
EXACT BOUNDS FOR JUDICIOUS PARTITIONS OF
GRAPHS
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Abstract. Edwards showed that every graph of size m ≥ 1 has a
bipartite subgraph of size at least m/2 +

√
m/8 + 1/64− 1/8. We

show that every graph of size m ≥ 1 has a bipartition in which the
Edwards bound holds, and in addition each vertex class contains
at most m/4 +

√
m/32 + 1/256 − 1/16 edges. This is exact for

complete graphs of odd order, which we show are the only extremal
graphs without isolated vertices. We also give results for partitions
into more than two classes.

1. Introduction

Many classical problems in graph theory demand that a certain quan-
tity be maximized or minimized. For instance, given a graph G, the
Max Cut problem asks for the largest bipartite subgraph of G. Our aim
in this paper to consider problems in which several quantities must be
minimized or maximized simultaneously. Problems of this type are in
general more difficult, since the quantities are not usually independent.
As in [2], by a judicious partitioning problem we mean a partitioning
problem in which we require all vertex classes (or all pairs of vertex
classes, or all triples, and so on) to satisfy inequalities simultaneously.1

For the Max Cut problem, it is easy to see by considering random
partitions that every graph of size m contains a bipartite subgraph of
size at least m/2. We can do a little better by considering partitions
into two almost equal vertex classes: for instance, if |G| = 2n then in
a partition into two equal classes we expect to have m/2 +m/(4n− 2)
edges between the classes, so G contains a bipartite graph with at least
this many edges. Edwards [6], [7] proved the essentially best possible
result that every graph of order n and size m contains a bipartite
subgraph of size at least

(1)
m

2
+

√
m

8
+

1

64
− 1

8
.

1Work for this article was partly completed at the Institute for Advanced Study.
1
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Recently, simpler proofs of the result of Edwards have been given by
Erdős, Gyárfás and Kohayakawa [9] and Hofmeister and Lefmann [10].
(In fact, simple proofs can be read out of Lehel and Tuza [11] and Locke
[12].) Alon [1] proved that there is some c > 0 such that if m/2 is a
sufficiently large square then we can improve on (1) by cm1/4, while it is
never possible to improve on (1) by more that O(m1/4). Further results
on bipartite subgraphs have also been given by Erdős, Faudree, Pach
and Spencer [8]. Max Cut and the more general Max k-Cut, which
asks for the maximum size of a k-partite subgraph, are NP-hard, and
have been the subject of vigorous investigation in both combinatorics
and computer science.

Given a graph G, the Max Cut problem is equivalent to the problem
of minimizing e(V1) + e(V2) over bipartitions V (G) = V1 ∪ V2. In this
paper we shall study bipartitions in which we aim to control the values
of e(V1) and e(V2). In particular, we are interested in the problem
of minimizing max{e(V1), e(V2)}, and more generally, for k ≥ 2, of
minimizing

max{e(V1), . . . , e(Vk)}

over partitions V (G) =
⋃k
i=1 Vi. Thus rather than bounding the l1

norm of the sequence (e(Vi))
k
i=1, we are bounding the l∞ norm. Ran-

dom partitions give us less help here than for Max Cut: although in
a random partition V (G) = V1 ∪ V2 we expect each of e(V1) and e(V2)
to have m/4 edges, bounding both quantities simultaneously is much
harder. Even proving a bound such as (1 + o(1))5m/16, for instance,
is not at all straightforward. Indeed, the possible presence of large de-
grees in the graph means that a simple random partitioning will not
suffice (see [2]).

It was proved in [2] that every graph G has a partition into k sets,
with at most

e(G)
/(k + 1

2

)
edges contained in any set. Note that this is best possible, as seen
by considering Kk+1. However, this is some way from the m/k2 that
random partitions would suggest. Indeed, for graphs with more edges
it is possible to do much better. A deterministic partial partitioning
combined with martingale methods was used in [2] to prove that for
k ≥ 2, every graph of size m has a partition into k sets, each of which
contains at most

m

k2
+ (3m)4/5(log k)2/5

edges.
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How much can these bounds be improved? We cannot expect to be
able to do better than m/k2 + ck

√
m, since any partition of Kkn+1 into

k classes has at least(
n+ 1

2

)
=

1

k2

(
kn+ 1

2

)
+
k − 1

2k
n

=
m

k2
+
k − 1

k2

√
2m+O(1)

edges in some class.
Our aim in this paper is to show that a bound of form m/k2 + ck

√
m

can be guaranteed. Indeed, we give a bound that, surprisingly, for
every value of k, is best possible for infinitely many values of m. We
also show that, for any k, our bounds are exact for complete graphs of
order nk + 1, for any positive integer n, and that these are the only
extremal graphs without isolated vertices.

For bipartitions, we do more: we extend the result of Edwards by
showing that there is a bipartition that satisfies both the optimal bound
for max{e(V1), e(V2)} and the bound (1) of Edwards.

2. Bipartitions

We begin by proving a result for bipartitions. We shall determine the
extremal graphs for this bound at the end of the section; a result for
partitions into k sets is given in the next section.

Let us note that for a positive integer l, any partition of the graph
K2l+1 must have at least

(
l+1
2

)
edges in one class. Writingm = e(K2l+1) =(

2l+1
2

)
, we get

(
l+1
2

)
= m

4
+ l

4
and

l

4
=

√
m

32
+

1

256
− 1

16
,

and so the bound (2) in Theorem 1 below is best possible whenever
m is of form

(
2l+1
2

)
. It is surprising that this bound can be achieved,

since we are minimizing more than one quantity simultaneously. As a
bonus, we shall see that we can in addition demand that the bound (1)
of Edwards is satisfied (it is equivalent to (3) below).

Theorem 1. Let G be a graph with m edges. Then there is a partition
V (G) = V1 ∪ V2 with

(2) e(Vi) ≤
m

4
+

√
m

32
+

1

256
− 1

16
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for i = 1, 2, and

(3) e(V1, V2) ≥
m

2
+

√
m

8
+

1

64
− 1

8

Proof. Let us consider partitions V (G) = V1 ∪ V2 with e(V1) ≥ e(V2)
and

(4) |Γ(x) ∩ V2| ≥ |Γ(x) ∩ V1|

for all x ∈ V1, and

(5) e(V1, V2) ≥
m

2
+

√
m

8
+

1

64
− 1

8
.

Such partitions exist: let V (G) = U1 ∪ U2 be a partition of G with
e(U1, U2) maximal. We may assume e(U1) ≥ e(U2). Now |Γ(x)∩U1| ≤
|Γ(x) ∩ U2| for every x ∈ U1, or else we could move x from U1 to U2 to
get a partition with more edges going between the two sets, and hence
(4) is satisfied. Furthermore, since e(U1, U2) is maximal, we know from
(1) that (5) is satisfied.

Let V (G) = V1 ∪ V2 be a partition of V (G) with e(V1) ≥ e(V2) that
satisfies (4) and (5) with e(V1) minimal. If e(V1) satisfies (2) then we
are done. Otherwise, suppose

(6) e(V1) =
m

4
+ α,

so

(7) α ≥
√
m

32
+

1

256
− 1

16

Summing (4) over all x ∈ V1, it follows that

e(V1, V2) ≥
m

2
+ 2α

and so

e(V2) = m− e(V1)− e(V1, V2) ≤
m

4
− 3α.

Now let H = G[V1] and pick v ∈ V (H) with dH(v) minimal nonzero.
Consider the partition V (G) = W1 ∪ W2, where W1 = V1 \ v and
W2 = V2 ∪ {v}. Clearly (W1,W2) satisfies (4) and e(W1) < e(V1), so
we must have either e(W2) > e(W1) or else (W1,W2) does not satisfy
(5). We claim that (W1,W2) satisfies (2) and (5).
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We first prove that (W1,W2) satisfies (5). Since e(W1) = e(V1) − δ,
where δ = δ(H) = dH(v), we have

e(W1,W2) =
∑
x∈W1

|Γ(x) ∩W2|

=
∑
x∈W1

|Γ(x) ∩ V2|+ δ

≥
∑
x∈W1

|Γ(x) ∩ V1|+ δ

= (2e(V1)− δ) + δ

=
m

2
+ 2α.(8)

≥ m

2
+

√
m

8
+

1

64
− 1

4
,(9)

by (7). We now prove (2). It follows from (9) that

e(W2) = m− e(W1)− e(W1,W2)

≤ m−
(m

4
+ α− δ

)
−
(m

2
+ 2α

)
=

m

4
− 3α + δ.(10)

Now e(H) ≥
(
δ+1
2

)
, so

m

4
+ α ≥

(
δ + 1

2

)
and hence, rearranging, we get

(11) δ ≤
√
m

2
+ 2α +

1

4
− 1

2
.

If (W1,W2) does not satisfy (2) then it follows from (6) and (10) that

(12) min {α, δ − 3α} >
√
m

32
+

1

256
− 1

16
.

It follows from (11) that

min{α, δ − 3α} ≤ min

{
α,

√
m

2
+ 2α +

1

4
− 1

2
− 3α

}
.

The right hand side is maximized when

4α +
1

2
=

√
m

2
+ 2α +

1

4
,
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which gives

α =

√
m

32
+

1

256
− 1

16
.

However, this contradicts (12), and hence (2) must be satisfied. �

Let us note that we use the result of Edwards only to prove (3). If
we are content with e(V1, V2) ≥ m/2 then the result follows directly
from the proof above without appeal to (1).

It is easy to determine the extremal graphs without isolated vertices
for Theorem 1. Keeping the notation of the proof, if we can do no
better than equality in (2) then we must have equality throughout
the proof. In particular, (V1, V2) must satisfy (2) with equality and,
defining (W1,W2) as in the proof, (10), (11) and (12) are also satisfied
with equality. Thus H must be a complete graph, possibly together
with some isolated vertices. Furthermore, (4) is satisfied with equality,
so there are no isolated vertices in H, and every vertex in H must have
exactly |H|−1 neighbours in V2. Now consider (W1,W2): every vertex
in W1 has |W1| = |H| − 1 neighbours in W1 and |H| neighbours in W2.
If any vertex v in W2 has more neighbours in W2 than in W1, then
moving v from W2 to W1 yields a partition (V ′

1 , V
′
2) that satisfies the

conditions of the theorem strictly, unless v is adjacent to every vertex of
W1, in which case moving any other vertex from W1 to W2 will do. Thus
(W2,W1) also satisfies (4) and (5) with equality and e(W2) ≥ e(W1), so
G[W2] is complete. Counting the number of edges between W1 and W2,
we see that all edges between them must be present, so G is complete.
It is easy to check that |G| must be odd, so the only extremal graphs
are complete graphs of odd order.

3. Partitions into k classes

In this section we shall prove results for partitions of a graph into
k ≥ 2 vertex classes. Our main aim is to prove that for integers k,m ≥
2, every graph of size m has a partition into k vertex classes, each of
which contains at most

m

k2
+
k − 1

2k2

(√
2m+

1

4
− 1

2

)
edges. Let us note that, for n ≥ 1 any partition of Knk+1 into k vertex
classes has at least n+ 1 vertices in some class, and(

n+ 1

2

)
− 1

k2

(
kn+ 1

2

)
=
k − 1

2k
n.
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Since

n =
1

k

(√
2m+

1

4
− 1

2

)
,

it follows that the bound above is best possible for complete graphs of
order nk + 1.

Our approach for k > 2 will be to choose one vertex class at a time.
Thus we shall begin by proving a lemma about lopsided partitions.

Theorem 2. Let G be a graph with m edges and let 0 ≤ p ≤ 1. Then
there is a partition V (G) = V1 ∪ V2 with

(13) e(V1) ≤ p2m+ c(p,m)

and

(14) e(V2) ≤ (1− p)2m+ c(p,m),

where

(15) c(p,m) = p(1− p)

(√
m

2
+

1

16
− 1

4

)
.

Proof. We may assume 0 < p < 1. Let q = 1 − p. Let us consider
a partition V (G) = U1 ∪ U2 with qe(U1) + pe(U2) minimal. We may
assume that e(U1)−p2m ≥ e(U2)−q2m, or else exchange p and q (note
that c(p) is symmetric in p and q). Now every v ∈ U1 satisfies

(16) q|Γ(v) ∩ U1| ≤ p|Γ(v) ∩ U2|,

or else we could have moved v from U1 to U2.
Let us now choose a partition V (G) = V1∪V2 that satisfies (16), that

has e(V1)−p2m ≥ e(V2)− q2m and, subject to this, has e(V1) minimal.
Suppose that (V1, V2) does not satisfy (13). Then let

e(V1) = p2m+ α.

It follows from (16) that

e(V1, V2) ≥
2q

p
(p2m+ α)

= 2pqm+
2q

p
α,
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and so

e(V2) = m− e(V1)− e(V1, V2)

≤ m(1− p2 − 2pq)−
(

1 +
2q

p

)
α

= q2m− 1 + q

p
α.

As in the proof of Theorem 1, we let H = G[V1] and pick a vertex v of
minimal degree δ in H. Letting W1 = V1 \ v and W2 = V2 ∪ {v}, we
obtain a partition (W1,W2) which satisfies (16), so has with e(W1) −
p2m < e(W2)− q2m. Now

e(W1,W2) =
∑
x∈W1

|Γ(x) ∩W2|

=
∑
x∈W2

|Γ(x) ∩ V2|+ δ

≥ q

p

∑
x∈W1

|Γ(x) ∩ V1|+ δ

=
q

p
(2e(V1)− δ) + δ

=
2q

p
e(V1) +

2p− 1

p
δ

= 2pqm+
2q

p
α +

2p− 1

p
δ.

If e(W1) > p2m then summing (16) over W1 gives e(W1,W2) ≥ 2pqm
and so e(W2) = m − e(W1) − e(W1,W2) < (1 − p2 − 2pq)m = q2m,
and thus both (13) and (14) are satisfied. If this is not the case then
e(W1) = p2M + α− δ < p2m. Now

e(W2) = m− e(W1)− e(W1,W2)

≤ m− (p2m+ α− δ)−
(

2pqm+
2q

p
α +

2p− 1

p
δ

)
= q2m− 2− p

p
α +

1− p
p

δ.

If neither (V1, V2) nor (W1,W2) satisfies (13) and (14) then

(17) min

{
α,

1− p
p

δ − 2− p
p

α

}
> pq

(√
m

2
+

1

16
− 1

4

)
.
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As in the proof of Theorem 1, we have

(18) δ ≤
√

2p2m+ 2α +
1

4
− 1

2
,

and so

min

{
α,

1− p
p

δ − 2− p
p

α

}
is at most {

α,
1− p
p

√
2p2m+ 2α +

1

4
− 1− p

2p
− 2− p

p
α

}
.

The latter expression is maximized when

α =
1− p
p

√
2p2m+ 2α +

1

4
− 1− p

2p
− 2− p

p
α

and hence

α = pq

(√
m

2
+

1

16
− 1

4

)
,

which contradicts (17). �

It follows immediately by repeated applications of Theorem 2 that
every graph G has a partition V (G) =

⋃k
i=1 Vi, such that

e(Vi) ≤
m

k2
+ ck
√
m,

where ck depends only on k. However, by being a little more careful
we can do much better.

Theorem 3. Let G be a graph with m edges. Then G has a vertex
partition into k sets such that each set spans at most

(19)
m

k2
+
k − 1

2k2

(√
2m+

1

4
− 1

2

)
edges.

Proof. Let m =
(
kn+1

2

)
, where n need not be an integer. Applying

Theorem 2 with p = 1/k, we get a partition V (G) = V1 ∪ V2 with

(20) e(V1) ≤
m

k2
+ c(m, p)

and

(21) e(V2) ≤
(
k − 1

k

)2

m+ c(m, p),
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where

c(m, p) =
p(1− p)

2

(√
2m+

1

4
− 1

2

)

=
k − 1

2k2

(√
2m+

1

4
− 1

2

)
.

Now since √
2m+

1

4
− 1

2
=

√
nk(nk + 1)− 1

4
− 1

2

=

(
nk +

1

2

)
− 1

2

= nk,

we have

c(m, p) =
k − 1

2k
n.

Thus

e(V1) ≤
m

k2
+ c(m, p)

=
n(nk + 1)

2k
+
k − 1

2k
n

=

(
n+ 1

2

)
and

e(V2) ≤
(
k − 1

k

)2

m+ c(m, p)

=
(k − 1)2

2k
n(nk + 1) +

k − 1

2k
n

=
(k − 1)

2
(nk − n+ 1)

=

(
n(k − 1) + 1

2

)
.

Repeating this argument, we may divide G into k sets, each containing
at most

(
n+1
2

)
edges. Now(
n+ 1

2

)
− m

k2
=

n(n+ 1)

2
−
n(n+ 1

k
)

2

=
k − 1

2k
n.
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However, 2m = k2n2 + kn, so

n =
1

k

(√
2m+

1

4
− 1

2

)
and hence

e(Vi) ≤
(
n+ 1

2

)
≤ m

k2
+
k − 1

2k2

(√
2m+

1

4
− 1

2

)
.

�

To investigate the extremal graphs for Theorem 3, it is enough to
know the extremal graphs for Theorem 2. For p = a/b, where (a, b) = 1,
and a positive integer n, consider Kbn+1. Let m = e(Kbn+1) =

(
bn+1
2

)
,

so

n =
1

b

(√
2m+

1

4
− 1

2

)
.

In any bipartition V (Kbn+1) = V1 ∪ V2, either

e(V1) ≥
(
an+ 1

2

)
= p2

(
bn+ 1

2

)
+
an

2

b− a
b

= p2m+ p(1− p)

(√
m

2
+

1

16
− 1

4

)
or

e(V2) ≥
(

(b− a)n+ 1

2

)
= (1− p)2

(
bn+ 1

2

)
+

(b− a)n

2

a

b

= (1− p)2m+ p(1− p)

(√
m

2
+

1

16
− 1

4

)
Thus Theorem 2 is exact for graphs of order bn+1, and an easy calcula-
tion shows that these are the only complete graphs for which Theorem
2 is exact.

Now suppose that Theorem 2 is exact for G. Using the notation of
the proof of Theorem 2, we see that we must have equality throughout.
In particular, it follows from (18) that H = G[V1] must be a complete
graph. Furthermore, (16) must be satisfied with equality. Hence p
must be rational, say p = a/b with (a, b) = 1. Now (W1,W2) must
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satisfy (14) with equality. If any vertex v in W2 is not adjacent to
every vertex in W1 then moving v to W1 yields a bipartition satisfying
both (13) and (14) strictly. Thus the bipartite graph between W1 and
W2 is complete. Since G[W1] is also complete, a simple calculation
shows that G[W2] must also be complete and so G must be complete.

We have shown that the extremal graphs for Theorem 2 are exactly
complete graphs of order nb + 1 with p = a/b, where a, b and n are
positive integers. For Theorem 3, our proof yields equality in (19)
exactly when we have equality at each stage of the partitioning process.
It follows that we have equality iff G = Kkn+1 for some positive integer
n.

4. Conclusion

We have given bounds that are best possible for graphs with m =(
rk+1
2

)
edges, where k is the number of sets in our partitions and r is

an arbitrary positive integer. However, it should be possible to do a
bit better when m is not of this form. The situation here is similar
to that of Max Cut: the bound (1) of Edwards is exact for infinitely
many m, but Alon [1] has shown that for certain values it can be
improved by cm1/4. It would be very interesting to know the best
possible improvement of (2) for every value of m. Natural lower bounds
can be obtained by considering unions of complete graphs.

The approach we have used here might also be useful for similar
problems on hypergraphs. It was proved in [3] that every 3-uniform
hypergraph with m edges has a partition into k sets such that no set
contains more than

m

k3
+ 5m6/7(log k)1/2

edges. It seems likely that a stronger result should hold. However, we
have not yet been able to gain much improvement using our methods.
A lower bound m/k3 + O(m1/3) is given by considering complete 3-
uniform hypergraphs.

In general, judicious partitioning problems are much harder for hy-
pergraphs than for graphs, and for k > 3 very little is known. Thus
even partial results are of interest: for instance it would be of great in-
terest to determine whether every r-uniform hypergraph with m edges
has a partition into k sets, each of which contains

m

kr
+ o(m)

edges. The best bound known so far is proved in [5], where it is shown
that every r-uniform hypergraph with m edges has a partition into k
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sets, each of which contains at most

r2

8 log r

m

kr
+ crm

2r/(2r+1)

edges.

5. Addendum

Some time after submitting this paper, we discovered that some pre-
vious work had been done on this problem. T. D. Porter [13] showed
that every graph with m ≥ 1 edges has a bipartition in which each class
contains at most m/4+

√
m/8 edges. More recently, Porter [14] showed

that if k is a power of 2 then every graph G with m ≥ 1 edges has a
partition into k sets V1, . . . , Vk, each containing at most m/k2 +

√
m/k

edges, such that
∑k

i=1 e(Vi) ≤ m/k. Porter [15] has also shown that,
for k ≥ 2, every graph with m ≥ 1 edges has a partition into k sets
with at most m/k2 +k

√
m edges contained in each set. Porter and Bin

Yang [16] show that every graph with m ≥ 1 edges has a bipartition

in which each class contains at most m/4 +
√
m/18 edges, and for k

a power of 2 a partition into k sets, each of which contains at most
m/k2 +

√
2m/k edges.

Stronger results follow immediately from our Theorems 1 and 2. In
particular, note that for k a power of 2, we can find a partition of a
graph G into k sets, each of which satisfies (19), by repeated application
of Theorem 1: given a partition into 2s sets, we bipartition each set
using Theorem 1. A straightforward calculation shows each set in a
partition obtained in this way satisfies (19); furthermore, it follows
from (3) that there are at most m/k edges with both ends in the same
vertex class.

Finally, we note that Shahrokhi and Szekely [17] showed that the
problem of finding a judicious bipartition is NP-hard.
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