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Abstract. Reed and Seymour [1998] asked whether every graph has a partition into induced
connected non-empty bipartite subgraphs such that the quotient graph is chordal. If true, this
would have significant ramifications for Hadwiger’s Conjecture. We prove that the answer is
‘no’. In fact, we show that the answer is still ‘no’ for several relaxations of the question.

1 Introduction

Hadwiger’s Conjecture [9] says that for all t ⩾ 0 every graph with no Kt+1-minor is t-colourable.
This conjecture is easy for t ⩽ 3, is equivalent to the 4-colour theorem for t = 4, is true for
t = 5 [18], and is open for t ⩾ 6. The best known upper bound on the chromatic number is
O(t

√
log t), independently due to Kostochka [14, 15] and Thomason [21, 22]. This conjecture

is widely considered to be one of the most important open problems in graph theory; see [20]
for a survey.

Throughout this paper, we employ standard graph-theoretic definitions (see [4]), with one
important exception: we say that a graph G contains a graph H if H is isomorphic to an
induced subgraph of G.

Motivated by Hadwiger’s Conjecture, Reed and Seymour [17] introduced the following defini-
tions1. A vertex-partition, or simply partition, of a graph G is a set P of non-empty induced
subgraphs of G such that each vertex of G is in exactly one element of P. Each element of P

is called a part. The quotient of P is the graph, denoted by G/P, with vertex set P where
distinct parts P,Q ∈ P are adjacent in G/P if and only if some vertex in P is adjacent in
G to some vertex in Q. A partition of G is connected if each part is connected. We (almost)
only consider connected partitions. In this case, the quotient is the minor of G obtained by
contracting each part into a single vertex. A partition is chordal if it is connected and the
quotient is chordal (that is, contains no induced cycle of length at least four). Every graph
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has a chordal partition (with a 1-vertex quotient). Chordal partitions are a useful tool when
studying graphs G with no Kt+1 minor. Then for every connected partition P of G, the quo-
tient G/P contains no Kt+1, so if in addition P is chordal, then G/P is t-colourable (since
chordal graphs are perfect). Reed and Seymour [17] asked the following question (repeated in
[13, 20]).

Question 1. Does every graph have a chordal partition such that each part is bipartite?

If true, this would imply that every graph with no Kt+1-minor is 2t-colourable, by taking the
product of the t-colouring of the quotient with the 2-colouring of each part. This would be
a major breakthrough for Hadwiger’s Conjecture. The purpose of this note is to answer Reed
and Seymour’s question in the negative. In fact, we show the following stronger result.

Theorem 2. For every integer k ⩾ 1 there is a graph G, such that for every chordal partition
P of G, some part of P contains Kk . Moreover, for every integer t ⩾ 4 there is a graph G with
tree-width at most t − 1 (and thus with no Kt+1-minor) such that for every chordal partition
P of G, some part of P contains a complete graph on at least ⌊(3t− 11)1/3⌋ vertices.

Theorem 2 says that it is not possible to find a chordal partition in which each part has
bounded chromatic number. What if we work with a larger class of partitions? The following
natural class arises. A partition of a graph is perfect if it is connected and the quotient graph
is perfect. If P is a perfect partition of a Kt+1-minor free graph G, then G/P contains no
Kt+1 and is therefore t-colourable. So if every part of P has small chromatic number, then we
can control the chromatic number of G. We are led to the following relaxation of Question 1:
does every graph have a perfect partition in which every part has bounded chromatic number?
Unfortunately, this is not the case.

Theorem 3. For every integer k ⩾ 1 there is a graph G, such that for every perfect partition P

of G, some part of P contains Kk . Moreover, for every integer t ⩾ 6 there is a graph G with
tree-width at most t − 1 (and thus with no Kt+1-minor), such that for every perfect partition
P of G, some part of P contains a complete graph on at least ⌊(32 t− 8)1/3⌋ vertices.

Theorems 2 and 3 say that it is hopeless to improve on the O(t
√
log t) bound for the chromatic

number of Kt-minor-free graphs using chordal or perfect partitions directly. Indeed, the best
possible upper bound on the chromatic number using the above approach would be O(t4/3)

(since the quotient is t-colourable, and the best possible upper bound on the chromatic number
of the parts would be O(t1/3).)

What about using an even larger class of partitions? Chordal graphs contain no 4-cycle, and
perfect graphs contain no 5-cycle. These are the only properties of chordal and perfect graphs
used in the proofs of Theorems 2 and 3. Thus the following result is a qualitative generalisation
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of both Theorems 2 and 3. It says that there is no hereditary class of graphs for which the
above colouring strategy works.

Theorem 4. For every integer k ⩾ 1 and graph H , there is a graph G, such that for every
connected partition P of G, either some part of P contains Kk or the quotient G/P contains
H .

Before presenting the proofs, we mention some applications of chordal partitions and related
topics. Chordal partitions have proven to be a useful tool in the study of the following topics
for Kt+1-minor-free graphs: cops and robbers pursuit games [1], fractional colouring [13, 17],
generalised colouring numbers [11], and defective and clustered colouring [12]. These papers
show that every graph with no Kt+1 minor has a chordal partition in which each part has
desirable properties. For example, in [17], each part has a stable set on at least half the vertices,
and in [12], each part has maximum degree O(t) and is 2-colourable with monochromatic
components of size O(t).

Several papers [7, 16, 23] have shown that graphs with tree-width k have chordal partitions in
which the quotient is a tree, and each part induces a subgraph with tree-width k− 1, amongst
other properties. Such partitions have been used for queue and track layouts [7] and non-
repetitive graph colouring [16]. A tree partition is a (not necessarily connected) partition of a
graph whose quotient is a tree; these have also been widely studied [2, 3, 5, 6, 8, 10, 19, 24].
Here the goal is to have few vertices in each part of the partition. For example, a referee of
[5] proved that every graph with tree-width k and maximum degree ∆ has a tree partition with
O(k∆) vertices in each part.

2 Chordal Partitions: Proof of Theorem 2

Let P = {P1, . . . , Pm} be a partition of a graph G, and let X be an induced subgraph of G.
Then the restriction of P to X is the partition of X defined by

P⟨X⟩ := {G[V (Pi) ∩ V (X)] : i ∈ {1, . . . ,m}, V (Pi) ∩ V (X) ̸= ∅}.

Note that the restriction of a connected partition to a subgraph need not be connected. The
following lemma gives a scenario where the restriction is connected.

Lemma 5. Let X be an induced subgraph of a graph G, such that the neighbourhood of each
component of G−V (X) is a clique (in X). Let P be a connected partition of G with quotient
G/P. Then P⟨X⟩ is a connected partition of X , and the quotient of P⟨X⟩ is the subgraph of
G/P induced by those parts that intersect X .

Proof. We first prove that for every connected subgraph G′ of G, if V (G′) ∩ V (X) ̸= ∅, then
G′[V (G′) ∩ V (X)] is connected. Consider non-empty sets A,B that partition V (G′) ∩ V (X).
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Let P be a shortest path from A to B in G′. Then no internal vertex of P is in V (X). If P
has an internal vertex, then all its interior belongs to one component C of G−V (X), implying
the endpoints of P are in the neighbourhood of C and are therefore adjacent, a contradiction.
Thus P has no interior, and hence G′[V (G′) ∩ V (X)] is connected.

Apply this observation with each part of P as G′. It follows that P⟨X⟩ is a connected partition
of X . Moreover, if adjacent parts P and Q of P both intersect X , then by the above observation
with G′ = G[V (P ) ∪ V (Q)], there is an edge between V (P ) ∩ V (X) and V (Q) ∩ V (X).
Conversely, if there is an edge between V (P ) ∩ V (X) and V (Q) ∩ V (X) for some parts P

and Q of P, then PQ is an edge of G/P. Thus the quotient of P⟨X⟩ is the subgraph of G/P

induced by those parts that intersect X .

The next lemma with r = 1 implies Theorem 2. To obtain the second part of Theorem 2 apply
Lemma 6 with k = ⌊(3t− 11)1/3⌋, in which case s(k, 1) ⩽ t.

Lemma 6. For all integers k ⩾ 1 and r ⩾ 1, if

s(k, r) := 1
3(k

3 − k) + (r − 1)k + 4,

then there is a graph G(k, r) with tree-width at most s(k, r)− 1 (and thus with no Ks(k,r)+1-
minor), such that for every chordal partition P of G, either:
(1) G contains a Kkr subgraph intersecting each of r distinct parts of P in k vertices, or
(2) some part of P contains Kk+1.

Proof. Note that s(k, r) is the upper bound on the size of the bags in the tree-decomposition
of G(k, r) that we construct. We proceed by induction on k and then r. When k = r = 1, the
graph with one vertex satisfies (1) for every chordal partition and has a tree-decomposition
with one bag of size 1 < s(1, 1).

First we prove that the (k, 1) and (k, r) cases imply the (k, r + 1) case. Let A := G(k, 1) and
B := G(k, r). Let G be obtained from A as follows. For each k-clique C in A, add a copy BC

of B (disjoint from the current graph), where C is complete to BC . We claim that G has the
claimed properties of G(k, r + 1).

By assumption, in every chordal partition of A some part contains Kk , A has a tree-
decomposition with bags of size at most s(k, 1), and for each k-clique C in A, there is a
tree-decomposition of BC with bags of size at most s(k, r). For every tree-decomposition
of a graph and for each clique C , there is a bag containing C . Add an edge between
the node corresponding to a bag containing C in the tree-decomposition of A and any
node of the tree in the tree-decomposition of BC , and add C to every bag of the tree-
decomposition of BC . We obtain a tree-decomposition of G with bags of size at most
max{s(k, 1), s(k, r) + k} = s(k, r) + k = s(k, r + 1), as desired.
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Kk−1 Kk−1 Kk−1 Kk−1 Kk−1

Ci ⊆ Pi Cj ⊆ Pj

x ∈ Q y ∈ R

A = G(k − 1, k + 1)

C

BC = Kk+1

Figure 1: Construction of G(k, 1) in Lemma 6.

Consider a chordal partition P of G. By Lemma 5, P⟨A⟩ is a connected partition of A, and
the quotient of P⟨A⟩ equals the subgraph of G/P induced by those parts that intersect A.
Since G/P is chordal, the quotient of P⟨A⟩ is chordal. Since A = G(k, 1), by induction, P⟨A⟩
satisfies (1) with r = 1 or (2). If outcome (2) holds, then some part of P contains Kk+1 and
outcome (2) holds for G.

Now assume that P⟨A⟩ satisfies outcome (1) with r = 1; that is, some part P of P contains
some k-clique C of A. If some vertex of BC is in P , then P contains Kk+1 and outcome (2)
holds for G. Now assume that no vertex of BC is in P . Since each part of P is connected,
the parts of P that intersect BC do not intersect G − V (BC). Thus, P⟨BC⟩ is a connected
partition of BC , and the quotient of P⟨BC⟩ equals the subgraph of G/P induced by those
parts that intersect BC , and is therefore chordal. Since B = G(k, r), by induction, P⟨BC⟩
satisfies (1) or (2). If outcome (2) holds, then the same outcome holds for G. Now assume that
outcome (1) holds for BC . Thus BC contains a Kkr subgraph intersecting each of r distinct
parts of P in k vertices. None of these parts are P . Since C is complete to BC , G contains a
Kk(r+1) subgraph intersecting each of r + 1 distinct parts of P in k vertices, and outcome (1)
holds for G. Hence G has the claimed properties of G(k, r + 1).

It remains to prove the (k, 1) case for k ⩾ 2. By induction, we may assume the (k − 1, k + 1)

case. Let A := G(k−1, k+1). As illustrated in Figure 1, let G be obtained from A as follows:
for each set C = {C1, . . . , Ck+1} of pairwise-disjoint (k−1)-cliques in A, whose union induces
K(k−1)(k+1), add a Kk+1 subgraph BC (disjoint from the current graph), whose i-th vertex is
adjacent to every vertex in Ci. We claim that G has the claimed properties of G(k, 1).

By assumption, A has a tree-decomposition with bags of size at most s(k−1, k+1). For each set
C = {C1, . . . , Ck+1} of pairwise-disjoint (k−1)-cliques in A, whose union induces K(k−1)(k+1),
choose a node x corresponding to a bag of the tree-decomposition of A containing C1 ∪ · · · ∪
Ck+1, and add a new node adjacent to x with corresponding bag V (BC)∪C1∪· · ·∪Ck+1. We
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obtain a tree-decomposition of G with bags of size at most max{s(k − 1, k + 1), (k + 1)k} =

s(k − 1, k + 1) = s(k, 1), as desired.

Consider a chordal partition P of G. By Lemma 5, P⟨A⟩ is a connected partition of A and
the quotient of P⟨A⟩ equals the subgraph of G/P induced by those parts that intersect A,
and is therefore chordal. Since A = G(k − 1, k + 1), by induction, P⟨A⟩ satisfies (1) or (2).
If outcome (2) holds for P⟨A⟩, then some part of P contains Kk and outcome (1) holds for G

(with r = 1). Now assume that outcome (1) holds for P⟨A⟩. Thus A contains a K(k−1)(k+1)

subgraph intersecting each of k + 1 distinct parts P1, . . . , Pk+1 of P in k − 1 vertices. Let Ci

be the corresponding (k−1)-clique in Pi. Let C := {C1, . . . , Ck+1} and Ĉ := C1∪· · ·∪Ck+1.

If for some i ∈ {1, . . . , k + 1}, the neighbour of Ci in BC is in Pi, then Pi contains Kk and
outcome (1) holds for G. Now assume that for each i ∈ {1, . . . , k + 1}, the neighbour of Ci in
BC is not in Pi. Suppose that some vertex x in BC is in Pi for some i ∈ {1, . . . , k + 1}. Then
since Pi is connected, there is a path in G between Ci and x avoiding the neighbourhood of
Ci in BC. Every such path intersects Ĉ \ Ci, but none of these vertices are in Pi. Thus, no
vertex in BC is in P1 ∪ · · · ∪ Pk+1. If BC is contained in one part, then outcome (2) holds.
Now assume that there are vertices x and y of BC in distinct parts Q and R of P. Then
x is adjacent to every vertex in Ci and y is adjacent to every vertex in Cj , for some distinct
i, j ∈ {1, . . . , k + 1}. Observe that (Q,R, Pj , Pi) is a 4-cycle in G/P. Moreover, there is
no QPj edge in G/P because ( Ĉ \ Cj) ∪ {y} separates x ∈ Q from Cj ⊆ Pj , and none of
these vertices are in Q ∪ Pj . Similarly, there is no RPi edge in G/P. Hence (Q,R, Pj , Pi)

is an induced 4-cycle in G/P, which contradicts the assumption that P is a chordal partition.
Therefore G has the claimed properties of G(k, 1).

3 Perfect Partitions: Proof of Theorem 3

The following lemma with r = 1 implies Theorem 3. To obtain the second part of Theorem 3
apply Lemma 6 with k = ⌊(32 t− 8)1/3⌋, in which case t(k, 1) ⩽ t. The proof is very similar to
Lemma 6 except that we force C5 in the quotient instead of C4.

Lemma 7. For all integers k ⩾ 1 and r ⩾ 1, if

t(k, r) := 2
3(k

3 − k) + (r − 1)k + 6,

then there is a graph G(k, r) with tree-width at most t(k, r)− 1 (and thus with no Kt(k,r)+1-
minor), such that for every perfect partition P of G, either:
(1) G contains a Kkr subgraph intersecting each of r distinct parts of P in k vertices, or
(2) some part of P contains Kk+1.

Proof. Note that t(k, r) is the upper bound on the size of the bags in the tree-decomposition
of G(k, r) that we construct. We proceed by induction on k and then r. For the base case,
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Kk−1 Kk−1 Kk−1 Kk−1 Kk−1 Kk−1 Kk−1 Kk−1 Kk−1

Ci ⊆ Pi Cj ⊆ Pj

x ∈ Q y ∈ R

A = G(k − 1, k + 1)

C

Kk+1 Kk+1

BC

v ∈ P

Figure 2: Construction of G(k, 1) in Lemma 7.

the graph with one vertex satisfies (1) for k = r = 1 and has a tree-decomposition with one
bag of size 1 < t(1, 1). The proof that the (k, 1) and (k, r) cases imply the (k, r + 1) case is
identical to the analogous step in the proof in Lemma 6, so we omit it.

It remains to prove the (k, 1) case for k ⩾ 2. By induction, we may assume the (k− 1, 2k+1)

case. Let A := G(k−1, 2k+1). Let B be the graph consisting of two copies of Kk+1 with one
vertex in common. Note that |V (B)| = 2k + 1. As illustrated in Figure 2, let G be obtained
from A as follows: for each set C = {C1, . . . , C2k+1} of pairwise-disjoint (k − 1)-cliques in
A, whose union induces K(k−1)(2k+1), add a subgraph BC isomorphic to B (disjoint from the
current graph), whose i-th vertex is adjacent to every vertex in Ci. We claim that G has the
claimed properties of G(k, 1).

By assumption, A has a tree-decomposition with bags of size at most t(k − 1, 2k + 1). For
each set C = {C1, . . . , C2k+1} of pairwise-disjoint (k − 1)-cliques in A, whose union induces
K(k−1)(2k+1), choose a node x corresponding to a bag containing C1 ∪ · · · ∪ C2k+1 in the
tree-decomposition of A, and add a new node adjacent to x with corresponding bag V (BC) ∪
C1 ∪ · · · ∪ C2k+1. We obtain a tree-decomposition of G with bags of size at most max{t(k −
1, 2k + 1), (2k + 1)k} = t(k − 1, 2k + 1) = t(k, 1), as desired.

Consider a perfect partition P of G. By Lemma 5, P⟨A⟩ is a connected partition of A and the
quotient of P⟨A⟩ equals the subgraph of G/P induced by those parts that intersect A, and is
therefore perfect. Recall that A = G(k − 1, 2k + 1). If outcome (2) holds for P⟨A⟩, then some
part of P contains Kk and outcome (1) holds for G (with r = 1). Now assume that outcome (1)
holds for P⟨A⟩. Thus A contains a K(k−1)(2k+1) subgraph intersecting each of 2k + 1 distinct
parts P1, . . . , P2k+1 of P in k − 1 vertices. Let Ci be the corresponding (k − 1)-clique in Pi.
Let C := {C1, . . . , C2k+1} and Ĉ := C1 ∪ · · · ∪ C2k+1.

If for some i ∈ {1, . . . , 2k + 1}, the neighbour of Ci in BC is in Pi, then Pi contains a Kk
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subgraph and outcome (1) holds for G. Now assume that for each i ∈ {1, . . . , 2k + 1}, the
neighbour of Ci in BC is not in Pi. Suppose that some vertex x in BC is in Pi for some
i ∈ {1, . . . , k+1}. Then since Pi is connected, there is a path in G between Ci and x avoiding
the neighbourhood of Ci in BC. Every such path intersects Ĉ \ Ci, but none of these vertices
are in Pi. Thus, no vertex in BC is in P1 ∪ · · · ∪ P2k+1.

By construction, BC consists of two (k + 1)-cliques B1 and B2, intersecting in one vertex v.
Say v is in part P of P. If B1 ⊆ V (P ), then outcome (2) holds. Now assume that there is a
vertex x of B1 in some part Q distinct from P . Similarly, assume that there is a vertex y of B2 in
some part R distinct from P . Now, Q ̸= R, since Ĉ∪{v} separates x and y, and none of these
vertices are in Q∪R. By construction, x is adjacent to every vertex in Ci and y is adjacent to
every vertex in Cj , for some distinct i, j ∈ {1, . . . , 2k + 1}. Observe that (Q,P,R, Pj , Pi) is a
5-cycle in G/P. Moreover, there is no QPj edge in G/P because ( Ĉ \ Cj) ∪ {y} separates
x ∈ Q from Cj ⊆ Pj , and none of these vertices are in Q ∪ Pj . Similarly, there is no RPi

edge in G/P. There is no PPj edge in G/P because ( Ĉ \ Cj) ∪ {y} separates v ∈ P from
Cj ⊆ Pj , and none of these vertices are in P ∪ Pj . Similarly, there is no PPi edge in G/P.
Hence (Q,P,R, Pj , Pi) is an induced 5-cycle in G/P, which contradicts the assumption that
P is a perfect partition. Therefore G has the claimed properties of G(k, 1).

4 General Partitions: Proof of Theorem 4

To prove Theorem 4 we show the following stronger result, in which G only depends on |V (H)|.

Lemma 8. For all integers k, t, r ⩾ 1, there is a graph G = G(k, t, r), such that for every
connected partition P of G either:
(1) G contains a Kkr subgraph intersecting each of r distinct parts of P in k vertices, or
(2) G/P contains every t-vertex graph, or
(3) some part of P contains Kk+1.

Proof. We proceed by induction on k + t and then r. We first deal with two base cases. First
suppose that t = 1. Let G := G(k, 1, r) := K1. Then for every partition P of G, the quotient
G/P has at least one vertex, and (2) holds. Now assume that t ⩾ 2. Now suppose that k = 1.
Let G := G(1, t, r) := Kr . Then for every connected partition P of G, if some part of P

contains an edge, then (3) holds; otherwise each part is a single vertex, and (1) holds. Now
assume that k ⩾ 2.

The proof that the (k, t, 1) and (k, t, r) cases imply the (k, t, r + 1) case is identical to the
analogous step in the proof in Lemma 6, so we omit it.

It remains to prove the (k, t, 1) case for k ⩾ 2 and t ⩾ 2. By induction, we may assume the
(k, t− 1, 1) case and the (k − 1, t, r) case for all r. Let B := G(k, t− 1, 1) and n := |V (B)|.
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Let S1, . . . , S2n be the distinct subsets of V (B). Let A := G(k − 1, t, 2n). Let G be obtained
from A as follows: for each set C = {C1, . . . , C2n} of pairwise-disjoint (k − 1)-cliques in A,
whose union induces K(k−1)2n , add a copy BC of B (disjoint from the current graph), where
Ci is complete to Si

C for all i ∈ {1, . . . , 2n}, where we write Si
C for the subset of V (BC)

corresponding to Si. We claim that G has the claimed properties of G(k, t, 1).

Consider a connected partition P of G. By Lemma 5, P⟨A⟩ is a connected partition of A,
and the quotient of P⟨A⟩ equals the subgraph of G/P induced by those parts that intersect
A. Recall that A = G(k − 1, t, 2n). If P⟨A⟩ satisfies outcome (2), then the quotient of P⟨A⟩
contains every t-vertex graph and outcome (2) is satisfied for G. If outcome (3) holds for P⟨A⟩,
then some part of P contains Kk and outcome (1) holds for G (with r = 1). Now assume that
outcome (1) holds for P⟨A⟩. Thus A contains a K(k−1)2n subgraph intersecting each of 2n

distinct parts P1, . . . , P2n of P in k − 1 vertices. Let Ci be the corresponding (k − 1)-clique
in Pi. Let C := {C1, . . . , C2n}.

If for some i ∈ {1, . . . , 2n}, some neighbour of Ci in BC is in Pi, then Pi contains Kk and
outcome (1) holds for G. Now assume that for each i ∈ {1, . . . , 2n}, no neighbour of Ci in BC

is in Pi. Suppose that some vertex x in BC is in Pi for some i ∈ {1, . . . , 2n}. Then since Pi

is connected, G contains a path between Ci and x avoiding the neighbourhood of Ci in BC.
Every such path intersects C1 ∪ · · · ∪ Ci−1 ∪ Ci+1 ∪ · · · ∪ C2n , but none of these vertices are
in Pi. Thus, no vertex in BC is in P1 ∪ · · · ∪ P2n . Hence, no part of P contains vertices in
both BC and in the remainder of G. Therefore, P⟨BC⟩ is a connected partition of BC, and
the quotient of P⟨BC⟩ equals the subgraph of G/P induced by those parts that intersect BC.
Since B = G(k, t − 1, 1), by induction, P⟨BC⟩ satisfies (1), (2) or (3). If outcome (1) or (3)
holds for P⟨BC⟩, then the same outcome holds for G. Now assume that outcome (2) holds for
P⟨BC⟩.

We now show that outcome (2) holds for G. Let H be a t-vertex graph, let v be a vertex
of H , and let NH(v) = {w1, . . . , wd}. Since outcome (2) holds for P⟨BC⟩, the quotient of
P⟨BC⟩ contains H − v. Let Q1, . . . , Qd be the parts corresponding to w1, . . . , wd. Then
Si

C = V (Q1 ∪ · · · ∪ Qd) for some i ∈ {1, . . . , 2n}. In G/P, the vertex corresponding to Pi

is adjacent to Q1, . . . , Qd and to no other vertices corresponding to parts contained in BC.
Thus, including Pi, G/P contains H and outcome (2) holds for P. Hence G has the claimed
properties of G(k, t, 1).
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