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Abstract. A colouring of a hypergraph’s vertices is polychromatic if every hyperedge contains at
least one vertex of each colour; the polychromatic number is the maximum number of colours in such a
colouring. Its dual, the cover-decomposition number, is the maximum number of disjoint hyperedge-
covers. In geometric hypergraphs, there is extensive work on lower-bounding these numbers in terms
of their trivial upper bounds (minimum hyperedge size and degree); our goal here is to broaden the
study beyond geometric settings. We obtain algorithms yielding near-tight bounds for three families
of hypergraphs: bounded hyperedge size, paths in trees, and bounded VC-dimension. This reveals
that discrepancy theory and iterated linear program relaxation are useful for cover-decomposition.
Finally, we discuss the generalization of cover-decomposition to sensor cover.
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1. Introduction. In a set system on vertex set V , a subsystem is a set cover if
each vertex of V appears in at least 1 set of the subsystem. Suppose that in the whole
system, each vertex appears in at least δ sets, for some large δ; does it follow that we
can partition the system into 2 subsystems, such that each subsystem is a set cover?

Many natural families of set systems admit a universal constant δ for which this
question has an affirmative answer. Such families are called cover-decomposable. But
the family of all set systems is not cover-decomposable, as the following example
shows. For any positive integer k, consider a set system which has 2k − 1 sets, and
where every k sets contain one mutually common vertex not contained by the other
k − 1 sets. This system satisfies the hypothesis of the question for δ = k. But every
set cover has ≥ k sets, and since there are only 2k − 1 sets in total, no partition into
two set covers is possible. This example above shows that some sort of restriction on
the family is necessary to ensure cover-decomposability.

One positive example of cover-decomposition arises if every set has size 2: such
hypergraphs are simply graphs. They are cover-decomposable with δ = 3: any graph
with minimum degree 3 can have its edges partitioned into two edge covers. More
generally, Gupta [20] showed (see also [1, 5]) that we can partition the edges of any
multigraph into ⌊ 3δ+1

4 ⌋ edge covers. This bound is tight, even for 3-vertex multi-
graphs. (In simple graphs the optimal bound [19] is δ − 1.)

Set systems in many geometric settings have been studied with respect to cover-
decomposability; many positive and negative examples are known and there is no
easy way to distinguish one from the other. In the affirmative case, as with Gupta’s
theorem, the next natural problem is to find for each t ≥ 2 the smallest δ(t) such
that when each vertex appears in at least δ(t) sets, a partition into t set covers is
possible. The goal of this paper is to extend the study of cover-decomposition beyond
geometric settings.
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1.1. Terminology and Notation. A set system or hypergraph H = (V, E)
consists of a ground set V of vertices, together with a collection E of hyperedges,
where each hyperedge E ∈ E is a subset of V . We will sometimes call hyperedges
just edges or sets. We permit E to contain multiple copies of the same hyperedge
(e.g. to allow us to define “duals” and “shrinking” later), and we also allow hyperedges
of cardinality 0 or 1. We only consider hypergraphs that are finite. Note, in some
geometric cases, infinite cover-decomposability problems can be reduced to finite ones.
We refer the reader to [34] including the distinction between plane- and total-cover-
decomposability. Additional work on the infinite version appears in [14].

To shrink a hyperedge E in a hypergraph means to replace it with some E′ ⊆ E.
This operation is useful in several places.

A polychromatic k-colouring of a hypergraph is a function from V to a set of
k colours so that for every edge, its image contains all colours. Equivalently, the
colour classes partition V into sets which each meet every edge, so-called vertex cov-
ers/transversals. The maximum number of colours in a polychromatic colouring of
H is called its polychromatic number, which we denote by p(H).

A cover k-decomposition of a hypergraph is a partition of E into k subfamilies
E =

⊎k

i=1{Ei} such that each
⋃

E∈Ei
E = V . In other words, each Ei must be a set

cover. The maximum k for which the hypergraph H admits a cover k-decomposition
is called its cover-decomposition number, which we denote by cd(H).

The dual H∗ of a hypergraph H is another hypergraph such that the vertex set
of H∗ corresponds to the edge set of H , and vice-versa, with incidences preserved.
Thus the vertex-edge incidence matrices for H and H∗ are transposes of one another.

E.g., the standard notation for the example in the introduction is
(

[2k−1]
k

)∗
. From the

definitions it is easy to see that the polychromatic and cover-decomposition numbers
are dual to one another,

cd(H) = p(H∗).

The degree of a vertex v in a hypergraph is the number of hyperedges containing
v; it is d-regular if all vertices have degree d. We denote the minimum degree by
δ, and the maximum degree by ∆. We denote the minimum size of any hyperedge
by r, and the maximum size of any hyperedge by R. Note that ∆(H) = R(H∗)
and δ(H) = r(H∗). It is trivial to see that p ≤ r in any hypergraph and dually that
cd ≤ δ. So the cover-decomposability question asks if there is a converse to this trivial
bound: if δ is large enough, does cd also grow? To write this concisely, for a family
F of hypergraphs, let its extremal cover-decomposition function cd(F , δ) be

cd(F , δ) := min{cd(H) | H ∈ F ; ∀v ∈ V (H) : degree(v) ≥ δ},

i.e. cd(F , δ) is the best possible lower bound for cd among hypergraphs in F with
min-degree ≥ δ. So to say that F is cover-decomposable means that cd(F , δ) > 1 for
some constant δ. We also dually define

p(F , r) := min{p(H) | H ∈ F ; ∀E ∈ E(H) : |E| ≥ r}.

In the rest of the paper we focus on computing the functions cd and p.

We sometimes write p for p(H) when H is clear from context, and likewise with p.
We write cd(δ) or p(r) when the family F is clear from context. For example, Gupta’s
theorem (together with the tight example) says that in graphs, cd(δ) = ⌊ 3δ+1

4 ⌋.
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1.2. Results. In Section 2 we generalize Gupta’s theorem to hypergraphs of
bounded edge size. Let Hyp(R) denote the family of hypergraphs with all edges of
size at most R.

Theorem 1. For all R, δ we have cd(Hyp(R), δ) ≥ δ/(lnR +O(ln lnR)).

Before proving Theorem 1, we give a simpler proof of a result that is weaker by
a constant factor. This proof uses the Lovász Local Lemma (LLL) and the Beck-
Fiala theorem [7]. The Beck-Fiala theorem says that every hypergraph’s discrepancy
(defined later) is less than 2∆. To get the strong version of Theorem 1 we employ
another discrepancy upper bound of 2

√

R ln(R∆), obtained using the LLL and Cher-
noff bounds (Proposition 12). Next we show that Theorem 1 is always tight up to a
constant factor, and that when R is sub-exponential in δ this constant factor tends
to 1.

Theorem 2.

(i) For all R ≥ 2, δ ≥ 1 we have cd(Hyp(R), δ) ≤ max{1, O(δ/ lnR)}.
(ii) For any sequence R, δ → ∞ with δ = ω(lnR) we have cd(Hyp(R), δ) ≤

(1 + o(1))δ/ ln(R).

Here (i) uses an explicit construction while (ii) uses the probabilistic method. By
plugging Theorem 1 into an approach of [1], one obtains a good bound on the cover-
decomposition number of sparse hypergraphs.

Corollary 3. Suppose for some fixed α, β that H = (V, E) satisfies, for all
V ′ ⊆ V and E ′ ⊆ E, that the number of incidences between V ′ and E ′ is at most

α|V ′|+ β|E ′|. Then cd(H) ≥ δ(H)−α

ln β+O(ln ln β) .

Note that duality yields a similar bound on the polychromatic number.

In Section 3 we consider the following family of hypergraphs: the ground set is
the edge set of an undirected tree, and each hyperedge must correspond to the edges
lying in some path in the tree. We show that such systems are cover-decomposable:

Theorem 4. For hypergraphs defined by edges of paths in trees, cd(δ) = Ω(δ).

To prove Theorem 4 we exploit iterated LP relaxation, using an extreme point struc-
ture theorem for paths in trees from [24]. The approach also generalizes to path-in-tree
systems where the ground set consists of the arcs or the nodes of the tree. We also
determine the extremal polychromatic number for such systems:

Theorem 5. For hypergraphs defined by edges of paths in trees, p(r) = ⌈r/2⌉.
This contrasts with a construction of Pach, Tardos and Tóth [32] (described in Section
4): if we also allow hyperedges consisting of sets of “siblings,” then p(r) = 1 for all r.

The VC-dimension is a prominent measure of set system complexity used fre-
quently in geometry: it is the maximum cardinality of any S ⊆ V such that {S ∩E |
E ∈ E} = 2S . It is natural to ask what role, if any, the VC-dimension plays in
cover-decomposability. In the most restricted case, we get:

Theorem 6. For the family of hypergraphs with VC-dimension 1, p(r) = ⌈r/2⌉
and cd(δ) = ⌈δ/2⌉.
By duality, the same holds for the family of hypergraphs whose duals have VC-
dimension 1. Roughly, these results hold because VC-dimension 1 implies a strong
structural property. Moreover, we observe that a dimension upper bound of 2 does
not yield cover-decomposability:

Theorem 7. For the family of hypergraphs {H | VC-dim(H),VC-dim(H∗) ≤ 2},
we have p(r) = 1 for all r and cd(δ) = 1 for all δ.

To prove this, we show that the construction of [32] has primal and dual VC-dimension
at most 2.
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In the last section, we discuss the generalization of cover-decomposition to cover-
scheduling. This is inspired by results from [18], where a proof of cd = Ω(δ) for
convex polygons in the plane is generalized to a scheduling setting while losing only
a constant factor. We do not know if Theorem 1 has an analogue within a constant
factor; we prove a weaker version with linear dependence on R.

All of our lower bounds on p and cd can be implemented as polynomial-time
algorithms. In the case of Theorem 1 this relies on the constructive LLL framework of
Moser-Tardos [28]. In the tree setting (Theorem 4) this relies on a linear programming
subroutine. Note: since we also have the trivial bounds p ≤ r and cd ≤ δ, these give
approximation algorithms for p and cd, e.g. Theorem 1 gives a (lnR + O(ln lnR))-
approximation for cd.

1.3. Related Work. One practical motive to study cover-decomposition is that
the hypergraph can model a collection of sensors [10, 18], with each E ∈ E correspond-
ing to a sensor which can monitor the subset E ⊂ V of vertices; then monitoring all of
V takes a set cover, and cd is the maximum “coverage” of V possible if each sensor can
only be turned on for a single time unit or monitor a single frequency. A motivation
from theory is that if cd(δ) = Ω(δ) holds for a family closed under vertex deletion,
then the size of a dual ǫ-net is bounded by O(1/ǫ) [31].

A hypergraph is said to be weakly k-colourable if we can k-colour its vertex set
so that no edge is monochromatic. Weak 2-colourability is also known as Property B,
and these notions coincide with the property p ≥ 2. However, weak k-colourability
does not imply p ≥ k in general. The discrepancy of a hypergraph is the minimum D
so that we can colour its vertices by ±1 so that the sum of the values within every edge
is between −D and D. This is related to Property B: if a hypergraph’s discrepancy
is strictly less than δ, then the same colouring establishes that it has Property B. We
will deal with discrepancy in the dual setting.

For a graph G = (V,E), the (closed) neighbourhood hypergraph N (H) is defined
to be a hypergraph on ground set V , with one hyperedge {v} ∪ {u | {u, v} ∈ E} for
each v ∈ V . Then p(N (G)) = cd(N (G)) equals the domatic number of G, i.e. the
maximum number of disjoint dominating sets. The paper of Feige, Halldórsson, Ko-
rtsarz & Srinivasan [16] obtains upper bounds for the domatic number and their
bounds are essentially the same as what we get by applying Theorem 1 to the special
case of neighbourhood hypergraphs; compared to our methods they use the LLL but
not discrepancy or iterated LP relaxation. They give a hardness-of-approximation
result which implies that Theorem 1 is tight with respect to the approximation fac-
tor, namely for all ǫ > 0, it is hard to approximate cd within a factor better than
(1 − ǫ) lnR, under reasonable complexity assumptions. A simpler, weaker hardness
result is that you cannot approximate cd of graphs better than 3/2, since it is NP-hard
to check if a cubic graph has 3 disjoint perfect matchings [21]. A generalization of
results in [16] to packing polymatroid bases was given in [12]; this implies a weak
version of Theorem 1 where the lnR term is replaced by ln |V |.

Given a plane graph, define a hypergraph whose vertices are the graph’s vertices,
and whose hyperedges are its faces. In [1] it was shown to satisfy the hypothesis of
Corollary 3 for α = β = 2. Their method, which we re-use in the proof of Corollary
3, gives p(δ) ≤ ⌊(3δ − 5)/4⌋ from Gupta’s theorem.

A notable progenitor in geometric literature on cover-decomposition is the follow-
ing question of Pach [29]. Take a convex set A ⊂ R

2. Let R2|Translates(A) denote
the family of hypergraphs where the ground set V is a finite subset of R2, and each hy-
peredge is the intersection of V with some translate of A. Pach asked if such systems
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are cover-decomposable, and this question is still open. A state-of-the-art partial an-
swer is due to Gibson & Varadarajan [18], who prove that p(R2|Translates(A), δ) =
Ω(δ) when A is an open convex polygon; prior work includes [30, 40, 33, 4, 36]. There
is an unpublished proof [26] that p(R2|Unit-Discs, 33) ≥ 2. On the other hand, unit
balls in R

3 or higher dimensions are not cover-decomposable [27, 32].
Pach, Tardos and Tóth [32] obtain several negative results by embedding a non-

cover-decomposable tree-based construction (used in Section 4) in geometric set-
tings. In this way they prove that the following families are not cover-decomposable:
R

2|Axis-Aligned-Rectangles; R2|Translates(A) when A is a quadrilateral that
is not convex; and R

2|Strips and its dual. In contrast to the latter result, it is
known that p(R2|Axis-Aligned-Strips, r) ≥ ⌈r/2⌉ [3]. Recently it was shown [23]
that R

3|Translates(R3
+) is cover-decomposable, giving cover-decomposability of

R
2|Homothets(T ) for any triangle T and a new proof (c.f. [22]) for R2|Bottomless-

Axis-Aligned-Rectangles; the former contrasts with the fact that R2|Discs is not
cover-decomposable [32].

For R
2|Halfspaces several results are known. Smorodinsky and Yuditsky [39]

proved cd(δ) = ⌈δ/2⌉ (improving upon [6]) and p(r) ≥ ⌈r/3⌉. They note the latter is
not tight, since Fulek [17] showed p(3) = 2.

Aside from the tree-based construction of [32], we mention two other indecom-
posable constructions. First, the Hales-Jewett theorem is used in [32] to show that
p(R2|Lines, r) = 1 for all r. Second, [35] gives the following indecomposable con-
struction, which is smaller than that of [32]. The ground set of the hypergraph is the
set of all strings on at most r− 1 B’s and at most r− 1 R’s. For every c in Zr

≥0 with
∑

i c[i] ≤ r − 1, there is a hyperedge {Rc[1],Rc[1]BRc[2], . . . ,Rc[1]BRc[2]B · · ·BRc[r]},
and another hyperedge obtained by swapping the roles of B and R. Then [35] shows
such hypergraphs have p = 1.

A recent paper of Chan et al. [11] centers around quasi-uniform distributions
over set covers, which are fractional packings of set covers. In contrast, cd deals with
integral packing of set covers. The inspiration in [11] is rooted in geometric settings,
but they arrive at general combinatorial results.

For a hypergraph H let MH be its 0-1 incidence matrix, with rows for edges
and columns for vertices. Then the following three properties are equivalent [38]: (i)
for every hypergraph obtained from H by deleting or duplicating vertices (columns),
p = r; (ii) the fractional vertex cover polytope {x | x ≥ 0,MHx ≥ 1} has the integer
decomposition property; (iii) the blocker of H is Mengerian. A special case of such
hypergraphs are balanced hypergraphs, where no submatrix of MH is the incidence
matrix of an odd cycle.

A generalization of polychromatic c-colouring to c-strong colouring is considered
in [8]: every hyperedge of size at least c must receive all c colours, and every smaller
hyperedge must receive no colour twice. This can be further generalized to requiring
an arbitrary lower bound f(S) on the number of colours for every set S; when f is the
maximum of two supermodular functions this is the classical supermodular colouring
problem solved originally by Schrijver [37].

2. Hypergraphs of Bounded Edge Size. To get good upper bounds on
cd(Hyp(R), δ), we will use the Lovász Local Lemma (LLL):

Lemma 8 (LLL, [15]). Consider a collection of “bad” events such that each one
has probability at most p, and such that each bad event is independent of the other bad
events except at most D of them. (We call D the dependence degree.) If p(D+1)e ≤ 1
then with positive probability, no bad events occur.
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Our first tool extends a standard argument about Property B [2, Theorem 5.2.1].
Proposition 9. cd(Hyp(R), δ) ≥ ⌊δ/ ln(eRδ2)⌋.
Proof. Given any hypergraphH = (V, E) where every edge has size at most R and

such that each v ∈ V is covered at least δ times, we must show for t = ⌊δ/ ln(eRδ2)⌋
that cd(H) ≥ t, i.e. that E can be decomposed into t disjoint set covers. It will
be helpful here and later to make the degree of every vertex exactly δ, since this
bounds the dependence degree. (A similar observation was made by Mani-Levitska
and Pach [26] in the setting of cover-decomposing discs.) This is without loss of
generality: otherwise whenever deg(v) > δ shrink some E ∋ v to E\{v} until deg(v)
drops to δ; then observe that undoing shrinking preserves the property of being a set
cover.

Consider the following randomized experiment: for each hyperedge E ∈ E , assign
a random colour between 1 and t to E. If we can show that with positive probability,
every vertex is incident with a hyperedge of each colour, then we will be done.

For each vertex v define the bad event Ev to be the event that v is not incident
with a hyperedge of each colour. The probability of Ev is at most t(1 − 1

t
)δ, by

using a union bound. The event Ev only depends on the colours of the hyperedges
containing v; therefore the events Ev and Ev′ are independent unless v, v′ are in a
common hyperedge. In particular the dependence degree is at most (R − 1)δ < Rδ,
since each edge containing v contains at most R− 1 other vertices. It follows by LLL
that if

Rδt(1− 1
t
)δ ≤ 1/e,

then with positive probability, no bad events happen and we are done. We can verify
that t = δ/ ln(eRδ2) satisfies this bound.

We will next show that the bound can be raised to Ω(δ/ lnR). Intuitively, our
strategy is the following. The lower bound on cd given by Proposition 9, δ/ ln(Rδ), is
already Ω(δ/ lnR) in the special case that δ ≤ RO(1). For hypergraphs where δ ≫ R
we will show that we can partition E into m parts E =

⊎m

i=1 Ei so that δ(V, Ei) is at
least a constant fraction of δ/m, and such that δ/m is polynomial in R. Thus by
Proposition 9 we can extract Ω((δ/m)/ lnR) set covers from each (V, Ei), and taken
all together we obtain Ω(δ/ lnR) set covers.

In fact, it will be enough to consider splitting E into two parts at a time, recur-
sively. Then ensuring δ(V, Ei) & δ/2 (i = 1, 2) amounts to a dual discrepancy-theoretic
problem: we must 2-colour the hyperedges by ±1 so that for each vertex, the sum
of the incident hyperedges’ colours is in [−D,D], with the discrepancy D as small as
possible. To get a short proof of a weaker version of Theorem 1, we use a theorem of
Beck and Fiala [7]. Later, in Section 3, we will extend their approach to trees.

Theorem 10 (Beck & Fiala [7], stated in the dual). In a δ-regular hypergraph
H = (V, E) with all edges of size at most R, we can partition the edge set into E =
E1 ⊎ E2 such that δ(V, Ei) ≥ δ/2−R for each i ∈ {1, 2}.

Here is how the Beck-Fiala Theorem gives a near-optimal bound on cd.
Proposition 11. cd(Hyp(R), δ) ≥ Ω(δ/ lnR).
Proof. If δ < 4R this already follows from Proposition 9. Otherwise apply

Theorem 10 to the initial hypergraph, and then use shrinking to make both the
resulting (V, Ei)’s into regular hypergraphs. Iterate this process; stop splitting each
hypergraph once its degree falls in the range [R, 4R), which is possible since δ ≥ 4R ⇒
δ/2−R ≥ R. Let M be the number of hypergraphs at the end.

Observe that in applying the splitting-and-shrinking operation to some (V, E)
to get (V, E1) and (V, E2), the sum of the degrees of (V, E1) and (V, E2) is at least
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the degree of (V, E), minus 2R “waste”. It follows that the total waste is at most
2R(M − 1), and we have that 4RM + 2R(M − 1) ≥ δ. Consequently M ≥ δ/6R. As
sketched earlier, applying Proposition 9 to the individual hypergraphs, and combining
these vertex covers, shows that cd ≥ M⌊R/ ln(eR3)⌋ which gives the claimed bound.

Now we get to the better bound with the correct multiplicative constant. We will
need the following proposition, which when stated in the dual setting, says that the
discrepancy of a hypergraph is at most 2

√

R ln(R∆).
Proposition 12. In a hypergraph H = (V, E) with maximum degree ∆ and

maximum edge size R, we can partition the edge set into E = E1 ⊎ E2 such that for
every vertex v, the degree of v in each Ei is at least degreeH(v)/2 −

√

∆ ln(R∆),
assuming R∆ > 1.

Proof. Let dv be short for degreeH(v)/2. Independently assign each edge to E1
or E2 uniformly at random. For a λ ≥ 0 to be fixed later, for each vertex, let the
event Ev be that the degree of v is less than degreeH(v)/2 − λ in some Ei. Chernoff
bounds [2, Corollary A.1.2] imply that Ev has probability at most 2 exp(−2λ2/dv) ≤
2 exp(−2λ2/∆).

If with positive probability no bad events happen, then we are done. As in the
proof of Proposition 9, the dependence degree is strictly less than R∆. Therefore
the LLL is applicable provided that 2 exp(−2λ2/∆)R∆ ≤ 1/e, which is satisfied by
λ =

√

∆ ln(2eR∆)/2. This gives the desired result under the condition that R∆ ≥ 2e.
To finish the proof, one must check the cases R = 1 < ∆, ∆ = 1 < R, and ∆ = R = 2,
which are straightforward.

Now we get to the main proof.
Proof of Theorem 1. We want to show that for all hypergraphs with minimum

degree δ and maximum hyperedge size R, that p ≥ δ/(lnR + O(ln lnR)). Due to
the crude bound in Proposition 11, we may assume that R is larger than any chosen
fixed constant. Moreover, Proposition 9 gives us the desired bound when δ is at most
polylogarithmic in R, so we assume δ ≥ lnK R for a positive constant K to be fixed
later. By shrinking, we assume the hypergraph is δ-regular.

Let d0 = δ and di+1 = di/2 −
√

di ln(Rdi). We mimic the split-and-shrink
proof of Proposition 11, using Proposition 12 for the splitting. After i rounds, all 2i

hypergraphs are regular with degree at least di. We stop splitting after T rounds,
where T will be fixed later to make dT and δ/2T polylogarithmic in R. Using the
evident bound di ≤ δ/2i, the total degree loss due to splitting is at most

δ − 2TdT =
T−1
∑

i=0

2i(di − 2di+1) =
T−1
∑

i=0

2i2
√

di lnRdi

≤
T−1
∑

i=0

2i2
√

(δ/2i) ln(Rδ/2i) = 2
√
δ

T−1
∑

i=0

√
2
i√

ln(Rδ/2i). (2.1)

In this series,
√
2
i
is increasing in i, and

√

ln(Rδ/2i) decreases with i but not too
quickly; the ratio between the ith and (i + 1)th terms is

√

ln(Rδ/2i)/
√

ln(Rδ/2i+1) =
√

1 + ln 2/ ln(Rδ/2i+1) ≤
√

1 + lnR 2 < 1.3

where the first inequality uses δ/2i+1 ≥ 1 and the second uses R ≥ 3. Hence the
sequence in (2.1) grows at least geometrically with ratio

√
2/1.3 and its sum is within

a constant factor of the final i = T − 1 term, using the geometric series sum formula.
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We deduce δ − 2TdT = O(
√

δ2T ln(Rδ/2T )). Pick K = 3, and pick T such that
δ/2T is between ln3 R and ln3 R/2, then we have

dT ≥ δ/2T
(

1−O
(

√

2T δ−1 ln(Rδ/2T )
)

)

= δ/2T (1−O(ln−1(R))).

Consequently with Proposition 9 we see that

cd ≥ 2TdT /(lnR+O(ln lnR)) ≥ δ(1−O(ln−1(R)))/(lnR+O(ln lnR))

which gives the claimed bound.

2.1. Sparse Hypergraphs: Proof of Corollary 3. We re-use the following
fact, a consequence of Hall’s theorem, that was used in [1]; see also [25, Thm. 2.4.2].

Fact 13. A hypergraph has at most α|V ′|+β|E ′| incidences between each V ′ ⊆ V
and E ′ ⊆ E, if and only if the following assignment problem has a valid solution: for
every e and every v ∈ e, we need to assign the incidence (v, e) to either v or e, and the
number of total incidences assigned to each vertex (resp. edge) is at most α (resp. β).

To prove Corollary 3, we apply the fact, and then use shrinking to remove the
incidences assigned to vertices. We retain minimum degree δ−α and maximum edge
size β. Finally, the corollary follows from Theorem 1.

2.2. Lower Bounds. Now we show that the bounds obtained previously are
tight.

Proof of Theorem 2(i). We want to show that for some constant C, all R ≥ 2, and
all δ ≥ 1, we have cd(Hyp(R), δ) ≤ max{1, Cδ/ lnR}. Since cd(Hyp(R), δ) is non-
increasing in R, we may reduce R by a constant factor to assume that R =

(

2k−2
k−1

)

for
some integer k ≥ 2. Note this gives k = Θ(lnR).

Consider the hypergraph H =
(

[2k−1]
k

)∗
in the introduction. It is k-regular, it has

cd(H) = 1, and R(H) =
(

2k−2
k−1

)

= R. If δ ≤ k then H proves the theorem for small
enough C, so assume δ ≥ k. Again by monotonicity, we may increase δ by a constant
factor to make δ a multiple of k. Let µ = δ/k.

Consider the hypergraph µH obtained by copying each of its edges µ times,
for an integer µ ≥ 1; note that it is δ-regular. The argument in the introduction
shows that any set cover has size at least k and therefore average degree at least
k
(

2k−2
k−1

)

/
(

2k−1
k

)

= k2/(2k − 1) = Θ(lnR). Thus cd(µH) = O(δ/ lnR) which proves
the theorem.

Next, Theorem 2(ii) establishes the right multiplicative constant in the range
δ = ω(lnR). Our approach relies on the methods for neighbourhood hypergraphs
established in [16]; in fact using [16] as a black box gives Theorem 2(ii) for the case
R ∼ δ. As part of reaching the fuller range, Claim 14 will generalize a calculation [16,
§2.5] for dominating sets in Erdős-Rényi graphs.

Proof of Theorem 2(ii). We must show, given a sequence {(Ri, δi)}i such thatR →
∞, δ → ∞, and δ = ω(lnR) as i → ∞, we have cd(Hyp(R), δ) ≤ (1 + o(1))δ/ ln(R).
We assume an additional hypothesis, that R ≥ δ; this will be without loss of generality
as we can handle the case δ > R using the µ-replication trick from the proof of
Theorem 2(i), since our argument is again based on lower-bounding the minimum
size of a set cover.

Let δ′ = δ(1 + o(1)) and R′ = R(1 − o(1)) be parameters that will be specified
shortly. We construct a random hypergraph with n = R′2δ′ vertices and m = R′δ′2

edges, where for each vertex v and each edge E, we have v ∈ E with independent
probability p = 1/R′δ′. Thus each vertex has expected degree δ′ and each edge has
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expected size R′. A standard Chernoff bound together with np = ω(lnm) shows
the maximum edge size is (1 + o(1))R′ asymptotically almost surely (a.a.s.); pick
R′ such that this (1 + o(1))R′ equals R. Likewise, since mp = ω(lnn) we may pick
δ′ = (1 + o(1))δ so that a.a.s. the minimum degree is at least δ. Now we prove that
small set covers are not likely to exist:

Claim 14. A.a.s. the minimum set cover size is at least 1
p
ln(pn)(1 − o(1)).

Proof. Fix ǫ > 0 and let us a.a.s. lower-bound the minimum set cover size by
1
p
ln(pn)(1 − ǫ). For any fixed collection of s = 1

p
ln(pn)(1 − ǫ) edges, let P be the

probability that it is a set cover. In the limit, p tends to 0, so (1−p) = exp(−p+Θ(p2))
and

P = (1 − (1− p)s)n =
(

1− exp(−s(p+Θ(p2)))
)n

= (1− exp(−(1 + Θ(p))(1− ǫ) ln(pn)))n

= (1− (pn)−1+ǫ−Θ(p))n.

Since 1− x ≤ exp(−x) for all x,

P ≤ exp(−n(pn)−1+ǫ−Θ(p)) = exp(−p−1(pn)ǫ−Θ(p)).

There are
(

m
s

)

≤ ms = exp(s lnm) such collections, so a.a.s. none are set covers
provided that

s lnm− p−1(pn)ǫ−Θ(p) → −∞.

In turn, expanding the definition of s, we need precisely that

p−1(ln(pn)(1− ǫ) lnm− (pn)ǫ−Θ(p)) → −∞.

To see this, note that p = o(1), pn = ω(1), and m is polynomial in pn (since R ≥ δ).

Using Claim 14 we can complete the proof of Theorem 2(ii), since the for-
mer implies that the maximum number of disjoint set covers cd is at most (1 +
o(1))mp/ ln(pn) = (1 + o(1))δ′/ ln(R′) = (1 + o(1))δ/ ln(R).

Aside from the results above, not much else is known about specific values of
cd(Hyp(R), δ) for small R, δ. The Fano plane gives p(Hyp(3), 3) = 1: if its seven
sets are partitioned into two parts, one part has only three sets, and it is not hard
to verify the only covers consisting of three sets are pencils through a point and
therefore preclude the remaining sets from forming a cover. Moreover, Thomassen [41]
showed that every 4-regular, 4-uniform hypergraph has Property B; together with
monotonicity we deduce that p(Hyp(3), 4) ≥ p(Hyp(4), 4) ≥ 2.

3. Paths in Trees. LetTreeEdges|Paths denote the family of all hypergraphs
that can be expressed in the following form: the ground set is the edge set ET of some
undirected tree T , and for each hyperedge E of H , there are vertices u, v ∈ VT so that
E is the set of all edges in T ’s u-to-v path. Note that interval hypergraphs correspond
to the special case that the tree is itself a path graph.

Our main result for these tree hypergraphs is that they are cover-decomposable,
and moreover the cover-decomposition number is linear in δ. To prove this theorem
we use a counting lemma [24, Lemma 4] for linear program extreme points. While
[24, Lemma 4] is stated for a linear program with just upper bounds on the capacity
of edges, what we need is a result when there are both upper and lower bounds.
However, the proof method is identical, as we will explain.
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We give a simpler sketch of the main idea just for intuition. We will write a
linear program about two-colouring paths so as to achieve small dual discrepancy.
For every path/hyperedge P let xP and yP be non-negative variables constrained by
xP + yP = 1. The idea is that (xP , yP ) = (1, 0) corresponds to placing P in E1, and
(xP , yP ) = (0, 1) corresponds to placing P in E2. Consider the linear program

0 ≤ x, y;x+ y = 1; ∀e,
∑

P :e∈P

xP = degreeH(e)/2; ∀e,
∑

P :e∈P

yP = degreeH(e)/2.

If we could find an feasible integral solution (x, y), then every vertex would be covered
an equal number of times by E1 and E2, and the dual discrepancy would be 0. There
is always a feasible fractional solution x = y = 1

2
, but it is not guaranteed that a

feasible integral solution exists. But, we can prove that there is an integer solution
with ±O(1) additive violation in each constraint. In the real proof, we will eliminate
the y variables according to y = 1 − x, and seek an unequal split in order to get a
better factor in the final result.

Theorem 4. cd(TreeEdges|Paths, δ) ≥ 1 + ⌊(δ − 1)/5⌋.
Proof. We use induction on δ. We assume that δ ≥ 6 since the smaller cases are

trivial. Consider the following linear program (without objective).

0 ≤ x ≤ 1 (box)

∀e ∈ ET ,
∑

P :e∈P

xP ≥ ℓe := 3 (lb)

∀e ∈ ET ,
∑

P :e∈P

xP ≤ ue := 3 + degreeH(e)− δ(H). (ub)

This linear program has at least one feasible solution: x = 3

δ
, which is easily seen to

satisfy (box) and (lb), and which satisfies (ub):

3degreeH(e)/δ ≤ 3 + degreeH(e)− δ ⇐⇒ 0 ≤ (δ − 3)(degreeH(e)− δ)/δ.

We run the following iterated relaxation algorithm, where the initial LP is (box)–(ub).

1. Let x∗ be an extreme point solution of the current LP.
2. If some path P has x∗

P equal to 0 or 1, then fix xP : from now on we
consider each appearance of xP in the linear program to be a constant,
equal to x∗

P .
3. If for some edge e there are only three non-fixed paths passing through
e, then relax e: delete the constraints (lb) and (ub) for e.
4. Quit if all variables are fixed, otherwise return to the first step.

The LP remains feasible from iteration to iteration since fixing and relaxing both
preserve feasibility of x∗. The main part of the proof will be to prove that the
algorithm terminates. Assuming that this is so, here is how we complete the proof of
Theorem 4.

Let xf be the vector of final fixed values. We claim that every constraint (lb)
and (ub) is almost satisfied by xf , with at most an additive ±2 violation. This is
trivially true for each e that was never relaxed. If e is relaxed in some iteration,
at that time

∑

P :e∈P x∗
P ≥ ℓe holds, and the left-hand side is a sum of some fixed

integers plus at most three non-fixed values strictly between 0 and 1; since ℓe is an
integer, it follows that the fixed integers sum to at least ℓe − 2. Hence these fixed
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values yield
∑

P :e∈P xf
P ≥ ℓe − 2, no matter what happens to the non-fixed values

over the remaining course of the algorithm. For (ub) a similar argument establishes

that
∑

P :e∈P xf
P ≤ ue + 2.

By our choice of ℓe = 3, the inequalities
∑

P :e∈P xf
P ≥ ℓe−2 ensures that xf is the

indicator vector of a set cover E1. Similarly,
∑

P :e∈P xf
P ≤ ue +2 ensures that 1− xf

is the indicator vector of a family E2 of paths so that the hypergraph H ′ = (ET , E2)
has δ(H ′) ≥ δ(H)−5. Apply Theorem 4 inductively to H ′; these 1+⌊(δ−6)/5⌋many
set covers, together with E1, give the desired result.

To prove Theorem 4 it remains only to prove that the algorithm terminates. In
order to do this it is helpful to write the modified LP explicitly, collecting all fixed
constants. Define ℓ′e to be ℓe minus the x values of all fixed paths passing through e,
and define u′

e similarly. Define the tree T ′ by contracting all relaxed edges, so ET ′ is
the set of all non-relaxed edges. Let P ′ be the non-fixed paths, updated to take the
contraction into account. The modified LP, whose variables are x′

P for each non-fixed
P , is

0 ≤ x′ ≤ 1 and ∀e ∈ ET ′ , ℓ′e ≤
∑

P∈P′:e∈P

x′
P ≤ u′

e. (3.1)

Notice that extreme points of this LP correspond to extreme points of the one in the
algorithm, so we denote both by x∗. If the algorithm does not fix any paths in a given
iteration, notice that we have the strict inequality 0 < x∗ < 1.

Claim 15. If x∗ is an extreme point solution to (3.1) with 0 < x∗ < 1, then
some e ∈ ET ′ lies on at most two paths from P ′.

Proof. Since x∗ is an extreme point solution and no box constraints are tight,
there are disjoint sets Eℓ, Eu ⊆ ET ′ so that x∗ is the unique solution to

∑

P :e∈P

x∗
P =

{

ℓ′e, ∀e ∈ Eℓ;

u′
e, ∀e ∈ Eu.

In particular, |Eℓ| + |Eu| = |P ′| and the incidence matrix of Eℓ ∪ Eu versus P ′ is
invertible. From this point on, the argument is the same as that at the top of page
9 in the proof of [24, Lemma 4]. (The items T = (V,E), E∗, D, c there correspond
to T ′, Eℓ ∪ Eu,P ′, ℓ′/u′ here. We make use of the integrality of ℓ′ and u′, and linear
independence in the aforementioned incidence matrix. )

Claim 15 proves that the algorithm either fixes or relaxes in each iteration, and
therefore terminates. So the proof of Theorem 4 is complete.

This gives a 5-approximation algorithm for cd in this family of tree hypergraphs.
From Holyer’s result [21] mentioned earlier, it is NP-hard to approximate cd within
a factor less than 3/2 in the same family. We think Theorem 4 is not tight; the best
upper bound on cd we know is ⌊(3δ + 1)/4⌋.

For Theorem 4 the ground set is the edge set of an undirected tree, but it is equally
natural to consider two other settings. One is to let the ground set be the vertex set of
an undirected tree, with hyperedges corresponding to the vertices in paths. Another is
to let the ground set be the arc set of a bidirected tree, with hyperedges corresponding
to the arcs in directed paths. In the forthcoming full version of [24] it is shown that
[24, Lemma 4] has analogues in these settings, with ±6 in place of ±2, and from this
we get that cd ≥ 1 + ⌊(δ − 1)/13⌋ in these settings.

For polychromatic numbers and systems of paths in trees, we have:
Theorem 5. p(TreeEdges|Paths, r) = ⌈r/2⌉.
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Proof. For the lower bound, colour the edges of the tree by giving all edges at
level i the colour i mod ⌈r/2⌉. Since every length-r path in a tree has a monotonic
subpath of length ⌈r/2⌉, we are done.

For the upper bound, by monotonicity of p, it is enough to consider even r = 2s.
Construct a spider tree that consists of a root vertex and s+2 paths of s edges (each
path has the root as one endpoint, and all other vertices are distinct). Define each
of the

(

s+2
2

)

leaf-leaf paths to be a hyperedge of the hypergraph; note that each one
has size r. We must show that there is no polychromatic (s + 1)-colouring. To see
this, notice that each of the root-leaf paths must miss at least one colour, and by
the pigeonhole principle two of them miss a common colour. The union of those two
root-leaf paths is a hyperedge which is not coloured polychromatically, and we are
done.

4. Small VC-Dimension. Recall the definition of VC-dimension: S ⊆ V is
shattered by a hypergraph if every T ⊆ S can be obtained as an intersection of S
with some hyperedge, i.e. if {S ∩ E | E ∈ E} = 2S ; and the VC-dimension of a
hypergraph equals the size of the largest shattered set. The dual VC-dimension is the
VC-dimension of the dual.

To show that primal and dual VC-dimension 2 is not enough to ensure cover-
decomposability, it suffices to use the following construction of Pach, Tardos and
Tóth [32]. Let T be a k-ary rooted tree, with k levels of vertices; so T has kk−1 leaves

and
∑k−1

i=0 ki nodes in total. For each non-leaf node v we define its sibling hyperedge
to be the k-set consisting of v’s children. For each leaf node v we define its ancestor
hyperedge to be the k-set consisting of the nodes on the path from v to the root node.
We let PTTk denote the hypergraph consisting of all ancestor and sibling hyperedges.
Pach et al. use a Ramsey-like argument to show p(PTTk) = 1. Using this, we prove
Theorem 7.

Theorem 7. For the family of hypergraphs {H | VC-dim(H),VC-dim(H∗) ≤ 2},
we have p(r) = 1 for all r and cd(δ) = 1 for all δ.

Proof. We will show that PTTk has VC-dimension and dual VC-dimension at
most 2. Thus PTTk confirms the first part of Theorem 7 (since k = r) and PTT∗

k

confirms the second part. A key observation is that in PTTk,

any two distinct edges intersect in either 0 or 1 vertices. (4.1)

First, we bound the primal VC-dimension. Suppose for the sake of contradiction
that there is a shattered vertex set {x, y, z} of size 3. Since the set is shattered, there
is a hyperedge E containing all of {x, y, z}. But by the definition of shattering, there
must be another hyperedge E′ 6= E with E′ ∩ {x, y, z} = {x, y}. This contradicts
(4.1), so we are done.

Second, we bound the dual VC-dimension. Suppose for the sake of contradiction
that E,E′, E′′ are three hyperedges which are shattered in the dual. This implies that
E ∩E′ ∩E′′ and (E ∩E′)\E′′ are both nonempty. But this would imply |E ∩E′| ≥ 2,
contradicting (4.1).

In the remainder of this section we show that set systems with unit VC-dimension
have large cover-decomposition and polychromatic numbers (Theorem 6). The fol-
lowing is a convenient way of looking at such hypergraphs.

Definition 16. A hypergraph (V, E) is called cross-free if the following holds for
every pair S, T ∈ E: at least one of S ∩ T, S\T, T \S, or V \S\T is empty.

Observe that a hypergraph has VC-dimension 1 if and only if the dual hypergraph
is cross-free. In the proofs of this section we will also use laminar hypergraphs, which
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are a subclass of cross-free hypergraphs.

Definition 17. A hypergraph (V, E) is called laminar if the following holds for
every pair S, T ∈ E: at least one of S∩T, S\T , or T \S is empty. (Equivalently, either
S ∩ T = ∅, S ⊆ T , or T ⊆ S.)

We need the following fact; a one-line proof is that such hypergraphs are balanced,
but an elementary proof is also an easy exercise.

Fact 18. In a laminar hypergraph, cd = δ.

By duality, the following proposition proves the first half of Theorem 6.

Proposition 19. For the family of cross-free hypergraphs, cd(δ) = ⌈δ/2⌉.
Proof. First, for each δ we demonstrate a cross-free hypergraph with minimum

degree δ which cannot be decomposed into more than ⌈δ/2⌉ covers. Take a hypergraph
whose ground set V has δ + 1 elements, with one hyperedge V \{v} for each v ∈ V .
Since each set cover has at least 2 hyperedges, we have cd ≤ ⌊(δ + 1)/2⌋, as needed.

To prove the other direction cd ≥ ⌊(δ + 1)/2⌋ for all cross-free hypergraphs, we
use induction on δ. Clearly the bound holds for δ = 0 or δ = 1. For the inductive step,
we have two cases. First, if the cross-free hypergraph (V, E) has two sets S, T ∈ E for
which S ∪T = V , then this is a cover with maximum degree 2 at each node. Thus we
are done, since by induction cd(V, E\{S, T }) ≥ ⌈(δ − 2)/2⌉. Second, if the cross-free
hypergraph has no such S, T , then in fact the cross-free hypergraph is laminar, and
we are done by Fact 18.

Again by duality, the following proposition proves the second half of Theorem 6.

Proposition 20. For the family of cross-free hypergraphs, p(r) = ⌈r/2⌉.
Proof. Consider again the hypergraph used in the first half of the proof of Propo-

sition 19. Note that it is self-dual, e.g. since its incidence matrix is the all-ones matrix
minus the identity matrix, which is symmetric. Thus, we deduce p(r) ≤ ⌊(r + 1)/2⌋
for all r.

Next, we prove the other direction. We must show for all k, that if every hyperedge
has size at least 2k− 1, then there is a polychromatic k-colouring. A key observation
is the following: if Emin denotes the inclusion-minimal elements of E , then a colouring
is polychromatic for (V, E) if and only if it is polychromatic for (V, Emin). So we may
reset E := Emin, which does not affect r or cross-freeness. Moreover now E is a clutter :
there do not exist two different hyperedges A,B ∈ E for which A ⊂ B.

Lemma 21. In a cross-free clutter (V, E), either all hyperedges are pairwise dis-
joint, or for every two hyperedges A,B we have A ∪B = V .

Proof. From the definitions of “cross-free” and “clutter,” we first have that for
every S, T ∈ E , either S ∩ T = ∅ or S ∪ T = V . Note that it is impossible for three
distinct sets S, T, U ∈ E to satisfy S∪T = V, S∩U = ∅ since this would imply U ⊂ T .
Using this transitively, we obtain the lemma.

Using the lemma, Proposition 20 now boils down to two cases. The first case is
that all hyperedges are pairwise disjoint. In this case a polychromatic k-colouring is
easy to obtain: for each hyperedge E, just colour its |E| ≥ 2k − 1 ≥ k elements in
any way that uses all k colours.

Finally, we deal with the case that for every two hyperedges A,B we have A∪B =
V . Rewriting, this means that E is of the form {V \S1, V \S2, . . . , V \Sm} wherem ≥ 2,
the Si are pairwise disjoint, and |V \Si| ≥ 2k − 1 for all i. Here is a polychromatic
colouring method which picks one colour class at a time. Repeat the following for
j = 1, . . . , k − 1: find any two vertices v, v′ such that no Si contains them both,
and colour them with colour j. To see this is possible, note by induction that after
iteration j, the number of uncoloured vertices in each V \Si is at least 2k − 1 − 2j.
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After stage k − 1, colour all remaining uncoloured vertices with colour k.

We remark that Theorem 6 may be viewed from the perspective of a family of tree-
related hypergraphs, distinct from the ones we previously studied. Namely, Edmonds
& Giles [13] showed that a hypergraph H is cross-free precisely when there exists a
directed tree, such that each element of V (H) occurs exactly once as a label on a
node of the tree (a given node can have zero or multiple labels), and E(H) consists of
those label sets on the half-tree “pointed to” by each directed edge of the tree.

5. O(R)-approximation for Sensor Cover. The sensor cover problem is a
generalization of cover-decomposition. The input is a hypergraph plus, for each hy-
peredge E, a duration ℓE; a schedule is an activation time aE for each hyperedge,
and it has coverage T if for all 0 ≤ t ≤ T and all v ∈ V , some edge E has v ∈ E and
t ∈ [aE , aE + ℓE ]. We are interested in finding a schedule with maximum coverage.
Note that in the special case where all durations are unit, the maximum coverage
equals the cover-decomposition number.

Let δ = minv
∑

E∋v ℓE , the minimum duration-weighted degree. Clearly the

maximum schedule coverage is at most δ. The most prominent results for this setting
are from [18] (the conference version): it is shown that every interval hypergraph has a
schedule of coverage Ω(δ); using this as a subroutine it is shown that for hypergraphs
corresponding to translates of any fixed open convex polygon covering points in R

2,
a schedule of Ω(δ) always exists.

Let R still mean the maximum number of vertices in any hyperedge, independent
of the durations. We then obtain the following result.

Theorem 22. Every sensor cover instance admits a schedule of coverage Ω(δ/R).

Proof. Without loss of generality, scale all durations uniformly so that δ = 1. Let
α be a parameter to be fixed later in the range O(R), so that we will seek a schedule
of coverage 1/α.

Clearly if there are any hyperedges of duration at least 1/α we can schedule them
at time zero, satisfying all their contained vertices; so without loss of generality all
durations are < 1/α. Then, round down durations of the remaining hyperedges to the
closest member of {2−1/α, 2−2/α, . . . }. Let level i consist of those hyperedges whose
new durations are 2−i/α, and let di(v) be the degree of vertex v in level i. Note that
after rounding, the duration-weighted degree of each vertex is at least 1/2, so

∑

i≥1

di(v)

2iα
≥ 1/2. (5.1)

In each level we will use:

Claim 23. In a hypergraph, we can assign each hyperedge to a vertex it contains,
so that for each v, the number of hyperedges assigned to it is at least ⌊d(v)/R⌋.

Proof. The naive LP formulation for this assignment problem (with integral data)
is well-known to be integral. There is a feasible fractional assignment (fractionally
assign each E an amount 1/|E| to each vertex it contains), so there is also a feasible
integral assignment.

In each level, find the assignment specified by Claim 23. We will be done if we
can pick α = O(R) so that, adding up all levels, the total duration assigned to each
vertex is at least 1/α: a satisfactory schedule can then be obtained by, for each vertex,
scheduling its assigned edges one after the other. Since ⌊x/R⌋ ≥ (x− (R− 1))/R for
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integral x and R, the duration of the edges assigned to each v is at least

∑

i≥1

⌊di(v)/R⌋
2iα

≥
∑

i≥1

(di(v)− (R− 1))/R

2iα
=

1

R

∑

i≥1

di(v)

2iα
− R − 1

R

∑

i≥1

1

2iα

≥ 1

R

1

2
− R− 1

R

1

α
,

where in the last inequality we used (5.1) and the geometric series sum formula. We
need precisely that the right-hand side above is at least 1/α. A short calculation
reveals that α = 4R− 2 will do, and completes the proof.

We remark that, by tweaking the scaling factor of 2 in the proof above, the final
ratio α can be slightly improved from 4R− 2 to 2R− 1 + 2

√
R2 − R.

6. Open Problems. The major open problem in our study is whether the sensor
cover result Theorem 22 can be improved to a schedule of coverage Ω(δ/ lnR), in line
with the tight results from Section 2. We also do not know if in TreeEdges|Paths, a
schedule of coverage Ω(δ) is always possible. For the non-scheduling version, it would
be interesting to know more about cd(Hyp(R), δ) in the regime δ = Θ(lnR), or for
small values of δ and R.

Two outstanding open geometric problems that predate our work are to determine
whether p(δ) = Ω(δ) for the family of unit discs, and whether the family of all axis-
aligned squares is cover-decomposable.

Pálvölgyi [34] poses two nice combinatorial questions: first, is there a function f
so that in hypergraph families closed under edge deletion and duplication, cd(δ0) ≥ 2
implies cd(f(δ0)) ≥ 3? This compelling question, which would give a unified explana-
tion for much of the existing literature, is open even for δ0 = 2; no counterexamples
are known to the hypothesis f(δ0) = O(δ0), i.e. that cover-decomposability implies p
grows linearly with δ. Second, consider an m × r matrix of integers which is weakly
increasing from left to right and top to bottom. If we think of each row as a set of
size r, giving a hyperedge on ground set Z, do these shift chains have Property B for
large enough r? It is known [34] that r = 3 is not enough.
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[4] Greg Aloupis, Jean Cardinal, Sébastien Collette, Stefan Langerman, David Orden,
and Pedro Ramos, Decomposition of multiple coverings into more parts, Discrete Comput.
Geom., 44 (2010), pp. 706–723. Preliminary version in Proc. 20th SODA, 2009, pages 302–
310.
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Polytechnique Fédérale de Lausanne, 2010. arXiv:1009.4641.

[35] , Indecomposable coverings with concave polygons, Discrete and Computational Geome-
try, 44 (2010), pp. 577–588.
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