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Abstract

For a graph G, the k-colouring graph of G has vertices corresponding to proper
k-colourings of G and edges between colourings that differ at a single vertex. The
graph supports the Glauber dynamics Markov chain for k-colourings, and has been
extensively studied from both extremal and probabilistic perspectives.

In this note, we show that for every graph G, there exists k such that G is
uniquely determined by its k-colouring graph, confirming two conjectures of As-
garli, Krehbiel, Levinson and Russell. We further show that no finite family of
generalised chromatic polynomials for G, which encode induced subgraph counts
of its colouring graphs, uniquely determine G.

1 Introduction

Let G be a graph on vertex set V(G) and edge set E(G). Throughout this paper, all
colourings are proper, and a k-colouring is a proper colouring using at most k colours
from a fixed palette, say [k] := {1, . . . , k}. The chromatic polynomial πG(k) counts the
number of k-colourings of G as a function of k. Chromatic polynomials were first
considered for planar maps by Birkhoff [2] in 1912, and then for arbitrary graphs by
Whitney [10] in 1932. Since then, they have been well-studied in the literature, with
considerable interest in ways in which they can be computed, their algebraic properties,
and generalisations (see [7] for a classical introduction).

A more detailed picture of the set of k-colourings of a graph G is given by the k-colouring
graph Ck(G): this has vertex set the k-colourings of G, and edges between pairs of k-
colourings that differ at precisely one vertex of G. Random walks on the k-colouring
graph give the Glauber dynamics Markov chain, which has been extensively studied
from the perspective of random sampling and approximate counting of k-colourings
(see for example [4, 5, 9]). The k-colouring graph has also been investigated in the

*Supported by EPSRC grant EP/X013642/1.
†Mathematical Institute, University of Oxford, United Kingdom ({hogan,scott,tamitegama,jane.tan}

@maths.ox.ac.uk).
‡All Souls College, University of Oxford.

1

mailto:hogan@maths.ox.ac.uk
mailto:scott@maths.ox.ac.uk
mailto:tamitegama@maths.ox.ac.uk
mailto:jane.tan@maths.ox.ac.uk


context of combinatorial reconfiguration (see, for example, the surveys in [6, Chapter
10] and [8]).

The chromatic polynomial πG(k) counts the number of vertices in Ck(G). Asgarli, Kre-
hbiel, Levinson and Russell [1] recently introduced a more general family of functions
by replacing vertex counts with counts of instances of a fixed arbitrary graph: for
graphs G and H, and k ∈ N, the generalised chromatic polynomial π

(H)
G (k) is the number

of subsets of V(Ck(G)) that induce a subgraph isomorphic to H as a function of k. Thus
π
(K1)
G (k) is the chromatic polynomial of G, and π

(K2)
G (k) counts the number of edges in

Ck(G) (see Figure 1 for an example of a structure that contributes to π
(C4)
P3

(4)).

1 2 3

1 4 3

3 2 3

3 4 3

Figure 1. An induced C4 in Ck(P3) for k ≥ 4.

For fixed graphs G and H, Asgarli et al. proved that π
(H)
G (k) is a polynomial in k

sufficiently large relative to the size of H. In Section 2, we strengthen this result to show
that π

(H)
G (k) is a polynomial without restriction.

Theorem 1. For any fixed graphs G and H, the function π
(H)
G (k) is a polynomial in k.

Asgarli et al. also discuss the extent to which a graph G is determined by the invari-
ants π

(H)
G . Letting G be the set of finite graphs, they conjecture that the collection

of polynomials {π
(H)
G (k)}H∈G , or equivalently the collection of all colouring graphs

{Ck(G)}k∈N, is a complete graph invariant.

Conjecture 2 (Conjecture 6.1 [1]). For any graph G, the collection {Ck(G)}k∈N uniquely
determines G.

They also make the stronger conjecture that finitely many colouring graphs suffice.

Conjecture 3 (Conjecture 6.2 [1]). There exists some function f : G → N such that for any
graph G, the collection {Ck(G)} f (G)

k=1 uniquely determines G.

In Section 3, we confirm both conjectures by proving a stronger result.

Theorem 4. Let G be a graph on n vertices. For any natural number k > 5n2, the colouring
graph Ck(G) uniquely determines G up to isomorphism.
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Since the collection of all colouring graphs {Ck(G)}k∈N holds the same information
as the collection of generalised chromatic polynomials {π

(H)
G (k)}H∈G , another natu-

ral direction to investigate is whether a finite subcollection of generalised chromatic
polynomials suffices to distinguish all non-isomorphic graphs. In Section 4 we give a
negative answer.

Theorem 5. No finite family of generalised chromatic polynomials is a complete graph invariant.

2 Polynomiality

Let π
(H)
G (k) denote the number of induced copies of H in Ck(G). We extend the stan-

dard proof of polynomiality for chromatic polynomials via partitions to generalised
chromatic polynomials.

Theorem 1. For any fixed graphs G and H, the function π
(H)
G (k) is a polynomial in k.

Proof. Let h = |H| and n = |G|. We will say that a partition P1 ∪ · · · ∪ Ps of V(G)× [h]
is valid if Pj ∩ (V(G)× {i}) is an independent set in G for each i ∈ [h] and each j. Fix an
ordering ≺ on the vertices of Ck(G). Any collection S = {c1 ≺ . . . ≺ ch} of k-colourings
of G defines a function c : V(G)× [h] → [k] by c(v, i) = ci(v) for each v ∈ V(G), i ∈ [h],
and c induces a valid partition Pc = {c−1(i) : i ∈ [k]} of V(G)× [h].

The graph induced by S in Ck(G) depends only on Pc, in the sense that if another
collection of h colourings S′ defines a partition Pc′ of V(G)× [h] then S and S′ induce
isomorphic subgraphs of Ck(G) if Pc = Pc′ . Each partition P of V(G)× [h] thus corre-
sponds to a fixed induced graph. Provided P is valid and consists of t non-empty parts,
we can colour its parts in (k)t different ways, where (k)t := k(k − 1) · · · (k − t + 1)
denotes the falling factorial. Thus, each such partition that yields an induced copy of
H contributes exactly (k)t induced copies of H to Ck(G). Writing N(H)

t for the number
of valid partitions with exactly t parts yielding an induced copy of H, the generalised
chromatic polynomial of H is given by the formula

π
(H)
G (k) =

n

∑
t=1

N(H)
t

(
k
t

)
t! =

n

∑
t=1

N(H)
t (k)t .

Since each summand is a polynomial and n is fixed, π
(H)
G is a polynomial as well.
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3 Complete invariance

We now prove that the collection of colouring graphs gives a complete graph invariant.
Let G be a graph on n vertices. A vertex c ∈ V(Ck(G)) is rainbow if it represents a
colouring of G using n distinct colours; that is, c(u) ̸= c(v) for any distinct u and v in
V(G). Our strategy for reconstructing G is to choose a Ck(G) with k large enough so
that most vertices of Ck(G) correspond to a rainbow colouring; we will then be able to
use the clique structure to reconstruct the graph.

Lemma 6. Let G be a graph on n vertices. If c1, c2, c3 are vertices of Ck(G) inducing a copy of
K3, then c1, c2, c3 differ as colourings at a single vertex of G.

Proof. Suppose that c1 and c2 differ at vertex u of G, while c2 and c3 differ at vertex
v with u ̸= v. Then c1 and c3 differ at both vertices u and v, so c1c3 is not an edge of
Ck(G), a contradiction.

It follows that vertices in any clique in Ck(G) correspond to colourings which differ
at a single vertex v of G. We say that such cliques are generated by v. For a colouring
c in Ck(G), let J (c) be the collection of maximal cliques containing c in Ck(G). When
k ≥ n + 3, J (c) consists of n cliques, each generated by a distinct vertex of G. Say that
c is typical if for each v ∈ G, the clique generated by v in J (c) is of size k − deg(v). We
note that every rainbow colouring is typical.

Lemma 7. Let G be a graph on n vertices and take any natural number k > 3n2. Then Ck(G)

uniquely determines the degree sequence of G. Moreover, more than half of all vertices in Ck(G)

are rainbow.

Proof. The number of k-colourings of G is at most kn, and there are (k
n) · n! ≥ kn(1 − n

k )
n

colourings of G using n colours. Since k > 3n2, the proportion of vertices in Ck(G) that
are rainbow is at least (1 − n

k )
n > 1/2. For each vertex c ∈ Ck(G), we consider the sizes

of maximal cliques containing c. The majority will be typical and therefore give the
same collection of sizes. From any such typical vertex c, we can then deduce the degree
sequence of G by subtracting the size of each maximal clique containing c from k.

Theorem 4. Let G be a graph on n vertices. For any natural number k > 5n2, the colouring
graph Ck(G) uniquely determines G up to isomorphism.

Proof. Consider a vertex c of Ck(G), and let Ju, Jv ∈ J (c) be two cliques generated by
distinct vertices u, v ∈ V(G) respectively. We will show that, by counting 4-cycles that
contain c and intersect Ju \ c and Jv \ c, we can determine whether u and v are adjacent
in G (see Figure 2).
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v1

v2

vn

..
.

Jv1 \ c0

Jv2 \ c0

Jvn \ c0

Ck(G) G

Figure 2. Detecting edges in G by counting 4-cycles containing c0 in Ck(G).

Claim. Let c0 be rainbow and Ju, Jv ∈ J (c0) be distinct. Write tuv for the number of 4-
cycles containing c0 with at least one vertex in each of Ju \ c0 and Jv \ c0, and du = deg(u),
dv = deg(v).

• If uv /∈ E(G) then tuv ≥ k2 − k(du + dv + 2).

• If uv ∈ E(G) then tuv ≤ k2 − k(du + dv + 2)− k + 2n2 + 3n.

Proof. Let c1 ∈ Ju \ c0 and c3 ∈ Jv \ c0. There is a 4-cycle (c0, c1, c2, c3) in Ck(G) precisely
when there is some colouring c2 that differs from c0 at u and v only, and satisfies
c2(v) = c1(v) and c2(u) = c3(u). An example of such a 4-cycle is given in Figure 1.

Suppose that uv /∈ E(G). Since c3(u) must be distinct from both c0(u) and the colours
of any neighbour of u in c0, there are k − du − 1 choices for c3. Similarly, there are
k − dv − 1 choices for c1, and hence the number of 4-cycles containing c0 and one vertex
from each of Ju and Jv is

k2 − k(du + dv + 2) + dudv + du + dv + 1 ≥ k2 − k(du + dv + 2).

Next suppose that uv ∈ E(G), and suppose first that we choose c3(u) to be a colour not
used by c0. Then there are (k − n) choices for c3, and since c2(v) must be distinct from
each of c0(v), c3(u) and the colours of each neighbour of v in c0, this leaves (k − dv − 2)
choices for c1 for a total of (k − n)(k − dv − 2) pairs (c1, c3). Similarly, if we choose c1

first, we count (k − n)(k − du − 2) colour pairs. Any colour pair in which both c1(v)
and c3(u) are selected from the set of k − n colours not used by c0 is counted twice
above, so the total number of colour pairs in which at least one of c1(v) and c3(u) is a
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colour not used by c0 is

(k − n)[(k − du − 2) + (k − dv − 2)− (k − n − 1)]

= k2 − k(du + dv + 3) + n(du + dv − n + 3)

≤ k2 − k(du + dv + 3) + n2 + 3n.

Since there are at most n2 ways to choose c1(v) and c3(u) from colours used by c0, we
have the desired bound on tuv. ■

We now build a candidate graph Gc from each vertex c of Ck(G) by considering pairs
of cliques Ju, Jv ∈ J (c) and adding the edge uv in E(Gc) whenever tuv ≥ k2 − k(k −
|Ju|+ k − |Jv|+ 2). When k > 5n2 we have 2n2 + 3n < k for all positive n, so when c
is rainbow, tuv ≥ k2 − k(du + dv + 2) if and only if uv /∈ E(G). Furthermore, when c
is rainbow, we have du = k − |Ju| for each u ∈ V(G). Substituting this term into our
formula for tuv, we see that our candidate graph Gc is isomorphic to G whenever c is
rainbow. Since Lemma 7 guarantees that the majority of vertices in Ck(G) are rainbow,
more than half of these candidates are isomorphic to G, and so G can be reconstructed
by majority vote.

4 Finite families of polynomials

We now work towards proving Theorem 5. First, we show that for any finite collection
F of connected graphs, the polynomials {π

(H)
G (k) : H ∈ F} cannot distinguish all

graphs. This is implied by the following result.

Lemma 8. For each natural number m, there is a pair of non-isomorphic graphs G, G′ such
that for every connected graph H with at most m edges, π

(H)
G = π

(H)
G′ .

Proof. Let m be given, and choose any natural number n > m + 1. Consider the graph
G0 obtained from the path v1, . . . , v3n by adding a new vertex v adjacent to vn−1 and vn,
and a new vertex v′ adjacent to vn and vn+1. Define G and G′ to be the subgraphs of G0

induced by {v, v1, . . . , v3n} and {v′, v1, . . . , v3n}, respectively (see Figure 3).

Fix any connected graph H with at most m edges, and some natural number k. We will
show that π

(H)
G (k) = π

(H)
G′ (k) for each k by finding a bijection f between induced copies

of H in Ck(G) and in Ck(G′). For each copy X of H in Ck(G), we will define f (X) in
terms of an intermediate map fX that transforms colourings of G into colourings of G′.

We first construct fX. For G∗ ∈ {G, G′}, let X∗ be an induced copy of H in Ck(G∗). Say
that a vertex v ∈ V(G∗) corresponds to an edge c1c2 of X∗ if it is the unique vertex
at which the colourings c1 and c2 differ. Then, define tX∗ to be the smallest positive
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Figure 3. A k-colouring c of G for n = 4, and the corresponding k-colouring fX(c) of G′.
In this example vn−tX = v2 and vn+tX = v6, so f recolours only vertices in the segment

between v2 and v6.

integer such that neither vn−tX∗ nor vn+tX∗ correspond to any edge of X∗. Such a value
tX∗ ∈ [n] exists because X∗ only has m < n − 1 edges.

Working in G, let X be an induced copy of H in Ck(G). Fix c ∈ V(X) and consider
colours modulo k, taking [k] as the set of representatives. We define fX(c) to colour
each vertex u of G′ by

( fX(c))(u) =


c(vn−tX) + c(vn+tX)− c(vn−i) if u = vn+i for i ∈ (−tX, tX),

c(vn−tX) + c(vn+tX)− c(v) if u = v′,

c(u) otherwise.

Figure 3 provides an example of a colouring c of G and a corresponding colouring fX(c)
of G′.

Next, let X′ be an induced copy of H in Ck(G′), and fix c′ ∈ V(X′). We similarly define
gX′(c′) to map colourings of G′ to colourings of G by

(gX′(c′))(u) =


c′(vn−tX′ ) + c′(vn+tX′ )− c′(vn−i) if u = vn+i for i ∈ (−tX′ , tX′),

c′(vn−tX′ ) + c′(vn+tX′ )− c′(v′) if u = v,

c′(u) otherwise.

Let f (X) be the subgraph of Ck(G′) induced by fX(V(X)), and let g(X′) be the subgraph
of Ck(G) induced by gX′(V(X′)).

For each c ∈ V(X), we observe that fX(c) is indeed a proper colouring of G′. We now
show that X and f (X) are isomorphic. Since H is connected and neither vn−tX nor
vn+tX correspond to an edge of X, the colours of vn−tX and vn+tX are constant across
all colourings in V(X). Hence, the value c(vn−tX) + c(vn+tX) is the same across each
colouring c in X. It is then straightforward to check that two colourings c1 and c2
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are adjacent in X if and only if fX(c1) and fX(c2) are adjacent in f (X). This implies
that tX = t f (X), and that f (X) is an induced copy of H in Ck(G′). Making symmetric
observations about gX′ , we now observe that g f (X) is the inverse of fX, and that therefore
f is also invertible with inverse g. That is, f is a bijection between induced copies of H
in Ck(G) and induced copies of H in Ck(G′), and the result follows.

We now extend this result to finite collections of disconnected graphs via a standard
argument.

Lemma 9. Let H be a graph with connected components R1, . . . , Rt. Then there is a finite
collection F of connected graphs such that {π

(F)
G : F ∈ F} uniquely determines π

(H)
G for every

graph G.

Proof. We proceed by induction on the number of connected components t of H, with
the base case being when H is any connected graph. Suppose H has at least t > 1
components R1, . . . , Rt.

The product π
(R1)
G (k) · · ·π

(Rt)
G (k) counts the number of tuples (ρ1, . . . , ρt) of injective

maps ρi : V(Ri) → V(Ck(G)) such that for each i ∈ [t], ρi(V(Ri)) induces a copy of Ri

in Ck(G). Fix such a tuple of injective maps and let F be the subgraph of Ck(G) induced
by the images of the maps, i.e. by the vertices in

⋃
i ρi(V(Ri)). Notice that for a fixed

graph H, there are finitely many possible isomorphism classes for the graph F (all
such graphs have at most |H| vertices), and that F is either isomorphic to H, or else
has fewer connected components than H. If we fix such an isomorphism class F, its
contribution to the count π

(R1)
G (k) · · ·π

(Rt)
G (k) is precisely π

(F)
G (k) times the number

N(F, H) of tuples (ρ1, . . . , ρt) which produce the vertices of the same copy of F in G.
Hence, letting F ∗ be the family of non-isomorphic graphs other than H that can be
obtained in this way, the following equality holds:

π
(H)
G = π

(R1)
G · · ·π

(Rt)
G − ∑

F∈F ∗
N(F, H) · π

(F)
G . (1)

By the induction hypothesis, each graph F ∈ F ∗ has a finite collection of connected
graphs FF (possibly FF = {F}) which determine π

(F)
G , and so the finite family F =⋃

F∈F ∗ FF of connected graphs determines π
(H)
G .

Remark 10. For connected H, the preceding proof can still be used to find a finite
family of graphs F (H), not containing H or depending on G, such that the collection
{π

(F)
G : F ∈ F (H)} determines π

(H)
G (when H is disconnected this comes directly

from the proof with formula given by Equation (1)). Namely, run the proof with a
disconnected graph H+ that contains H as one connected component. Then, isolating
the term π

(H)
G (which now occurs among the components and possibly in F ∗) in

Equation (1) gives the relevant formula.
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Theorem 5. No finite family of generalised chromatic polynomials is a complete graph invariant.

Proof. Let H1, . . . , Ht be a finite family of graphs. By Lemma 9, there is a finite col-
lection F of connected graphs such that for every graph G the generalised chromatic
polynomials π

(H1)
G , . . . , π

(Ht)
G only depend on {π

(F)
G : F ∈ F}. The theorem now follows

from choosing m in Lemma 8 to be larger than max{|E(F)| : F ∈ F}.

5 Open problems

Asgarli et al. conjectured that π
(K2)
G determines the chromatic polynomial π

(K1)
G , that is,

if π
(K2)
G1

= π
(K2)
G2

then π
(K1)
G1

= π
(K1)
G2

[1, Conjecture 5.2]. This remains unverified, but in
light of Remark 10 we ask a broader question.

Problem 11. For which graphs H does there exist an H′ such that π
(H′)
G determines π

(H)
G

for every graph G?

Define the graph product of G1, G2 to be the graph G1 □G2 on vertex set V(G1)× V(G2)

with adjacencies between vertices (a1, b1), (a2, b2) if and only if a1 = a2 and b1b2 ∈ E(G)

or b1 = b2 and a1a2 ∈ E(G). Notice that for any graph G on n vertices and any integer
k, the graph Ck(G) is obtained from the product Q(k, n) := Kk □ · · ·□Kk of n copies of
Kk by removing vertices corresponding to k-colourings of vertices of G which are not
proper in G. As such, every graph H whose polynomial π

(H)
G is nonzero for some graph

G must be an induced subgraph of Q(k, n) for some k and n. Problem 11 is therefore
only interesting when H is an induced subgraph of Q(k, n).

It is well known that the chromatic polynomial does not distinguish all graphs, and we
have shown in Theorem 5 that no finite family of generalised chromatic polynomials
suffices to distinguish all graphs. But what about typical graphs? Bollobás, Pebody
and Riordan [3, Conjecture 2] raised the intriging conjecture that almost every graph is
determined by its chromatic polynomial; they asked the same question for the Tutte
polynomial (which is a stronger invariant). In a similar vein, we ask a weakening
of their chromatic polynomial conjecture for finite families of generalised chromatic
polynomials. Let G(n, p) be the random graph on n vertices obtained by sampling each
edge independently with probability p.

Problem 12. Is there a finite set of graphs H1, . . . , Ht such that, for almost every
G ∈ G(n, 1

2), if π
(Hi)
G′ = π

(Hi)
G for all i then G′ ∼= G?
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