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Abstract

We prove results on the size of weakly and strongly separating
set systems and matrices, and on cross-intersecting systems. As a
consequence, we improve on a result of Katona and Szemerédi [6],
who proved that the minimal number of edges in an oriented graph of
order n with diameter 2 is at least (n/2) log2(n/2). We show that the
minimum is (1 + o(1))n log2 n.

1 Introduction

The diameter of a strongly connected digraph G is defined as diam(G) =
max{d(x, y) : x ∈ V (G), y ∈ V (G) \ x}, where d(x, y) is the minimal length
of a directed path from x to y. It is easily seen that a digraph of order n and
diameter 2 can have as few as 2n− 2 edges: just pick a vertex x and take all
edges into and out of x.

For oriented graphs the situation is surprisingly different. Katona and
Szemerédi [6] showed that the minimal number of edges in an oriented graph
of order n and diameter 2 is at least (n/2) log2(n/2). They also suggested
(but did not prove) an upper bound n log2 n. In this paper, we will show
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that every oriented graph with diameter 2 has at least (1 + o(1))n log2 n
edges (an upper bound matching this to within a 1 + o(1) factor is given
by a construction at the end of Section 4; in fact, the two bounds differ by
O(n log2 log2 n)).

We will also be concerned with the size of weakly and strongly separating
set systems. Indeed, our result on oriented graphs rests on a defect result
for strongly separating systems. A sequence (S1, T1), . . . , (Sk, Tk) of pairs of
disjoint subsets of a ground set X is called a weakly separating system1 if
for every x, y ∈ X with x 6= y there is an i such that either x ∈ Si and
y ∈ Ti or x ∈ Ti and y ∈ Si. The sequence is said to be a strongly separating
system if for every x, y ∈ X with x 6= y there is an i such that x ∈ Si

and y ∈ Ti. Equivalently, the sequence is weakly separating if the complete
bipartite graphs with vertex classes Si, Ti cover the edges of the complete
graph with vertex set X; the sequence is strongly separating if the complete
bipartite oriented graphs with vertex classes Si, Ti and all edges oriented
from Si to Ti cover the complete digraph with vertex set X.

Strongly separating set systems are closely related to cross-intersecting
systems. A sequence (A1, B1), . . . , (Ak, Bk) of pairs of sets is said to be cross-
intersecting if Ai ∩Bi = ∅ for all i, and the intersection Ai ∩Bj is nonempty
for all i 6= j. (Many authors use the term cross-intersecting for the different
setup of two set systems A, B such that every A ∈ A meets every B ∈ B.)
Note that, in contrast to weakly or strongly separating systems, the ground
set of a cross-intersecting system need not be specified. Strongly intersecting
systems are dual to cross-intersecting systems, and it will be convenient for
us to work in terms of the latter.

We begin the paper in Section 2 by giving an account of weakly separating
systems, presenting a defect result of Katona and Szemerédi [6] and noting
a couple of variants. In Section 3, we turn to strongly separating and cross-
intersecting systems, proving analogous results to the weakly separating case.
Finally, in Section 4, we prove a result on the number of nonzero entries in
a strongly separating matrix. As an application of this result, we prove our
bound on the size of oriented graphs with diameter at most 2.

1Weakly separating systems are usually referred to just as separating systems. We have
adopted the weak/strong terminology to emphasize the difference.
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2 Weakly separating systems

In this section we give some background on weakly separating systems. The
investigation of weakly separating systems was started by Rényi [11], and
continued by a number of other authors (see, for instance, [4, 5, 6, 14, 8, 9,
13, 10, 7, 2]). It is easily seen that dlog2 ne sets are necessary and sufficient for
weak separation of a set of size n. If we are concerned only with the number
of sets, then we may clearly asssume that Ti = Si

c for each pair (Si, Ti) in
a weakly separating system. However, Hansel proved the following stronger
result that takes into account the sizes of the sets (a slight sharpening is
given in [2]).

Lemma 1. [4] Let (S1, T1), . . . , (Sk, Tk) be a weakly separating system on a
ground set of size n. Then

∑k
i=1(|Si|+ |Ti|) ≥ n log2 n.

Katona and Szemerédi [6] independently proved Lemma 1, and gave a
defect version of the result as follows. Let G be a graph with vertex set V .
A sequence (S1, T1), . . . , (Sk, Tk) of pairs of disjoint subsets of V is weakly
separating off G if for every pair of distinct vertices x, y ∈ V with xy 6∈ E(G)
there is i such that either x ∈ Si, y ∈ Ti or x ∈ Ti, y ∈ Si.

Lemma 2. [6] Let G be a graph with vertex set V . If (S1, T1), . . . , (Sk, Tk)
is weakly separating off G then

k∑
i=1

(|Si|+ |Ti|) ≥
∑
v∈V

log2

(
n

d(v) + 1

)
, (1)

where d(v) denotes the degree of v.

For completeness, we give a short proof of Lemma 2.

Proof. Define a weight function on V = V (G) by setting w(v) = 1/(d(v)+1)
for each v ∈ V . If X ⊂ V induces a complete subgraph, then each vertex in
X has degree at least |X| − 1 and so

∑
v∈X w(v) ≤ 1. Thus any subset of

weight greater than 1 contains a pair of vertices that are not joined.
Now consider the random subset of V obtained by deleting, for each i,

either Si or Ti (independently, and with probability 1/2 each). Since the
system is separating, the surviving vertices induce a clique and so have total
weight at most 1. Thus the expected weight of vertices that survive is at
most 1.

3



For each vertex v, let f(v) = |{i : v ∈ Si ∪ Ti}|. Then v survives with
probability 2−f(v), and calculating the expected weight of surviving vertices
gives ∑

v∈V

1

d(v) + 1
2−f(v) ≤ 1.

Defining a(v) by f(v) = log2 n− log2(d(v) + 1)− a(v), this becomes

1

n

∑
v∈V

2a(v) ≤ 1.

By Jensen’s inequality,
∑

v∈V a(v) ≤ 0, and so∑
v∈V

f(v) ≥ n log2 n−
∑
v∈V

log2(d(v) + 1).

Since
∑

v∈V f(v) =
∑k

i=1 |Si ∪ Ti|, we are done.

If G has maximal degree ∆ then (1) trivially implies that
∑

(|Si|+ |Ti|) ≥
n log2 n − n log2(∆ + 1). However, it is easy to obtain a bound in terms of
average degree: if d is the average degree of G then by (1) and convexity we
have

k∑
i=1

(|Si|+ |Ti|) ≥ n log2 n−
n∑

i=1

log2(di + 1)

≥ n log2 n− n log2(d + 1). (2)

We note that the proof of Lemma 2 also gives a bound in terms of clique
number.

Lemma 3. Let G be a graph with n vertices. If (S1, T1), . . . , (Sk, Tk) is weakly
separating off G then

k∑
i=1

(|Si|+ |Ti|) ≥ n log2 n− n log2(cl(G)). (3)

Proof. Follow the proof of Lemma 2, except with weight function w(v) =
1/cl(G).
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Both (2) and (3) are sharp when n/(d+1) is a power of 2. Let n = 2k(d+1)
and let G be the union of 2k pairwise disjoint copies of Kd+1. We can separate
a set of 2k vertices with a system of pairs of sets with sizes summing to k2k

(arrange the 2k vertices in a cube, and take the k pairs of opposite faces).
Replacing each vertex of the cube by the vertices from one copy of Kd+1, we
obtain a system of pairs whose sizes sum to (d + 1) · k2k = n log2(n/(d + 1)).

3 Strongly separating systems

We now turn to considering strongly separating systems. The investigation
of strongly separating systems was started by Dickson [3], who showed that
every strongly separating system on a ground set of size n has at least (1 +
o(1)) log2 n pairs of sets. The exact minimum was found by Spencer [12],
who showed that the minimum number of pairs is t(n), where t = t(n) is the
smallest positive integer such that

(
t

bt/2c

)
≥ n. Thus

t(n) = log2 n +
1

2
log2 log2 n + O(1),

as compared to a minimum of dlog2 ne pairs in a weakly separating system.
An analogue for strongly separating systems of Hansel’s result (Lemma

1) was proved in [2].

Theorem 4. [2] Suppose that (S1, T1), . . . , (Sk, Tk) is a strongly separating
system on a ground set of size n. Let t∗(n) be the largest integer such that(

t∗

bt∗/2c

)
≤ n. Then

k∑
i=1

(|Si|+ |Ti|) ≥ nt∗(n) = n log2(n) +
n

2
log2 log2 n + O(n), (4)

with equality if and only if n =
(

t∗

bt∗/2c

)
.

Our aim in this section is to prove a defect version (Corollary 7) of this
result.

It is convenient to work in terms of dual systems. If (S1, T1), . . . , (Sk, Tk)
is a sequence of pairs of sets on ground set V then the dual set system
(Av, Bv), v ∈ V , has ground set [k] = {1, . . . , k} and is defined by Av = {j :
v ∈ Sj} and Bv = {j : v ∈ Tj}. The system (S1, T1), . . . , (Sk, Tk) is strongly
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separating if and only if the dual system (Av, Bv), v ∈ V , is cross-intersecting.
Furthermore, it is clear that

k∑
i=1

(|Si|+ |Ti|) =
∑
v∈V

(|Av|+ |Bv|), (5)

so a bound on
∑

v∈V (|Av|+ |Bv|) immediately provides a bound of the form
(4)

Cross-intersecting systems were investigated by Bollobás [1], who proved
the following result.

Lemma 5. [1] Every cross-intersecting system (Av, Bv), v ∈ V , satisfies∑
v∈V

(
|Av|+ |Bv|

|Av|

)−1

≤ 1. (6)

Let G be a graph with vertex set V . A sequence (S1, T1), . . . , (Sk, Tk) of
pairs of disjoint subsets of V is strongly separating off G if for every pair of
distinct vertices x, y ∈ X with xy 6∈ E(G) there is i such that x ∈ Si, y ∈ Ti.
A sequence (Av, Bv), v ∈ V , of pairs of sets is cross-intersecting off G if
Av ∩ Bv is empty for all v ∈ V , and Av ∩ Bw is nonempty whenever v 6= w
and vw 6∈ E(G). Note that V (G) appears as the ground set in a strongly
separating system, but as the index set in a cross-interesting system: the
edges of G correspond to pairs (of vertices or of sets respectively) where
we do not insist on the strong separation or cross-intersection condition.
Importantly, a system (S1, T1), . . . , (Sk, Tk) with ground set V (G) is strongly
separating off G if and only if the dual system (with sets indexed by V (G))
is cross-intersecting off G. We can therefore prove results on systems that
are cross-intersecting off G and then dualise (using (5)) to obtain results on
systems that are strongly intersecting off G.

Let us prove a defect version of Lemma 5.

Theorem 6. Let G be a graph with vertex set V and suppose that (Av, Bv),
v ∈ V , is cross-intersecting off G. Then∑

v∈V

1

d(v) + 1

(
|Av|+ |Bv|

|Av|

)−1

≤ 1 (7)

and ∑
v∈V

(
|Av|+ |Bv|

|Av|

)−1

≤ cl(G). (8)
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Proof. We prove (7) and (8) by induction on |
⋃

v∈V Bv|.
If all Bv are empty then G must be complete and so both (7) and (8) are

satisfied. Otherwise, for each x ∈
⋃

v∈V (Av ∪ Bv), let I(x) = {v : x ∈ Av}
and J(x) = {v : x ∈ Bv}. Let Vx = V \ I(x) and let Gx = G \ I(x). Consider
the sequence (A′

v, B
′
v), v ∈ Vx, obtained from (Av, Bv), v ∈ V , as follows. If

x ∈ Av then we delete the pair (Av, Bv); if x ∈ Bv we replace it with the pair
(Av, Bv \ x); otherwise, we leave it unchanged. Note that the new system
(indexed by Vx) is cross-intersecting off Gx.

Let av = |Av| and bv = |Bv| for each v ∈ V , and let λv, v ∈ V , be any
sequence of positive reals. Consider the weight function assigning weight

λv

(|Av |+|Bv |
|Av |

)−1
to the pair (Av, Bv). If (Av, Bv) survives as (A′

v, B
′
v), it will

then have weight λv

(|A′
v |+|B′

v |
|A′

v |

)−1
. The increase ∆x in weight between the new

system and the old system is

∆x =
∑
v∈Vx

λv

(
|A′

v ∪B′
v|

|A′
v|

)−1

−
∑
v∈V

λv

(
|Av ∪Bv|
|Av|

)−1

=
∑

v∈J(x)

λv

[(
|Av ∪Bv| − 1

|Av|

)−1

−
(
|Av ∪Bv|
|Av|

)−1
]

−
∑

v∈I(x)

λv

(
|Av ∪Bv|
|Av|

)−1

.

But (
|Av ∪Bv| − 1

|Av|

)−1

−
(
|Av ∪Bv|
|Av|

)−1

=
av

bv

(
av + bv

av

)−1

.

So ∑
x∈V

∆x =
∑

x

∑
v∈J(x)

λv
av

bv

(
av + bv

av

)−1

−
∑

x

∑
v∈I(x)

λv

(
av + bv

av

)−1

=
∑

v

λv

∑
x:v∈J(x)

av

bv

(
av + bv

av

)−1

−
∑

v

λv

∑
x:v∈I(x)

(
av + bv

av

)−1

=
∑

v

λvav

(
av + bv

av

)−1

−
∑

v

λvav

(
av + bv

av

)−1

= 0.
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Here we have used the fact that |{x : v ∈ I(x)}| = |Av| and |{x : v ∈
J(x)}| = |Bv|.

It follows that ∆x ≥ 0 for some choice of x. But now to prove (8), take the
weighting λv = 1 for all v. Since (8) holds for the reduced system on Gx and
cl(Gx) ≤ cl(G), we are done. Similarly, for (7), taking λv = 1/(dG(v)+1), we
obtain a system on Gx with weights λv and larger total weight. We know by
induction that (7) holds on Gx with the larger weights λ′

v = 1/(dGx(v) + 1),
and so the inequality holds on Gx with the weights λv. Therefore (7) also
holds on G.

Note that the bounds are sharp in some cases. If all the di are equal to
d, and n = (d + 1)

(
a+b
a

)
then both bounds in the theorem are sharp for the

graph consisting of n copies of Kd+1. Consider the system consisting of one
pair (A, [a+ b] \A) for each subset A ⊂ [a+ b] = {1, . . . , a+ b} with |A| = a.
This has

(
a+b
a

)
pairs, and satisfies (6) with equality. Taking d + 1 copies of

each of these pairs (i.e. taking each pair of sets d + 1 times), we obtain a
system satisfying (7) and (8) with equality.

We shall apply the following consequence of Theorem 6, which provides
a defect result complementing Lemma 4.

Corollary 7. Let G be a graph with vertex set V of size n and average degree
d ≤ n/630 − 1. Let t∗ be the largest positive integer such that

(
t∗

bt∗/2c

)
≤

n/(d + 1). Suppose that (Av, Bv), v ∈ V , is cross-intersecting off G. Then∑
v∈V

(|Av|+ |Bv|) ≥ nt∗. (9)

This bound is sharp when n = (d+1)
(

t
bt/2c

)
: let a = dt/2e and b = bt/2c,

and consider the example after Theorem 6. This has n = (d + 1)
(

t
bt/2c

)
pairs

(Ai, Bi), each of which satisfies |Ai|+ |Bi| = t, so (9) holds with equality.
We will need the following lemma.

Lemma 8. If a and b are integers with 5 ≤ a ≤ b− 2 then(
a

ba/2c

)−1/2

+

(
b

bb/2c

)−1/2

≥
(

a + 1

b(a + 1)/2c

)−1/2

+

(
b− 1

b(b− 1)/2c

)−1/2

.

Also, if 0 ≤ a ≤ b− 5 then(
a

ba/2c

)−1/2

+

(
b

bb/2c

)−1/2

≥
(

a + 2

ba/2 + 1c

)−1/2

+

(
b− 2

bb/2− 1c

)−1/2

.

8



Proof. Define f(a) =
(

a
ba/2c

)
. Note that f(a + 1) = 2f(a) if a is odd and

f(a + 1) = 2(a + 1)/(a + 2) if a is even. Thus (2f(a))−1/2 ≤ f(a + 1)−1/2 ≤
(2(a+1)f(a)/(a+2))−1/2. It follows from a short calculation that f(a)−1/2−
f(a + 1)−1/2 is monotone decreasing for a ≥ 5. The first part of the result
follows immediately.

The second part of the result is implied by the first unless a ≤ 5; the
remaining cases are easily checked.

Proof of Corollary 7. We know from Theorem 6 that, given (d(v))v∈V , the
minimal value of

∑
v∈V (|Av|+ |Bv|) is at least

min
{ ∑

v∈V

(av + bv) :
∑
v∈V

1

d(v) + 1

(
av + bv

bv

)−1

≤ 1
}
,

which is clearly at least

min
{ ∑

v∈V

cv :
∑
v∈V

1

d(v) + 1

(
cv

bcv/2c

)−1

≤ 1
}
,

where the minimum is taken over nonnegative integers cv, v ∈ V . Now this
is at least

min
{ ∑

v∈V

cv :
∑
v∈V

1

ev

(
cv

bcv/2c

)−1

≤ 1,
1

n

∑
v∈V

e(v) = d + 1
}
, (10)

where d is the average degree, the ev range over nonnegative reals, and the
cv range over nonnegative integers.

For fixed nonnegative reals Cv, and nonnegative reals ev summing to
D, Cauchy-Schwarz gives

∑
v∈V ev

∑
v∈V (Cv/ev) ≥ (

∑
v∈V

√
Cv)

2, and so∑
v∈V Cv/ev ≥

( ∑
v∈V

√
Cv

)2
/D. Setting Cv =

(
cv

bcv/2c

)−1
and D = n(d + 1),

we see that the first condition in (10) implies

1 ≥
∑
v∈V

Cv

ev

≥
(
∑

v∈V

(
cv

bcv/2c

)−1/2
)2

n(d + 1)
.

Thus ∑
v∈V

(
cv

bcv/2c

)−1/2

≤
√

n(d + 1). (11)
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Now if all cv are at most 9 then
∑

v

(
cv

bcv/2c

)−1/2 ≥ n
(
9
4

)−1/2 ≥ n/
√

630 and

so by (11) we have d + 1 > n/630, which contradicts our assumption on
d. Otherwise, by repeated applications of Lemma 8, we may assume that
the cv are clustered on at most two values. (Note that this does not change∑

v cv.) Then let c = min cv: we have
∑

v∈V

(
cv

bcv/2c

)−1/2
> n

(
c+1

b(c+1)/2c

)−1/2

and so
(

c+1
b(c+1)/2c

)
> n/(d + 1). The corollary follows immediately.

A straightforward calculation shows that Corollary 7 implies the following
bound.

Corollary 9. Let G be a graph with vertex set V and average degree d ≤
n/630−1, where n = |V |. Suppose that (Av, Bv), v ∈ V , is cross-intersecting
off G. Then∑

v∈V

|Av|+ |Bv| ≥ n log2

(
n

d + 1

)
+

1

2
n log2 log2

(
n

d + 1

)
+ O(n). (12)

Since strongly separating systems are dual to cross-intersecting systems,
it follows that we obtain the same bound for systems that are strongly sep-
arating off G.

4 Separating matrices and oriented graphs

with diameter 2

In this section, we consider strongly separating matrices, and oriented graphs
of diameter 2. We shall prove a bound on the number of non-zero entries in
an n by n strongly separating matrix, and then use this to show that every
oriented graph with diameter 2 has at least (1 + o(1))n log2 n edges.

Given a matrix M = (mij) with n rows and columns, and entries in
{0, 1,−1}, we can define a system (A1, B1), . . . , (An, Bn) of pairs of sets,
where Ai = {j : mij = 1} and Bi = {j : mij = −1}. We shall refer to this
as the row system of M . The column system of M is defined similarly, and
is the same as the row system of MT . We say that M is weakly separating
if its row and column systems are both weakly separating. M is strongly
separating if its row and column systems are both strongly separating

How many nonzero entries must an n by n strongly separating matrix
contain?

10



Theorem 10. Let M be an n by n strongly separating matrix. Then M has
at least 2n log2 n− 3n log2 log2 n + O(n) nonzero entries.

Proof. Suppose that M is an n by n strongly separating matrix with fewer
than 2n log2 n nonzero entries. Let X be the set of rows and Y be the set of
columns. For X ′ ⊂ X and Y ′ ⊂ Y we write M [X ′, Y ′] for the submatrix of
M induced by rows X ′ and columns Y ′. Let α = 2(log2 n)2. Let X+ be the
set of rows with at least α nonzero entries and let Y + be the set of columns
with at least α nonzero entries. Let X− = X \ X+ and Y − = Y \ Y +, and
define nx = |X−| and ny = |Y −|. We may assume that n is large, as smaller
values are covered by the O(n) term.

Since M has fewer than 2n log2 n entries, |X+| ≤ 2n(log2 n)/α and so
nx ≥ n− 2n(log2 n)/α = n(1− 1/ log2 n). Now suppose there are m nonzero
entries in M [X−, Y −]. Define a graph GX on X− by joining x to y if there
is some z ∈ Y − such that axz = 1 and ayz = −1 or axz = −1 and ayz = 1
(so x and y are weakly separated by the columns of M [X−, Y −]). A column
in M [X−, Y −] with k entries weakly separates at most k2/4 ≤ αk/4 pairs of
rows. Since M [X−, Y −] has m nonzero entries it therefore separates at most
αm/4 pairs of rows, and so the average degree of GX is at most dx = αm/2nx.

Now consider M [X−, Y +]. The rows of Y + strongly separate the columns
in X− off Gx, and so by Corollary 9 the number of nonzero entries in the
matrix M [X−, Y +] is at least

nx log2(nx/(dx + 1)) +
1

2
nx log2 log2(nx/(dx + 1)) + O(nx).

Since dx = αm/2nx ≤ 2(log2 n)2 · (2n log2 n)/n = (log2 n)3 for large enough
n, we have log2 log2(nx/(dx + 1)) = log2 log2 nx + O(1). Thus the number of
nonzero entries in M [X−, Y +] is at least

nx

(
log2 nx − log2(dx + 1) +

1

2
log2 log2 nx + O(1)

)
,

which equals

n
(
log2 n− log2(dx + 1) +

1

2
log2 log2 n + O(1)

)
.

So the number of nonzero entries in M [X−, Y +] and M [X+, Y −] plus the m
entries in M [X−, Y −] totals at least

n
(
2 log2 n− 2 log2(dx + 1) + log2 log2 n + m/n + O(1)

)
.
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If dx ≤ 1 then we are done immediately. Otherwise, note that

m/n− 2 log2(dx + 1) = m/n− 2 log2(αm/n) + O(1)

≥ −2 log2 α + O(1)

≥ −4 log2 log2 n + O(1).

The result follows immediately.

We can obtain a similar bound for weakly separating matrices by employ-
ing Lemma 3 instead of Corollary 9, at the cost of a slightly worse constant
in the n log2 log2 n term. In both the weakly and strongly separating cases,
it would be interesting to know the best possible constant in this term.

We are now ready to prove our result on oriented graphs of diameter 2.
However, let us begin by remarking that the analogous problem for digraphs,
where we allow both edges xy and yx, is easily settled.

Lemma 11. Let G be a digraph of order n ≥ 5 and diameter at most 2.
Then e(G) ≥ 2n−2, with equality only if G is the digraph obtained by taking
all 2n− 2 edges incident with a single vertex.

We remark that, for n = 4, a copy uvwx of C4 with cyclic orientation,
and additional edges uw and wu, gives another extremal graph. For n = 3,
the triangle with cyclic orientation is extremal.

Proof. Suppose that G is a digraph of order n with diameter 2 and 2n − 2
edges. We shall show that G is the extremal digraph (which is edge-minimal).
Note first that the diameter condition implies that every vertex has outdegree
at least 1, so by summing outdegrees we see that some vertex v has exactly
one outneighbour w. Since every vertex can be reached from v by a directed
path of length at most 2, the outneighbourhood of w contains every vertex
in V (G) \ {v, w}. There are now two cases.

If Γ+(w) = V (G)\w then, since every vertex has at least one outedge, we
have e(G) =

∑
v∈V (G) d+(v) = d+(w) +

∑
x∈V (G)\w d+(x) ≥ (n− 1) + (n− 1).

Thus every vertex other than w must have outdegree exactly 1. If every vertex
other than w has outneighbour w, we are done. Otherwise, some x 6= w has
outneighbour y 6= w. But then we can only reach two vertices (y and its
outneighbour) from x with paths of length at most 2, which contradicts our
assumption on diameter if n ≥ 5.

In the remaining case, Γ+(w) = V (G) \ {v, w}. Summing degrees, we see
that there is some x 6= w with outdegree 2, and every other vertex y 6= x, w
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has outdegree 1. If some y 6= v, x, w has outneighbour w, then there is no
path of length at most 2 from y to v. But then the outneighbour of y has
outdegree at most 2, so we can reach at most 3 vertices from y with paths of
length at most 2. Thus this case cannot occur for n ≥ 5.

There is a striking difference between digraphs of diameter 2 and oriented
graphs of diameter 2. We now concentrate on the oriented case.

Theorem 12. Let G be an oriented graph of diameter at most 2. Then
e(G) ≥ n log2 n− 3

2
n log2 log2 n−O(n).

Proof. Let G be an oriented graph of order n with diameter at most 2. Let
V (G) = {v1, . . . , vn}, and let A = (aij) be the adjacency matrix of G (so
aij = 1 if vivj ∈ E(G), aij = −1 if vjvi ∈ E(G) and aij = 0 otherwise).
Define M = A + I, where I is the identity matrix.

We first show that M is a strongly separating matrix. Consider first the
rows of M . It is enough to show that if i and j are distinct then there is k
with aik = 1 and ajk = −1. If ij ∈ E(G) then we can take k = i, as we have
aik = aii = 1 and ajk = aji = −aij = −1. Otherwise there is k such that
vivk ∈ E(G) and vkvj ∈ E(G). Then aik = 1 and akj = −ajk = −1. Now
consider MT = AT + I. Since AT is the adjacency matrix for the graph G′

obtained from G by reversing the orientation of every edge, and G′ also has
diameter at most 2, it follows that the rows of MT and therefore the columns
of M form a strongly separating system.

By Theorem 10, M has at least 2n log2 n− 3n log2 log2 n + O(n) nonzero
entries. Since A has two nonzero entries for each edge of G, and has n fewer
nonzero entries than M , the theorem follows.

The leading term in Theorem 12 is correct, as shown by the following
example.

Example 13. Let k be an even positive integer and consider the complete
bipartite graph with vertex classes V1 and V2, where |V1| =

(
2k+1

k

)
and |V2| =

2k+1. We orient the graph such that every vertex in V1 has outdegree k (and
hence indegree k+1), and every vertex in V1 has a distinct outneighbourhood.
Every k-set of vertices from V2 is the outneighbourhood of exactly one vertex
in V1 and the orientation is unique up to isomorphism. It is easy to check
that there is a directed path of length at most 2 between any two vertices
in V1 and between any two vertices in V2. Now add an edge between every
pair of vertices in V2, and orient them so that the oriented graph induced by

13



V2 is k-out-regular. Pick x ∈ V1 and y ∈ V2. If there is no directed path of
length at most 2 from x to y then the outneighbours of x must be precisely
the inneighbours of y in V1. Thus, for each y in V2, there is at most one such
x. (There must be a directed path of length at most two from y to x, as x
has k + 1 inneighbours in V2, and these cannot be disjoint from y and its k
outneighbours in V2). Thus by adding an additional oriented edge inside V1

for each y ∈ V2 (there is plenty of room to do this) we obtain an oriented graph
with diameter 2. We therefore have an oriented graph with n = 2k+1+

(
2k+1

k

)
vertices and (2k+1)

(
2k+1

k

)
+2k+1 = n(log2 n+(1/2) log2 log2 n+O(1)) edges,

which is within O(n log2 log2 n) of the lower bound. The adjacency matrix
of this digraph also shows that our bounds on the number of nonzero entries
in a weakly or strongly separating matrix are also within O(n log2 log2 n) of
optimal.

It would be interesting to have a lower bound that is sharp to within
o(n log2 log2 n).
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