, every graph that contains a subdivision
of Hd as a subgraph has path-width at least (d− 1)/2.

Thus, knowing that there is a bound on path-width is the same as knowing that for some d, no
subgraph is a subdivision of Hd. Indeed, in this paper it is more natural to work with the “excluded
tree subdivision” version directly, rather than working with path-width. And in that form we can
prove a strengthening: instead of excluding all subdivisions of Hd, it is enough that there are no
`-subdivisions of Hd, where ` is an appropriate constant (depending on k, c). We will prove the
following strengthening of 1.2:

2.2 For all integers k, d, c ≥ 0 there exist `1, `2 ≥ 0, with the following property. Let G be a graph
that contains no `1-subdivision of Hd as a subgraph, and let S, T ⊆ V (G). Then either

• there are k + 1 paths between S, T , pairwise at distance greater than c; or

• there is a set X ⊆ V (G) with |X| ≤ k such that every path between S, T contains a vertex with
distance at most `2 from some member of X.

We remark that here we are asking for paths with distance > c rather than ≥ c as in 1.2; we find
this form slightly more convenient.
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3 A key lemma

If we contract an edge of a graph, then distances do not change by much, but if we delete an edge or a
vertex, they might change considerably. In this section, we prove lemmas that allow us to bypass this
problem to some extent, in graphs excluding subdivisions of some Hd. The proofs of these lemmas
are the only places in the paper where we use the hypothesis about subdivisions of Hd.

If X is a vertex of a graph G, or a subset of the vertex set of G, or a subgraph of G, and the same
for Y , then distG(X,Y ) denotes the distance in G between X,Y , that is, the number of edges in the
shortest path of G with one end in X and the other in Y . (If no path exists we set distG(X,Y ) =∞.)

Here is the first such lemma:

3.1 Let d, ` ≥ 2, and let G be a graph such that no subgraph is an (` − 1)-subdivision of Hd. Let
Z ⊆ V (G). Then there exists Y ⊇ Z with the following properties:

• every vertex in Y has distance at most (d− 2)(`− 1) from Z;

• there is no path P of G of length at least two and at most `, such that the ends u, v of P belong
to Y , the interior of P is disjoint from Y , and distG[Y ](u, v) > 2(d− 2)(`− 1).

Proof. If Y ⊆ V (G), let us say a path P of G is a bite for Y if P has length at least two and at most `,
the ends u, v of P belong to Y , the interior of P is disjoint from Y , and distG[Y ](u, v) > 2(d−2)(`−1).
Define Z0 = Z, and inductively for i ≥ 1, having defined Zi−1, if there is a bite for Zi−1, choose
some such bite P and let Zi = Zi−1 ∪ V (P ). Since the graph is finite, and each bite has nonempty
interior, this sequence is finite: let Y be its final term. Thus there is no bite for Y . For x, y ∈ Y , let
us say that y is later than x if for some i, x ∈ Zi and y /∈ Zi.

(1) For each v ∈ Y , and 2 ≤ m ≤ d, if distG(v, Z) > (` − 1)(m − 2), then there is a subgraph
H of G[Y ] that is an (`− 1)-subdivision of the uniform binary tree Hm, with root v, such that none
of its vertices are later than v.

We proceed by induction on m ≥ 2. Since distG(v, Z) > (`− 1)(m− 2) and `,m ≥ 2, it follows that
v /∈ Z. Choose i minimum such that v ∈ Zi, and let P be a bite for Zi−1 with Zi = Zi−1 ∪ V (P ),
with ends u1, u2. Thus, i ≥ 1, and u1, u2 ∈ Zi−1, and v belongs to the interior of P , and the latter
equals Zi \ Zi−1. If m = 2, then P (rooted at v) is an (` − 1)-subdivision of H2, as required, so we
assume that m ≥ 3. Since the subpaths of P between v and u1, u2 both have length at most ` − 1,
it follows that distG(uj , Z) > (`− 1)(m− 3) for j = 1, 2.

We apply the inductive hypothesis to u1, u2, and deduce that for j = 1, 2, there is a subgraph Lj

of G that is an (`− 1)-subdivision of the uniform binary tree Hm−1, with root uj , such that none of
its vertices are later than uj . Since

distG[Zi−1](u1, u2) > 2(d− 2)(`− 1) ≥ 2(m− 2)(`− 1)

and every vertex of Lj has distance in Lj at most (m − 2)(` − 1) from its root uj , it follows that
L1, L2 are vertex-disjoint. Moreover, they are both vertex-disjoint from the interior of P , since the
latter is disjoint from Zi−1. Consequently L1 ∪L2 ∪P (rooted at v) is an (`− 1)-subdivision of Hm.
This proves (1).

Since there is no subgraph that is an (`− 1)-subdivision of the uniform binary tree Hd, it follows
from (1) that distG(v, Z) ≤ (`− 1)(d− 2) for each v ∈ Y . This proves 3.1.
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We deduce:

3.2 Let d, ` ≥ 2, and let G be a graph such that no subgraph is an (` − 1)-subdivision of Hd. Let
A ⊆ V (G). Then there exists B ⊆ A such that:

• every vertex in A \B has distance at most (d− 2)(`− 1) from V (G) \A;

• there is no path P of G of length at most `, such that the ends u, v of P are distinct and
nonadjacent, and belong to V (G) \ B, the interior of P is included in B, and distG\B(u, v) >
2(d− 2)(`− 1).

• for all u, v ∈ V (G) \B, if distG(u, v) ≤ `, then distG\B(u, v) ≤ (d− 2)`(`− 1).

Proof. If d = 2 we may take B = A, so we assume that d ≥ 3. Let Z = V (G) \ A, let Y be as in
3.1, and let B = V (G)\Y . Thus, the first bullet is satisfied, and there is no path P of G of length at
most `, such that the ends u, v of P are distinct and belong to V (G)\B, the interior of P is included
in B, and distG\B(u, v) > 2(d− 2)(`− 1).

To see the second bullet, let u, v ∈ V (G) \B, and assume that P is a path between u, v in G, of
length at most `. An excursion is a subpath Q of P such that Q has length at least two; its ends
are not in B; and all its internal vertices are in B. It follows that the excursions in P are pairwise
edge-disjoint, although two excursions might have a common end. Let Q1, . . . , Qt be the excursions,
and for 1 ≤ i ≤ t let Qi have ends ui, vi. From the choice of Y , since Qi has length at most `, it
follows that there is a path Pi of G \B between ui, vi of length at most 2(d− 2)(`− 1). Let there be
s edges of P that do not belong to excursions: then s + 2t ≤ `, since each excursion has length at
least two. Moreover, the union of P1, . . . , Pt and the s edges of P not in excursions is a connected
subgraph of G \B′ containing u, v. Consequently

distG\B(u, v) ≤ s + 2(d− 2)(`− 1)t ≤ s + (d− 2)(`− 1)(`− s) ≤ (d− 2)`(`− 1)

(since d ≥ 3). This proves 3.2.

We also need:

3.3 Let G be a graph with no subgraph that is an (` − 1)-subdivision of Hd. Let Z ⊆ V (G), and
suppose that M1,M2, . . . ,Mt are paths of G, each of length at most `. Let Zi = Z ∪V (M1∪ · · ·∪Mi)
for 0 ≤ i ≤ t; and suppose in addition that for each i ≥ 1, the ends of Mi lie in different components
of G[Zi−1], and none of its internal vertices lie in Zi−1. Then for each v ∈ Zt \ Z, either v lies in
the interior of some Mi with both ends in Z, or there are at least three components C of G[Z] such
that v is joined to C by a path in G[Zi−1] of length at most d(`− 1).

Proof. We say the height of each vertex in Z is zero; and inductively, for 1 ≤ i ≤ n, let us say
that for each vertex in the interior of Mi, its height is one more than the minimum of the heights of
u1, u2, where u1, u2 are the ends of Mi. Then:

(1) For each i ≥ 0 and each v ∈ Zi with height at least h ≥ 1, there is a subgraph of G[Zi] that
is an (`− 1)-subdivision of Hh+1 rooted at v. Consequently, every vertex has height at most d− 2.
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We use induction on h. The statement is clear if h = 1, so we assume h ≥ 2. We may assume
that i is minimum such that v ∈ Zi, and consequently v belongs to the interior of Mi. Let u1, u2 be
the ends of Mi, joining components C1, C2 of G[Zi−1]. Thus, u1, u2 have height at least h− 1. From
the inductive hypothesis there is a subgraph Lj of Cj rooted at uj that is an (` − 1)-subdivision of
Hh. But L1, L2 are disjoint, since they belong to different components of G[Zi−1]; and disjoint from
the interior of Mi, since the latter is disjoint from Zi−1. But then L1 ∪ L2 ∪Mi (rooted at v) is
the desired (`− 1)-subdivision of Hh+1. This proves the first statement of (1). It follows that every
vertex has height at most d−2, since no subgraph is an (`−1)-subdivision of Hd, and this proves (1).

(2) For each i ≥ 0 and each v ∈ Zi with height h ≥ 0, v is joined to Z by a path in G[Zi] of
length at most h(`− 1).

We prove this by induction on h ≥ 0. If h = 0, the statement is clear, so we assume that h ≥ 1.
Choose i minimum with v ∈ Zi. Then v is joined to a vertex u of height h − 1 by a path of G[Zi]
of length at most `− 1 (a subpath of Mi); and from the inductive hypothesis, u is joined to Z by a
path in G[Zi−1] (and hence of G[Zi]) of length at most (h − 1)(` − 1). Consequently v is joined to
Z by a path in G[Zi] of length at most h(`− 1). This proves (2).

(3) For each i ≥ 0 and each v ∈ Zi with height h ≥ 1, there are at least two components C of
G[Z] such that v is joined to C by a path in G[Zi] of length at most (h + 1)(`− 1).

Again we use induction on h. Choose i minimum with v ∈ Zi. Thus, v belongs to the interior
of Mi; let Mi have ends u1, u2. Both u1, u2 have height at least h− 1, and the claim follows from (2)
applied to u1 and to u2. This proves (3).

In particular, for each v ∈ V (M1 ∪ · · · ∪Mn) \ Z, v has height at least one; choose i minimum
with v ∈ Zi. Thus, v belongs to the interior of Mi; let Mi have ends u1, u2. If u1, u2 both have height
zero then Mi has both ends in Z and the theorem holds; so we assume that u1 has height at least
one. By (1), u1 has height at most d− 2, so by (3) applied to u1, there are at least two components
C of G[Z] such that u1 is joined to C by a path in G[Zi−1] of length at most (d− 1)(`− 1); and by
(2), there is a third component C of G[Z] such that u2 is joined to C by a path in G[Zi−1] of length
at most (d − 2)(` − 1). Consequently there are at least three components C of G[Z] such that v is
joined to C by a path in G[Zi−1] of length at most d(`− 1). This proves 3.3.

4 Augmenting paths

Let us extend the definition of distG(u, v) a little, to accommodate vertices u, v /∈ V (G): if one of
u, v /∈ V (G) then distG(u, v) =∞.

Some more notation: if P is a path and u, v ∈ V (P ), P [u, v] denotes the subpath between u, v.
If P is a set of vertex-disjoint paths of a graph G, we denote P1 ∪ · · · ∪ Pk by UP, and its vertex
set by V P. Let G be a graph, let S, T ⊆ V (G) be disjoint, and let P = {P1, . . . , Pk} be a set of k
vertex-disjoint S-T paths, with

V P ∪ S ∪ T = V (G),
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such that for 1 ≤ h < k, no proper subpath of Ph is an S-T path. Let Ph have ends sh ∈ S and
th ∈ T . If u, v ∈ V (Ph) are distinct, and v belongs to Ph[u, th], we say that v is later than u in Ph,
and u is earlier than v in Ph.

It is an elementary theorem (a special case of the theory of augmenting paths) that:

4.1 Given G,S, T and P = {P1, . . . , Pk} as above, the following are equivalent:

1. For every choice of vi ∈ V (Pi) for 1 ≤ i ≤ k, there is an edge ab of G with a, b /∈ {v1, . . . , vk},
such that

• either a ∈ S \ V P or for some h ∈ {1, . . . , k}, a ∈ V (Ph), and a is earlier than vh in Ph,
and

• either b ∈ T \ V P or for some h ∈ {1, . . . , k}, b ∈ V (Ph) and b is later than vh in Ph.

2. There is a sequence a1b1, a2b2, . . . , anbn of oriented edges of G, not in E(P1 ∪ · · · ∪ Pk), such
that

• a1 ∈ S \ V P, and bn ∈ T \ V P;

• for 1 ≤ i < n, bi, ai+1 belong to the same path Ph say (where 1 ≤ h ≤ k), and ai+1 is
earlier than bi in Ph.

3. There is a sequence a1b1, a2b2, . . . , anbn as above, satisfying in addition that for 1 ≤ h ≤ k, and
1 ≤ i < j ≤ n, if u ∈ {ai, bi} ∩ V (Ph) and v ∈ {aj , bj} ∩ V (Ph), then either

• u is earlier than v in Ph, or

• bi = u = v = aj; or

• bi = u and aj = v and j = i + 1.

4. There are k + 1 vertex-disjoint S-T paths in G.

We do not actually need this theorem, and we mention it just for comparison with the more compli-
cated results that we will need.

Let S, T be disjoint sets, and let P = {P1, . . . , Pk} be a set of k vertex-disjoint S-T paths, each
with no internal vertex in S ∪ T . We call (S, T,P) a setting. Let F0 be the set of all ordered pairs
of distinct vertices ab with a, b ∈ V P ∪ S ∪ T .

Let us fix some setting (S, T,P) where P = {P1, . . . , Pk}. Let c ≥ 0 be an integer. A c-barrier
(in the setting) is a k-tuple Q1, . . . , Qk, where Qh is a subpath of Ph of length at most c. We say
ab ∈ F0 jumps a c-barrier Q1, . . . , Qk (in the setting) if a, b /∈ V (Q1 ∪ · · · ∪Qk), and

• either a ∈ S \ V P or for some h ∈ {1, . . . , k}, a ∈ V (Ph), and a is earlier than each vertex of
Qh in Ph; and

• either b ∈ T \ V P or for some h ∈ {1, . . . , k}, b ∈ V (Ph) and b is later than each vertex of Qh

in Ph.

Let us say a set F ⊆ F0 is c-jumping (in the setting (S, T,P)) if for every c-barrier, some member
of F jumps the barrier.

A partial c-augmenting sequence to bn is a sequence a1b1, a2b2, . . . , anbn of elements of F0, such
that

6



• a1 ∈ S \ V P;

• for 1 ≤ i < t, bi, ai+1 belong to the same path Ph say (where 1 ≤ h ≤ k), and ai+1 is earlier
than bi in Ph, and Ph[ai+1, bi] has length at least c + 1.

If in addition bn ∈ T \ V P, we call such a sequence a c-augmenting sequence. Thus, if ai ∈ S \ V P
and bi ∈ T \ T \ V P then i = 1 = n. For F ⊆ F0, the sequence is in F if aibi ∈ F for 1 ≤ i ≤ n.

a1

b1

a2

b2

a3

b3

a4

b4

a5

b5

a6

b6

a7

b7

S

T

Figure 1: P1, P2 are the two paths of thick edges. With k = 2, the sequence a1b1, . . . , a7b7 is minimal
2-augmenting, but it is not 1-separated. For every choice of three vertex-disjoint S-T paths, some
edge of P1 ∪ P2 joins two of them.

We begin with:

4.2 Let (S, T,P) be a setting, with P = {P1, . . . , Pk}, and let c ≥ 0 be an integer. With F0 as
before, let F ⊆ F0. Then the following are equivalent:

• F is c-jumping;

• there is a c-augmenting sequence of elements of F .

Proof. We show first that the second statement implies the first. To see this, assume that the
sequence a1b1, a2b2, . . . , anbn of pairs in F is c-augmenting, and let Q1, . . . , Qk be a c-barrier. Choose
i maximum such that either ai ∈ S \ V P, or for some h ∈ {1, . . . , k}, ai ∈ V (Ph) \ V (Qh) and ai is
earlier in Ph than each vertex of Qh. If bi ∈ T \ V P then aibi jumps the barrier, so we assume that
bi ∈ V (Pj) for some j ∈ {1, . . . , k}. Consequently i < n, and ai+1 ∈ V (Pj), earlier than bi in Pj .
From the maximality of i, there exists q ∈ V (Qj) such that ai+1 is not earlier than q in Pj . Since
Pj [ai+1, bi] has length at least c + 1, it follows that bi is later than q in Pj , and Pj [q, bi] has length
at least c+ 1. Since Qj has length at most c, it follows that bi is later in Pj than every vertex of Qj ;
and so aibi jumps the barrier. This proves the first statement.

To show the converse, suppose that F is c-jumping, and for 1 ≤ h ≤ k, choose vh ∈ V (Ph) with
Ph[sh, vh] maximal such that either vh = sh or there is a partial c-augmenting sequence to vh in F .
For 1 ≤ h ≤ k, let Qh be the maximal subpath of Ph[sh, vh] with length at most c, such that one of
its ends is vh. Thus, Q1, . . . , Qk is a barrier, and so, since F is c-jumping, some ab ∈ F jumps this
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barrier. Suppose first that a ∈ S \ V P. If b ∈ T \ V P, then ab is a c-augmenting sequence, so we
assume that b ∈ V (Ph) for some h ∈ {1, . . . , k}. Since ab jumps the barrier, it follows that b is later
than vh in Ph, contradicting the choice of vh, since ab is a partial c-augmenting sequence to b. Thus,
we may assume that for some h ∈ {1, . . . , k}, a ∈ V (Ph), and a is earlier than each vertex of Qh in Ph.
Since a /∈ V (Qh), it follows from the maximality of Qh that Qh has length exactly c, and therefore
Ph[a, vh] has length at least c + 1. Let a1b1, . . . , asbs be a partial c-augmenting sequence to vh in F .
Consequently a1b1, . . . , asbs, ab is a partial c-augmenting sequence to b in F . If b /∈ T \ V P, then,
since ab jumps the barrier, there exists h′ ∈ {1, . . . , k} such that b ∈ Ph′ [vh′ , th′ ] and b 6= vh′ ; but
this contradicts the definition of vh′ . Thus, b ∈ T \ V P, and so a1b1, . . . , asbs, ab is a c-augmenting
sequence in F . This proves 4.2.

This provides an analogue of the first two bullets of 4.1, and the next result gives an analogue of
the third bullet.

4.3 Let (S, T,P) be a setting, with P = {P1, . . . , Pk}, and let c ≥ 0 be an integer. Let F ⊆ F0 be
c-jumping, and choose a c-augmenting sequence a1b1, . . . , anbn of elements of F , with n minimum.
For 1 ≤ h ≤ k, and 1 ≤ i < j ≤ n, if u ∈ {ai, bi} ∩ V (Ph) and v ∈ {aj , bj} ∩ V (Ph), then either

• u is earlier than v in Ph; or

• bi = u and v = aj and Ph[u, v] has length at most c; or

• bi = u and v = aj and j = i + 1.

Proof. Suppose that 1 ≤ h ≤ k, and 1 ≤ i < j ≤ n, and u ∈ {ai, bi}∩V (Ph) and v ∈ {aj , bj}∩V (Ph),
and u is not earlier than v in Ph. If u = ai and v = aj , then i ≥ 2 and

a1b1, . . . , ai−1bi−1, ajbj , . . . , anbn

is a c-augmenting sequence in F , contrary to the minimality of n. Similarly, if u = bi and v = bj ,
then

a1b1, . . . , aibi, aj+1bj+1, . . . , anbn

is a c-augmenting sequence, a contradiction; and if u = ai and v = bj , then i ≥ 2 and j ≤ n− 1 and

a1b1, . . . , ai−1bi−1, aj+1bj+1, . . . , anbn

is a c-augmenting sequence, a contradiction. Thus, we assume that u = bi and v = aj . If Ph[u, v]
has length at least c + 1, then

a1b1, . . . , aibi, ajbj , . . . , anbn

is a c-augmenting sequence, and so j = i + 1; and otherwise Ph[u, v] has length at most c. In either
case the result holds. This proves 4.3.

The results 4.2 and 4.3 do not quite provide an analogue of 4.1, because we have no counterpart
to the fourth statement of 4.1, the existence of k+1 vertex-disjoint S-T paths. One might hope that

• In the graph obtained from UP by adding the remainder of S∪T as extra vertices and the pairs
in F as edges, there exist k + 1 S-T paths, such that no two of them are joined by a path of
UP of length at most c.
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could be added to the list of equivalent statements given by 4.2 and 4.3 to give an analogue of the
fourth statement of 4.1, but that is wrong. This statement does imply the statements of 4.2, but
the reverse implication does not hold. For instance, the graph of Figure 1 with k = 2 gives a 2-
augmenting sequence, and yet for every three vertex-disjoint S-T paths, some two of them are joined
by one of the edges of P1 ∪ P2, which is more than we needed for a counterexample.

The property given by 4.3 implies that for each h ∈ {1, . . . , k}, the vertices ai that lie in Ph are
all distinct and in order in Ph, but it does not imply that they are far apart in Ph. For instance,
if k = 1 and P1 has vertices s1 = p1- · · · -pn = t1, and S = {s1, s2} and T = {t1, t2}, and F is the
union of {s2vc+2, vn−c−1t2} and the pairs vivi+c+2 for 1 ≤ i ≤ n− c− 2, then the only c-augmenting
sequence in F uses all of F . Nevertheless, we can arrange that the ai’s are far apart, and the bj ’s
are far apart, by sacrificing some of the jumping power. We show this in two steps: first we arrange
that the bj ’s are far apart, in the following.

We recall that distUP(b, b′) =∞ unless b, b′ ∈ V P and b, b′ belong to the same component of UP.

4.4 Let p, q ≥ 0 be integers, and let F ⊆ F0 be (p + q)-jumping. Then there exists D ⊆ F that is
p-jumping, such that if ab, a′b′ ∈ D are distinct then distUP(b, b′) > q.

Proof. We will use a modified version of the second half of the proof of 4.2. We say a partial
p-augmenting sequence a1b1, . . . , asbs is end-separated if distUP(bi, bj) > q for all distinct i, j ∈
{1, . . . , s}. By 4.2 it suffices to show that there is an end-separated p-augmenting sequence in F .

For 1 ≤ h ≤ k, choose vh ∈ V (Ph) with Ph[sh, vh] maximal such that either vh = sh or there is
an end-separated partial p-augmenting sequence to vh in F . For 1 ≤ h ≤ k, let Qh be the maximal
subpath of Ph containing vh, such that Qh ∩ Ph[sh, vh] has length at most p, and Qh ∩ Ph[vh, th]
has length at most q. Thus, Q1, . . . , Qk is a (p + q)-barrier, and so, since F is (p + q)-jumping,
some ab ∈ F jumps this barrier. Suppose first that a ∈ S \ V P. If b ∈ T \ V P, then ab is an
end-separated p-augmenting sequence, so we assume that b ∈ V (Ph) for some h ∈ {1, . . . , k}. Since
ab jumps the barrier, it follows that b is later than vh in Ph, contradicting the choice of vh, since ab
is an end-separated partial p-augmenting sequence to b in F .

Thus, we may assume that for some h ∈ {1, . . . , k}, a ∈ V (Ph), and a is earlier than each vertex
of Qh in Ph. Let a1b1, . . . , asbs be an end-separated partial p-augmenting sequence to vh in F . Since
a /∈ V (Qh), it follows that Qh∩Ph[sh, vh] has length exactly p, and Ph[a, vh] has length at least p+1.
Consequently a1b1, . . . , asbs, ab is a partial p-augmenting sequence to b in F . If b /∈ T \ V P, then,
since ab jumps the barrier, there exists h′ ∈ {1, . . . , k} such that b ∈ Ph′ [vh′ , th′ ] and b 6= V (Qh′);
but then Qh′ ∩ Ph′ [vh′ , th′ ] has length exactly q, and so Ph′ [vh′ , b] has length > q. Since each bi
in V (Ph′) belongs to Ph′ [sh′ , vh′ ] from the definition of vh′ , it follows that a1b1, . . . , asbs, ab is an
end-separated p-augmenting sequence to b in F , contrary to the definition of vh′ . Thus, b ∈ T \ V P,
and so a1b1, . . . , asbs, ab is an end-separated p-augmenting sequence in F . This proves 4.4.

Let us say a subset D ⊆ F0 is `-separated if distUP(a, a′) > ` and distUP(b, b′) > ` for all distinct
ab, a′b′ ∈ D. We deduce:

4.5 In the same notation, let c ≥ 0 be an integer, and let F ⊆ F0 be 5c-jumping. Then there exists
D ⊆ F that is c-jumping and 2c-separated.

Proof. This follows from two applications of 4.4: first, to F with (p, q) = (3c, 2c), giving some
3c-jumping set F ′; and then to F ′ with S, T exchanged and (p, q) = (c, 2c). This proves 4.5.
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Now we can obtain something like an analogue of the fourth statement of 4.1:

4.6 In the same notation, let c ≥ 0 be an integer, and let F ⊆ F0 be c-jumping and 2c-separated.
Let H be obtained from UP by adding the remainder of S ∪ T as vertices, and the pairs in F as
edges. Then there exist k + 1 vertex-disjoint S-T paths in H, such that no two of them are joined by
a path of UP of length at most c.

Proof. By 4.3, there is a c-augmenting sequence a1b1, . . . , anbn in F such that:

(1) For 1 ≤ h ≤ k, and 1 ≤ i < j ≤ n, if u ∈ {ai, bi} ∩ V (Ph) and v ∈ {aj , bj} ∩ V (Ph), then
either

• u is earlier than v in Ph; or

• bi = u and v = aj and Ph[aj , bi] has length at most c; or

• bi = u and v = aj and j = i + 1.

We deduce:

(2) Let 1 ≤ h ≤ k, and 1 ≤ i ≤ n with bi ∈ V (Ph) (and hence ai+1 ∈ V (Ph)); then for 1 ≤ j ≤ n,
if aj belongs to Ph[ai+1, bi] then either j = i + 1, or j > i + 1 and Ph[aj , bi+1] has length at most
c. Consequently there is at most one value of j 6= i + 1 with aj ∈ V (Ph[ai+1, bi]), and any such j
satisfies j ≥ i + 2. Similarly there is at most one value of j 6= i with bj ∈ V (Ph[ai+1, bi]), and any
such j satisfies j ≤ i− 1.

By (1), a1, . . . , an are all distinct, and b1, . . . , bn are all distinct. Suppose that aj belongs to
Ph[ai+1, bi], and j 6= i + 1. Thus, ai is earlier than aj in Ph. If j < i then setting u = aj and
v = ai in (1) yields a contradiction; so i < j, and hence j ≥ i+2. By (1) with u = bi+1 and v = aj , it
follows that Ph[aj , bi+1] has length at most c. Consequently, if j′ 6= j also satisfies that aj′ belongs to
Ph[ai+1, bi], and j′ 6= i+1, then Ph[aj , aj′ ] has length at most c, contradicting that F is 2c-separated.
This proves the first assertion of (2), and the second follows from the symmetry. This proves (2).

For 1 ≤ i < n, bi and ai+1 both belong to the same member of P, say Ph; let Ri = Ph[ai+1, bi].

(3) Every vertex in V P belongs to at most two of R1, . . . , Rn−1.

Suppose that some vertex w of Ph belongs to Ri, Ri′ , Ri′′ , where i < i′ < i′′. Thus,

ai, ai′ , ai′′ , bi, bi′ , bi′′

are in order in Ph (and are all distinct except possibly ai′′ = bi), and w ∈ Ph[ai′′ , bi]. By (1) with
u = bi, v = ai′ , Ph[ai′ , bi] has length at most c. But it includes Ph[ai′ , ai′′ ] as a subpath, and this has
length at least 2c + 1 since F is 2c-separated, a contradiction. This proves (3).

For i = 0, 1, 2, let Xi be the set of edges of UP that belong to exactly i of R1, . . . , Rn−1. Let H ′

be the digraph obtained from H as follows:
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• direct the edges of UP such that each P ∈ P is a directed path from S to T ;

• reverse the direction of all edges in X2;

• for 1 ≤ i ≤ n, direct the edge aibi of H from ai to bi; and

• delete all edges in X1.

We claim:

(4) Every vertex of H ′ has outdegree one and indegree one, except for a1, s1, . . . , sk, which have
outdegree one and indegree zero, and t1, . . . , tk, bn, which have indegree one and outdegree zero.

Let v ∈ V (H ′). The claim is true for v if v ∈ {a1, bn}, so we may assume that v ∈ V P. Let
v ∈ V (Ph) where 1 ≤ h ≤ k. Suppose that v = sh, and let e be the edge of Ph incident with v. It
follows that v 6= b1, . . . , bn, and either v 6= a1, . . . , an (and then e ∈ X0 ⊆ E(H ′)) or v = ai for some
i < n (and then e ∈ E(Ri), and so e ∈ X1 and e /∈ E(H ′)). In either case v has outdegree one and
indegree zero in H ′. Thus we may assume that v 6= sh and similarly v 6= th, and so v is an internal
vertex of Ph. Let e1, e2 be the two edges of Ph incident with v, where e1 is between sh and v.

If v 6= {a2, . . . , an, b1, . . . , bn−1} then v is an internal vertex of the (at most two) paths Ri that
contain v, and so v has indegree one and outdegree one in H ′. Thus from the symmetry, we may
assume that v ∈ {a2, . . . , an}; let v = ai say. Thus i ≥ 2 and v is an end of Ri−1, and e2 ∈ E(Ri−1).

Suppose next that v 6= b1, . . . , bn−1. If e2 ∈ X1 then e2 /∈ E(H ′), and e1 ∈ X0 ⊆ E(H ′), and v
therefore has indegree and outdegree one in H ′; so we may assume that e2 ∈ X2. Let e2 ∈ E(Rj)
say, where 1 ≤ j ≤ n− 1 and j 6= i. Since aj , bj 6= v, it follows that e1 ∈ E(Rj), and so e1 ∈ X1 by
(3) applied to v; but then e2 ∈ E(H ′), e1 /∈ E(H ′), and the claim is true for v (because v is the head
of the directed edge e2, since e2 ∈ X2).

So we may assume that v ∈ {b1, . . . , bn−1}; let v = bj . Hence i 6= j, and v is an end of both
Ri, Rj , and both e1, e2 ∈ X1 by (3). Hence e1, e2 /∈ E(H ′), and again the claim holds for v. This
proves (4).

From (4), each component of H \ X1 is either an S-T path or a cycle; and a1, s1, . . . , sk all
belong to different components of H \X1. Consequently there are k + 1 vertex-disjoint S-T paths
P ′1, . . . , P

′
k+1 in H, each a component of H \X1. It remains to show that no two of these paths are

joined by a path of UP with length at most c. Suppose that Q is such a path; and we can assume
that no internal vertex of Q belongs to any of P ′1, . . . , P

′
k+1. Consequently the first and last edges of

Q are not edges of H \X1, and so they belong to X1. Choose h ∈ {1, . . . , k} such that Q is a subpath
of Ph, with ends u, v say, where u is earlier than v in Ph. Consequently u, v ∈ {a1, . . . , an, b1, . . . , bn}.
Let u ∈ {ai, bi} and v ∈ {aj , bj}. Since F is 2c-separated, not both u = ai and v = aj , and similarly
not both u = bi and v = bj . So either u = ai and v = bj , or u = bi and v = aj .

Suppose first that u = ai and v = bj . Since Q = Ph[ai, bj ] has length at most c, and Rj =
Ph[aj+1, bj ] has length at least c+ 1, and both ai, aj+1 are earlier than bj , it follows that Rj contains
Q, and similarly Ri−1 contains Q. In particular, both Rj , Ri−1 contain the end-edges of Q, which
are in X1, and so j = i− 1. But then Q = Rj and so has length more than c, a contradiction.

Finally, suppose that u = bi and v = aj . Since u 6= v and F is 2c-separated, it follows that
v /∈ {b1, . . . , bn}, and so ajbj is the only edge in F incident with v. Let e be the edge of Ph[u, v]
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incident with v. Since e ∈ X1, there exists i′ ∈ {1, . . . , n} such that e ∈ E(Ri′), and therefore
i′ 6= j − 1. Consequently bi′ is in Ph and later than v = aj (and therefore later than bi) in Ph, and
so i′ > i. Moreover, ai′+1 is in Ph and earlier than v in Ph. Since F is 2c-separated, it follows that
Ph[ai′+1, aj ] has length more than 2c, and so ai′+1 is also earlier than bi, and Ph[ai′+1, bi] has length
more than c since Q = P [bi, aj ] has length at most c. Since i′ ≥ i + 1, this contradicts (1) (taking
u, v of (1) to be bi, ai′+1 respectively). This proves 4.6.

Finally, here is another lemma we will need:

4.7 In the same notation, let a1b1, . . . , anbn be a c-augmenting sequence, and let J be a partition
of {1, . . . , n}. Then there is a c-augmenting sequence a′1b

′
1, a
′
2b
′
2, . . . , a

′
mb′m such that

• for 1 ≤ i′ ≤ m, there exist J ∈ J and i, j ∈ J such that a′i′ = ai and b′i′ = bj;

• for each J ∈ J there is at most one i ∈ J such that ai ∈ {a′1, . . . , a′m}, and (therefore) at most
one j ∈ J such that bj ∈ {b′1, . . . , b′m}.

Proof. We proceed by induction on n. We may assume all members of J are nonempty. If they
are all of size one, the result is true, so we may assume that J1 ∈ J has size at least two. Choose
i, j ∈ J1 respectively minimum and maximum; then

a1b1, . . . , ai−1bi−1, aibj , aj+1bj+1, . . . , anbn

is a c-augmenting sequence. Let m = n + i− j, and define:

a′h = ah for 1 ≤ h ≤ i

b′h = bh for 1 ≤ h ≤ i− 1

a′h = ah+j−i for i + 1 ≤ h ≤ m

b′h = bh+j−i for i ≤ h ≤ m

Define f(J1) = {i}, and for each J ∈ J \ {J1}, define

f(J) = {h : 1 ≤ h ≤ i− 1 and h ∈ J} ∪ {h : i + 1 ≤ h ≤ m and h + j − i ∈ J}.

Then
{f(J) : J ∈ J and f(J) 6= ∅}

is a partition of {1, . . . ,m}, and the result follows from the inductive hypothesis applied to this
partition and a′1b

′
1, . . . , a

′
mb′m. This proves 4.7.

5 The main proof

Now we prove 2.2, which we restate:

5.1 For all integers k, c, d ≥ 0 there exist f(k, c, d), g(k, c, d) ≥ 0, with the following property. Let
G be a graph that does not contain a subgraph that is an f(k, c, d)-subdivision of the binary tree Hd.
Let S, T ⊆ V (G). Then either
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• there are k + 1 paths between S, T , pairwise at distance greater than c; or

• there is a set X ⊆ V (G) with |X| ≤ k such that every path between S, T contains a vertex with
distance at most g(k, c, d) from some member of X.

Proof. We proceed by induction on k; the result is trivial for k = 0, so we assume that k ≥ 1,
and for all k′ < k and all c′, the numbers f(k′, c′, d), g(k′, c′, d) exist for all nonnegative k′ < k and
all c′ ≥ 0. (We can keep d fixed.) We could assume that k ≥ 2 if we wanted, because the result is
known to be true for k = 1 [1, 5, 8], but there is no need. We are given c ≥ 0, and we may assume
that c ≥ 2 by increasing c. Choose c1, . . . , c9, satisfying:

c1 ≥ c

c2 ≥ c1 + c + d(c− 1)

c3 ≥ 2(c + c2) + 2cd

c4 ≥ c23d

c5 ≥ 5c4

c6 ≥ c3

c7 ≥ c6 + 2c3d

c8 ≥ max(c, f(k − 1, c2d, d), f(k − 1, c7, d))

c9 ≥ max(cd, c2 + c5, g(k − 1, c2d, d), g(k − 1, c7, d)).

(We suggest that this should be read as just saying that each ci is much larger than ci−1.) We
will show that we may define f(k, c, d) = c8 and g(k, c, d) = c9, and thereby complete the inductive
definition.

Now let G be a graph with no subgraph that is a c8-subdivision of Hd, and let S, T ⊆ V (G). We
assume

(1) There is no X with |X| ≤ k, such that every path between S, T contains a vertex with dis-
tance at most c9 from some member of X.

We must therefore show that there are k + 1 paths between S, T , pairwise at distance more than c.
The next step illustrates the power of 3.2.

(2) We may assume that S ∩ T = ∅.

Suppose that r ∈ S ∩ T . Let A be the set of all vertices with distance at most c + (d − 2)(c − 1)
from r. By 3.2, taking ` = c, there exists B ⊆ A such that

• every vertex in A \ B has distance at most (d − 2)(c − 1) from V (G) \ A; and consequently
every vertex with distance at most c from r belongs to B;

• for all u, v ∈ V (G) \B, if distG(u, v) ≤ c, then distG\B(u, v) ≤ (d− 2)c(c− 1).

From the inductive hypothesis, applied to G \B, since f(k − 1, (d− 2)c(c− 1), d) ≤ c8, either:
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• there are k paths of G\B between S, T , pairwise with distance in G\B more than (d−2)c(c−1);
or

• there is a set X ⊆ V (G) \ B with |X| ≤ k − 1 such that every path of G \ B between S, T
contains a vertex with distance in G \ B at most g(k − 1, (d − 2)c(c − 1), d) ≤ c9 from some
member of X.

The second case cannot occur, because otherwise adding r to X gives a set violating (1). Suppose
that P1, . . . , Pk are paths of G \ B as in the first case. Since distG\B(Pi, Pj) > (d − 2)c(c − 1), it
follows from the choice of B that distG(Pi, Pj) > c for all distinct i, j ∈ {1, . . . , k}, and adding the
one-vertex path with vertex r gives a set of k + 1 paths satisfying the theorem. This proves (2).

An S-T path P is near-geodesic if for all u, v ∈ V (P ), either distP (u, v) ≤ (d − 2)c3(c3 − 1) or
distG(u, v) > c3. We claim that

(3) There are k S-T paths in G pairwise with distance more than c6, each near-geodesic.

From the inductive hypothesis, since c8 ≥ f(k − 1, c7, d) and c9 ≥ g(k − 1, c7, d), there are k S-
T paths P1, . . . , Pk, pairwise with distance more than c7. Let A = V (G) \ (V (P1) ∪ · · · ∪ V (Pk)). By
3.2, taking ` = c3, there exists B ⊆ A such that

• every vertex in A \B has distance at most (d− 2)(c3 − 1) from V (G) \A;

• for all u, v ∈ V (G) \B, if distG(u, v) ≤ c3, then distG\B(u, v) ≤ (d− 2)c3(c3 − 1).

For 1 ≤ i ≤ k, there is a path in G \ B between the ends of Pi, since Pi is such a path. Let P ′i
be a shortest such path. If u, v ∈ V (P ′i ) with distP ′i (u, v) > (d − 2)c3(c3 − 1), then distG\B(u, v) >
(d− 2)c3(c3 − 1), and so distG(u, v) > c3, that is, P ′i is near-geodesic, for 1 ≤ i ≤ k.

For each v ∈ V (P ′i ), since v /∈ B, it follows that v has distance at most (d − 2)(c3 − 1) from
V (G) \A, that is, from some Pj , say Q(v). If u, v ∈ V (Pi) are adjacent, then

distG(Q(u), Q(v)) ≤ 2(d− 2)(c3 − 1) + 1 ≤ c7,

and so Q(u) = Q(v) since P1, . . . , Pk pairwise have distance more than c7. Since Q(v) = Pi when
v is an end of Pi, it follows that Q(v) = Pi for all v ∈ V (Pi), that is, every vertex in P ′i has
distance at most (d− 2)(c3− 1) from Pi. Consequently, P ′1, . . . , P

′
k pairwise have distance more than

c7 − 2(d− 2)(c3 − 1) ≥ c6. This proves (3).

Fix S-T paths P1, . . . , Pk, each near-geodesic and pairwise with distance more than c6, and we may
choose them such that no internal vertex of Ph belongs to S∪T for 1 ≤ h ≤ k. Let P = {P1, . . . , Pk}.
Let Ph have ends sh ∈ S and th ∈ T .

For p ≥ 1, let Vp be the set of vertices with distance more than p from V P. Let L be a path of
G with ends a, b. We say:

• L is a a leap of type 1 if a, b ∈ V P, and there exist x, y ∈ V (L) with a, x, y, b in order, such that
the subpaths L[a, x], L[b, y] have length exactly c2, and every internal vertex of L[x, y] belongs
to Vc2 . (It follows that L[a, x] is an (x, V P)-geodesic, and L[b, y] is a (y, V P)-geodesic.)
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• L is a leap of type 2 if a ∈ V P, b ∈ (S ∪ T ) ∩ Vc2 , and there exists x ∈ V (L) such that L[a, x]
has length c2, and every internal vertex of L[x, b] belongs to Vc2 .

• L is a leap of type 3 if a ∈ V P, b ∈ (S ∪ T ) \ Vc2 , and L is a (b, V P)-geodesic.

• L is a leap of type 4 if a ∈ S and b ∈ T and V (L) ⊆ Vc2 .

A leap is a leap of type 1, 2, 3 or 4.

T

S

V P

Vc2

Figure 2: The four types of leaps. (The thick lines represent paths.)

Let F be the set of all ordered pairs uv such that some leap has ends u, v. (Thus, if ab ∈ F then
ba ∈ F .)

(4) F is c5-jumping in the setting (S, T,P = {P1, . . . , Pk}).

For 1 ≤ i ≤ k let Qi be a subpath of Pi of length at most c5; thus, Q1, . . . , Qk is a c5-barrier
in the stated setting. We may assume (by extending Qh) that for 1 ≤ h ≤ k, either Qh = Ph or
Qh has length exactly c5. For 1 ≤ h ≤ k, Ph \ V (Qh) has at most two components. If one of them
contains sh, call it Ah, and otherwise let Ah be the null graph; and if one contains th call it Bh,
and otherwise Bh is null. Choose qh ∈ V (Qh) for 1 ≤ h ≤ k. Let X be the set of vertices v of
G with distG(v,A1 ∪ · · · ∪ Ak) ≤ c2 and distG(v, {q1, . . . , qk}) > c9; and let Y be the set of v with
distG(v,B1 ∪ · · · ∪Bk) ≤ c2 and distG(v, {q1, . . . , qk}) > c9.

Suppose that there exists v ∈ X ∩ Y ; then distG(A1 ∪ · · · ∪ Ak, B1 ∪ · · · ∪ Bk) ≤ 2c2. Choose
i, j ∈ {1, . . . , k} such that distG(Ai, Bj) ≤ 2c2. Since distG(Pi, Pj) > c6 ≥ 2c2 for all distinct i, j,
it follows that i = j. Hence there are vertices u, v ∈ Pi, such that distPi(u, v) ≥ c5 + 2 and yet
distG(u, v) ≤ 2c2, contradicting that Pi is near-geodesic, since 2c2 ≤ c3 and c5 +2 > (d−2)c3(c3−1).
This proves that X ∩ Y = ∅.

We claim that for each y ∈ Y , every (y, V P)-geodesic is a (y,B1 ∪ · · · ∪ Bk)-geodesic. Let J be
a (y, V P)-geodesic, and let b be its end in V P. Then b /∈ V (A1 ∪ · · · ∪ Ak) since y /∈ X ∩ Y , and
b /∈ V (Q1 ∪ · · · ∪ Qk) since distG(y, {q1, . . . , qk}) > c9 ≥ c2 + c5 and J has length at most c2 and
Q1, . . . , Qk all have length at most c5. Thus b ∈ V (B1∪· · ·∪Bk) and so J is a (y,B1∪· · ·∪Bk)-geodesic
as claimed. Similarly, for each x ∈ X, every (x, V P)-geodesic is an (x,A1 ∪ · · · ∪Ak)-geodesic.
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If S ∩ Y 6= ∅, let s ∈ S ∩ Y and let J be an (s, V P)-geodesic, and let b ∈ B1 ∪ · · · ∪ Bk be the
end of J in V P. Then J is a leap of type 3, and so sb ∈ F jumps the c5-barrier Q1, . . . , Qk. Thus,
we may assume that S ∩ Y = ∅, and similarly T ∩X = ∅. Since S ∩ T = ∅ by (2), this proves that
S ∪X is disjoint from T ∪ Y .

From (1), applied to the set {q1, . . . , qk}, there is an S-T path P in G such that

distG(P, {q1, . . . , qk}) > c9.

Consequently, for each vertex v ∈ V (P ) \ (X ∪ Y ), distG(v,Q1 ∪ · · · ∪ Qk) > c9 − c5 ≥ c2, and
distG(v,A1 ∪ · · · ∪Ak) > c2 (since v /∈ X), and similarly distG(v,B1 ∪ · · · ∪Bk) > c2; so v ∈ Vc2 , and
therefore V (P ) ⊆ X ∪ Y ∪ Vc2 . Since P has first vertex in S ∪X and last vertex in T ∪ Y , there is a
subpath Q of P with one end some x ∈ S ∪X, the other end some y ∈ T ∪ Y , and with no internal
vertex in X ∪ Y ∪ S ∪ T . Thus, x 6= y, and all internal vertices of Q belong to Vc2 . If x ∈ S \X and
y ∈ T \Y , then Q is a leap of type 4 and xy ∈ F jumps the c5-barrier; so from the symmetry we may
assume that x ∈ X. Let Jx be an (x, V P)-geodesic, with ends x and a ∈ V (A1 ∪ · · · ∪ Ak). Thus,
Jx has length c2, since x ∈ X and has a neighbour in Vc2 . If y ∈ T \ Y , then Q∪ Jx is a leap of type
2, and ay ∈ F jumps the c5-barrier. Thus, we may assume that y ∈ Y ; let Jy be a (y, V P)-geodesic,
with ends y, b where b ∈ V (B1 ∪ · · · ∪ Bk). Then Q ∪ Jx ∪ Jy is a leap of type 1, and ab ∈ F jumps
the c5-barrier. This proves (4).

From 4.5, and 4.2, there is a c4-augmenting, 2c4-separated, sequence a1b1, . . . , anbn in F . Let
W = {a2, . . . , an, b1, . . . , bn−1}. Thus, W ⊆ V P. Let us say distinct u, v ∈ W are mated if
distUP(u, v) ≤ c4. It follows that if such u, v are mated, then one of u, v is in {a2, . . . , an} and
the other is in {b1, . . . , bn−1}, because a1b1, . . . , anbn is 2c4-separated; and for the same reason each
vertex in W is mated with at most one other vertex in this set.

(5) If distinct u, v ∈W are not mated, then distG(u, v) > c3.

Suppose that u, v ∈ W , and distG(u, v) ≤ c3. Consequently u, v ∈ V (Ph) for some h ∈ {1, . . . , k},
since u, v ∈ V P and c3 ≤ c6. Since Ph is near-geodesic,

distPh
(u, v) ≤ (d− 2)c3(c3 − 1) ≤ c4,

and so u, v are mated. This proves (5).

Some notation: if P is a path of G and X ⊆ V (G), we write P [X] for P [V (P )∩X]. For 1 ≤ i ≤ n
choose a leap Li with ends ai, bi. If some Li has type 4 (and hence i = n = 1), then P1, . . . , Pk, Li

are S-T paths satisfying the theorem, since c2 ≥ c and c6 ≥ c; so we may assume that each Li has
type 1, 2 or 3. Thus, L1, Ln have types 2 or 3, and all the others have type 1.

For each w ∈W , let S(w) be the maximal subpath of Li with one end w and with length at most
c2. Thus, S(w) has length c2 unless w ∈ {b1, an}. Let S′(w) = S(w)[Vc1 ] (thus, if S(w) has length at
most c1 then S′(w) is the null graph). Let S′′(w) = S(w) \Vc1 , and let the ends of S′′(w) be w, s(w).
For 1 ≤ i ≤ n, let Ri = Li[Vc1 ]. Thus, Ri is a path unless Li is a leap of type 3 and has length at
most c1, and then Ri is null.

We need to be careful with L1, Ln. There are three possibilities for Ln (and the same for L1):

• Ln is a leap of type 2;
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• Ln is a leap of type 3 and has length more than c1;

• Ln is a leap of type 3 and has length at most c1.

(See Figure 3.) Note that, in the second case when Ln has length more than c1, since Ln is a
(bn, V P)-geodesic it follows that V (Ln) ⊆ V (S(an)) ∪ Vc1 , and so Rn joins bn and a neighbour of
s(an).

T

S

V P

≤ c1 > c1,≤ c2 > c2

s(ai)

s(bi)

Rn

bi

ai

RiS(ai)

S′′(bi) S′(bi)

an S′′(an)

S′(an)
Rn

Figure 3: Definitions of Ri, S(w), S′(w), S′′(w) and s(w).

For each mated pair u, v ∈ W , if there is a path in G of length at most c between S′(u), S′(v),
with all vertices in Vc1 , choose some such path and call it Tuv. Let

Z =
⋃

(V (Ri) : 1 ≤ i ≤ n) ∪
⋃

(V (Tuv) : u, v ∈W are mated) .

Thus, Z ⊆ Vc1 .
Choose t maximum such that there is a sequence of paths M1, . . . ,Mt satisfying, for each i ≥ 1:

• Mi has length at most c;

• the ends of Mi lie in different components of G[Z∪V (M1∪· · ·∪Mi−1)], and none of its internal
vertices lie in this set; and

• Mi intersects at most one of the paths S′(w) (w ∈W ).

We claim:

(6) Every vertex in M1 ∪ · · · ∪Mt has distance at most d(c− 1) from Vc2.

Let x ∈ V (M1 ∪ · · · ∪Mt), and suppose that distG(x, Vc2) > d(c − 1) + 1. Thus, x has distance
at most one from a vertex x′ ∈ V (M1 ∪ · · · ∪Mt) \ Z, and by 3.3, taking ` = c, either x′ is in the
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interior of some Mi with both ends in Z, or there are three components of G[Z] such that x′ has
distance at most d(c− 1) from each of them.

In the first case, let Mi have ends x1, x2. Then V (Mi) ∩ Vc2 = ∅, since Mi has length at most c
and distG(x′, Vc2) > d(c− 1) ≥ c; but then, for j = 1, 2, xj belongs either to S′(w) for some w ∈W ,
or to Tvw for some mated pair v, w ∈ W . Consequently, for j = 1, 2, there exists wj ∈ W with
distance at most c + c2 from xj , such that S′(w1), S

′(w2) belong to different components of Z. In
particular w1 6= w2, and since Mi has length at most c, it follows that

distG(w1, w2) ≤ 2(c + c2) + c ≤ c3,

and so w1, w2 are mated by (5). If there exists w ∈ W such that w,w1 are mated and x1 belongs
to Tw1w, then w = w2 since w1, w2 are mated, contradicting that S′(w1), S

′(w2) belong to different
components of Z. Hence x1 ∈ S′(w1), and similarly x2 ∈ S′(w2), contrary to the assumption that
Mi intersects at most one of the paths S′(w) (w ∈W ).

Thus, x′ is not in the interior of some Mi with both ends in Z; and so there are three components
C1, C2, C3 of G[Z] such that x′ has distance at most d(c − 1) from each of them. For i = 1, 2, 3,
let Ni be a path from x′ to Ci of length at most d(c − 1), and let xi be the end of Ni in Ci. Since
distG(x′, Vc2) > d(c− 1), each of these paths is disjoint from Vc2 . In particular, for i = 1, 2, 3, there
exists wi ∈ W with distance at most c + c2 from xi, such that S′(w1), S

′(w2), S
′(w3) all belong to

different components of G[Z]. Therefore, some two of w1, w2, w3 are not mated, say w1, w2; but

distG(w1, w2) ≤ 2(c + c2) + 2d(c− 1) ≤ c3,

contrary to (5). This proves (6).

Let D be the set of components of G[Z ∪ V (M1 ∪ · · · ∪Mt)]. For each D ∈ D, let WD be the
union of the sets {ai, bi} ∩W , over all i ∈ {1, . . . , n} such that Ri is a non-null subgraph of D. The
sets WD (D ∈ D) are nonempty and pairwise disjoint, and their union includes W \ {b1, an}, and it
might include b1, an as well. If D ∈ D, let D+ be the union of D and the paths S(w) with w ∈WD.
(Incidentally, even if D1, D2 ∈ D are distinct and therefore disjoint, it is possible that D+

1 , D
+
2 might

intersect, because there might exist wi ∈ WDi for i = 1, 2 such that S′′(w1), S
′′(w2) intersect. But

then w1, w2 would be mated.)
For D ∈ D, we say v ∈ V (D+) is innocuous in D+ if v ∈ V (S(w)) for some w ∈ WD, and

S(w)[v, w] has length at most c1 + c, and for each vertex y of S(w)[v, w], all edges of D+ incident
with y belong to S(w). We claim:

(7) If D1, D2 ∈ D are different, and M is a path of length at most c in G between D+
1 , D

+
2 , then for

i = 1, 2, the end of M in D+
i is innocuous in D+

i .

Let M have ends xi ∈ D+
i for i = 1, 2. Suppose first that distG(M,V P) > c1, and let M ′ be a

minimal subpath of M that has nonempty intersection with two of the graphs D+ (D ∈ D) (and
therefore with two members of D). Let the ends of M ′ be x′1 ∈ D′1 and x′2 ∈ D′2. From the
maximality of t in the definition of M1, . . . ,Mt, it follows that M ′ intersects at least two of the
paths S′(w) (w ∈ W ), and therefore, for i = 1, 2, there exists wi ∈ WD′i

such that x′i belongs to
S′(wi). Thus, distG(w1, w2) ≤ 2c2 + c ≤ c3, and so w1, w2 are mated by (5). Since D′1 6= D′2, and
distG(M,V P) > c1, it follows that Tw1w2 exists, contradicting that D′1 6= D′2.
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Consequently, distG(M,V P) ≤ c1, and so distG(xi, V P) ≤ c1 + c, and therefore distG(xi, Vc2) >
d(c− 1) since c2 ≥ c1 + c + d(c− 1). for i = 1, 2. By (6), xi is in none of M1, . . . ,Mt, and so either
xi /∈ Di, or there exists wi ∈ WDi with xi ∈ V (S(wi)), or there is a mated pair wi, w

′
i ∈ WDi with

xi ∈ Twiw′i
. In each case, it follows that for some wi ∈ WDi , either xi ∈ S(wi), or xi ∈ V (Twiw′i

) for
some w′i ∈ WDi such that wi, w

′
i are mated, for i = 1, 2. Since distG(xi, wi) ≤ c + c2, it follows that

distG(w1, w2) ≤ 3c + 2c2 ≤ c3, and so w1, w2 are mated by (5). Thus, w′1, w
′
2 do not exist, and so

x1 ∈ S(w1) and x2 ∈ S(w2).
Since distG(xi, V P) ≤ c1 + c, it follows that the subpath of S(wi) between xi, wi has length at

most c1 + c, because it is an (xi, V P)-geodesic. Let y be a vertex of this subpath, and let e be an
edge of D+

i incident with y. To show that xi is innocuous in D+
i , it remains to show that e is an

edge of S(wi), for all such y, e. We may assume that i = 1. Since distG(y, w1) ≤ c1 + c, it follows
that distG(y, Vc2) > c2 − c1 − c ≥ d(c− 1), and so y belongs to none of M1, . . . ,Mt, by (6). Thus, e
is an edge of D+

i [Z], and so either

• there exists w ∈WD1 with e ∈ E(S(w)); or

• there is a mated pair w,w′ ∈WD1 such that Tww′ exists and e is an edge of Tww′ .

In either case w ∈ WD1 , and distG(w,w1) ≤ (c1 + c) + (c2 + c) ≤ c3. Now w 6= w2 since w2 /∈ WD1 ,
and yet w,w1 are not mated since w1, w2 are mated. By (5), w = w1; and therefore w′ does not
exist, and so e ∈ E(S(w1)). This proves that x1 is innocuous, and so proves (7).

Each D ∈ D includes at least one of the paths Ri. For each D ∈ D, let JD be the set of
i ∈ {1, . . . , n} such that Ri ⊆ D. We would like to apply 4.7 to the set of sets {JD : D ∈ D}, but it
might not be a partition of {1, . . . , n}. Certainly its union contains {2, . . . , n − 1}, but we have to
be careful about 1, n. There is no D ∈ D with 1 ∈ JD if and only if L1 is a leap of type 3 of length
at most c1; and the same for n,Ln. Let J be the partition of J formed by the sets {JD : D ∈ D},
together with {1} if L1 is a leap of type 3 of length at most c1, and {n} if Ln is a leap of type 3 of
length at most c1. The sequence a1b1, . . . , anbn is c4-augmenting and 2c4-separated; and by applying
4.7 to the partition J and this sequence, we deduce that there is a c4-augmenting, 2c4-separated
sequence p1q1, . . . , pmqm such that:

• p1, . . . , pm ∈ {a1, . . . , an} and q1, . . . , qm ∈ {b1, . . . , bn};

• for 1 ≤ i ≤ m, either:

– S′(pi) ∪ S′(qi) is non-null, and there exists D ∈ D such that S′(pi) ∪ S′(qi) ⊆ D; or

– i = 1, and L1 is a leap of type 3 with length at most c1, and (p1, q1) = (a1, b1), or

– i = m, and Ln is a leap of type 3 with length at most c1, and (pm, qm) = (an, bn);

and

• D2, . . . , Dm−1 and (if they exist) D1, Dm are all different.

To see this, observe that p1 ∈ S \V P, and p1 ∈ {a1, . . . , an}, and therefore p1 = a1, and so if {1} ∈ J
then (p1, q1) = (a1, b1); and similarly if {m} ∈ J then (pm, qm) = (an, bn).

We recall that for w ∈W , S′′(w) is the subpath of S(w) between w and s(w), of length c1 unless
S(w) has length less than c1. For w ∈ {a1, bn} let us define S′′(w) to be the one-vertex path with
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vertex w, and s(w) = w. For 1 ≤ i ≤ m, if Di exists (which it does unless i ∈ {1,m}) let Qi be
a path between s(pi), s(qi) with interior in V (Di). If D1 does not exist, let Q1 = L1 (in this case,
L1 has length at most c1 and joins s(p1) = a1 and s(q1) = b1). Similarly if Dm does not exist let
Qm = Ln.

(8) For all distinct i, j ∈ {1, . . . ,m}, if the distance in G between S′′(pi) ∪Qi ∪ S′′(qi) and S′′(pj) ∪
Qj ∪ S′′(qj) is at most c, then one of {pi, qi} is mated with one of {pj , qj}.

Let M be a path of length at most c with ends xi, xj , where xi ∈ V (S′′(pi) ∪ Qi ∪ S′′(qi)) and
xj ∈ V (S′′(pj) ∪ Qj ∪ S′′(qj)). By (7), xi is innocuous in D+

i and xj is innocuous in D+
j . Choose

wi ∈WDi with xi ∈ V (S(wi)), and choose wj ∈WDj similarly. Since S′′(pi)∪Qi∪S′′(qi) is a path in
D+

i containing xi with both ends in W ∪ {a1, bn}, and for each vertex y of S(wi)[xi, wi], all edges of
D+

i incident with y belong to S(wi), it follows that S(wi)[xi, wi] is a subpath of S′′(pi)∪Qi ∪S′′(qi),
and therefore wi is one of pi, qi. Since S(wi)[xi, wi] has length at most c1 + c, and the same for xj ,
and therefore distG(wi, wj) ≤ 2c1 + 3c ≤ c3, it follows from (5) that wi, wj are mated. This proves
(8).

But now the result follows from 4.6 applied to p1q1, . . . , pmqm, replacing each pair piqi in the
resulting paths by S′′(pi) ∪ Qi ∪ S′′(qi). Let us see this in more detail. Let F = {p1q1, . . . , pmqm},
and let H be the graph obtained from UP by adding the remainder of S ∪ T as vertices, and the
ordered pairs in F as (undirected) edges. Since F is c4-jumping (by 4.2) and 2c4-separated, we
deduce from 4.6 that there exist k+ 1 vertex-disjoint S-T paths Z1, . . . , Zk+1 in H, such that no two
of them are joined by a subpath of UP of length at most c4. Each Zs is a concatenation of subpaths
of UP and edges piqi.

For 1 ≤ s ≤ k+1, let Fs be the set of pairs in F that are edges of Zs. Thus, Zs \Fs is a subgraph
of G, and each of its components is a subpath of a member of P.

(9) If s, t ∈ {1, . . . , k + 1} are distinct, then distG(V (Zs), V (Zt)) > c3.

Suppose not; then there exist x ∈ V (Zs) and y ∈ V (Zt) with distG(x, y) ≤ c3. Since x, y ∈ V P,
with distance at most c3, and c3 ≤ c6, both x, y belong to the same member of P, say Ph. Since
distG(x, y) ≤ c ≤ c3 and Ph is near-geodesic, it follows that distPh

(x, y) ≤ (d − 2)c3(c3 − 1) ≤ c4.
But Zs, Zt are not joined by a subpath of UP of length at most c4, a contradiction. This proves (9).

For each s ∈ {1, . . . , k + 1}, let Ys be the union of Zs \ Fs and the path S′′(pi) ∪Qi ∪ S′′(qi) for
each pair piqi ∈ Fs. Then Ys is a connected subgraph of G, containing a vertex in S and a vertex in T .

(10) Y1, . . . , Yk+1 pairwise have distance more than c.

Suppose that s, t ∈ {1, . . . , k + 1} are distinct, and there exist x ∈ V (Ys) and y ∈ V (Yt) such
that distG(x, y) ≤ c. By (9), it is not the case that x ∈ V (Zs \ Fs) and y ∈ V (Zt \ Ft), so we may
assume that y /∈ V (Zt \ Ft). Choose pjqj ∈ Ft such that y ∈ V (S′′(pj) ∪Qj ∪ S′′(qj)).

Suppose that x /∈ V (Zs \ Fs). Then x ∈ V (S′′(pi) ∪ Qi ∪ S′′(qi)) for some piqi ∈ Fs. From (8),
some wi ∈ {pi, qi} is mated with some wj ∈ {pj , qj}. Hence wi, wj belong to the same member of P,
say Ph, and distPh

(wi, wj) ≤ c4. Yet wi ∈ V (Zs) and wj ∈ V (Zt), contradicting that Zs, Zt are not
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joined by a subpath of UP of length at most c4.
So x ∈ V (Zs \ Fs). Since x ∈ V P, distG(x,Qj) > c1 and so y /∈ V (Qj); and so y ∈ V (S′′(w)) for

some w ∈ {pj , qj}. Since S′′(w) is a (w, V P)-geodesic, and x,w ∈ V P and w ∈ V (S′′(w)), it follows
that

distG(y, w) = distG(y, V P) ≤ distG(y, x) ≤ c,

and therefore distG(x,w) ≤ 2c ≤ c3; but x ∈ V (Zs) and w ∈ V (Zt), contrary to (9). This proves
(10).

From (10), this proves 5.1.

6 Concluding remarks

In the form given in 5.1, our main result involves two functions f(k, c, d) and g(k, c, d). How do they
depend on c? The counterexamples in [8] contain large uniform binary trees, not subdivided at all,
so one might even hope that taking f(k, d, c) = 1 works. The last is false, because subdividing every
edge of one of our counterexamples gives another counterexample with k, d the same but c doubled,
and now there is no large binary tree as a subgraph.

In fact f(k, d, c), g(k, d, c) must both be at least linear in c. This is a little vague, because there
are two functions f, g involved, and we can trade off between them, but we can make it precise as
follows. Let us fix k, d ≥ 2, and say a triple (p, q, c) of integers works if for every graph G with no
subgraph that is a p-subdivision of the binary tree Hd, and all S, T ⊆ V (G), either

• there are k + 1 paths between S, T , pairwise at distance greater than c; or

• there is a set X ⊆ V (G) with |X| ≤ k such that every path between S, T contains a vertex
with distance at most q from some member of X.

For each c, let p(c) be minimum such that (p(c), q, c) works for some q. Suppose that p(nc) < np(c)
for some integer n ≥ 1, and choose q such that (p(nc), q, nc) works. From the minimality of p(c),
(p(c)− 1, q, c) does not work, and so there is a graph G and S, T that show that (p(c)− 1, q, c) does
not work. If we replace every edge of G by a path of length n, we obtain a graph G′ and S, T , that
show that (np(c)−1, q, nc) does not work, a contradiction. So p(nc) ≥ np(c) for all n ≥ 1. Similarly,
if we define q(c) to be minimum such that (p, q(c), c) works for some p, the same construction shows
that q(nc) > n(q(c)− 1) for all integers n ≥ 1.

One would think that f(k, c, d) and g(k, c, d) should be linear in c. Our proof gives functions

f(k, c, d), g(k, c, d) that are both non-linear in c; polynomial, but at least something like c2
k
, because

of the condition c4 ≥ c23d, which is iterated every time we increase k by 1. We only use that condition
to apply 3.2, and if we could find a linear way through 3.2, the rest of the proof would show that
f(k, c, d), g(k, c, d) are both linear in c.

What about infinite graphs? We assumed that all our graphs were finite at the start of the
paper, but augmenting path arguments work fine in infinite graphs (provided we only want some
finite number of paths), and the only place in the proof that we used finiteness was in the section on
the “key lemma”, where we had to show that the process of adding bites stopped; and similarly, in the
choice of M1, . . . ,Mt with t maximum just before step (6) of the main proof. An easy application of
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Zorn’s lemma would do instead, so in fact our theorem works for infinite graphs. (And “path-width”
needs to be replaced by “line-width” for infinte graphs: see [10] for example.)

And for free, we can get a strengthening to graphs with “bounded coarse path-width”. A (p, q)-
path-decomposition of G is a family (Bt : t ∈ L) of subsets of V (G), where L is a linearly ordered
set, such that

•
⋃

t∈LG[Bt] = G;

• for all t1, t2, t3 ∈ T , if t1 ≤ t2 ≤ t3 (where ≤ is the linear order on L) then Bt1 ∩Bt3 ⊆ Bt2 ; and

• for each t ∈ L, Bt is the union of at most p subsets each with diameter in G at most q.

A class of graphs has bounded coarse path-width if there are p, q such that every graph in the class has
a (p, q)-path-decomposition (see [11] for a coarse structural characterization of graphs with bounded
coarse path-width).

We showed in [9] that for all p, q, there exist `, c such that every graph that admits a (p, q)-
path-decomposition also admits an (`, c)-quasi-isometry to a graph of path-width at most p. (See
[9] for definitions.) So we can strengthen our theorem, since its conclusion is invariant under taking
quasi-isometries, and obtain that the coarse Menger conjecture is true for graphs in any class with
bounded coarse path-width:

6.1 Let k ≥ 0 and c, p, q ≥ 1 be integers. Then there exists ` ≥ 0, such that for every graph G with
a (p, q)-path-decomposition, and all S, T ⊆ V (G), either:

• there are k + 1 paths between S, T , pairwise at distance at least c; or

• there is a set X ⊆ V (G) with |X| ≤ k such that every path between S, T contains a vertex with
distance at most ` from some member of X.
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