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Abstract. We prove the Erdős-Hajnal conjecture for the five-vertex path P5; that is, there exists c > 0

such that every n-vertex graph with no induced P5 has a clique or stable set of size at least nc. This

completes the verification of the Erdős-Hajnal property of all five-vertex graphs. Indeed, we show a

stronger statement, that P5 satisfies the polynomial version of a theorem of Rödl. To achieve this, we

combine simple probabilistic and structural ideas with the iterative sparsification framework introduced

in the series.

1. Introduction

All graphs in this paper are finite and with no loops or parallel edges. For graphs G,H, a copy of H

in G is an injective map φ : V (H) → V (G) satisfying uv ∈ E(H) if and only if φ(u)φ(v) ∈ E(G), for all

u, v ∈ V (H); and G is H-free if there is no copy of H in G. Let G denote the complement of G. We say

that H has the Erdős-Hajnal property if there exists c > 0 such that every n-vertex H-free graph has a

clique or stable set of size at least nc. Thus, H has the Erdős-Hajnal property if and only if H does. A

conjecture of Erdős and Hajnal [10, 11] says:

Conjecture 1.1. Every graph H has the Erdős-Hajnal property.

Over 25 years ago, Gyárfás [13] suggested proving Conjecture 1.1 for every five-vertex graph H; and

since then, this problem has been reiterated in [5, 9, 20]. By a theorem of Alon, Pach, and Solymosi [1]

that the class of graphs with the Erdős-Hajnal property is closed under vertex-substitution, the problem

reduces to showing Conjecture 1.1 for three graphs with five vertices: the bull (obtained from the

four-vertex path by adding a new vertex adjacent to the two middle vertices), the five-cycle C5, and

the five-vertex path P5 (or equivalently, the house P5). Chudnovsky and Safra [6] showed the Erdős-

Hajnal property for the bull (see [8, 15] for two new proofs using different methods); and more recently

Chudnovsky, Scott, Seymour, and Spirkl [8] showed it for C5, but the P5 case has remained open. There

has been a sequence of successively stronger partial results for P5. Let G be P5-free, with n vertices, and

let m be the size of its largest clique or stable set. Then there exists c > 0 such that:

• m ≥ 2c(logn)
1/2

, by a general theorem of Erdős and Hajnal [11] (the result is not special to P5; the

same holds with any excluded induced subgraph);

• m ≥ 2c(logn log logn)1/2 , and again this is true with any excluded induced subgraph [4];

• m ≥ 2c(logn)
2/3

, by a result of P. Blanco and M. Bucić [2];

• m ≥ 2(logn)
1−o(1)

, and this is true with P5 replaced by any path [16].

But finally we can prove the full conjecture for P5:

Theorem 1.2. P5 has the Erdős-Hajnal property.

As in some previous papers of this series, our main result is more general and says that P5 actually

satisfies the polynomial form of a theorem of Rödl, but to discuss this we need some further definitions

and results. For a graph G, |G| denotes the number of vertices of G. For ε > 0, we say that G is ε-sparse

if its maximum degree is at most ε|G|, and ε-restricted if one of G,G is ε-sparse. We also say S ⊆ V (G)

is ε-restricted if G[S] is ε-restricted. Rödl’s theorem [19] then states that:
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Theorem 1.3. For every ε ∈ (0, 12) and every graph H, there exists δ > 0 such that every H-free graph

G has an ε-restricted induced subgraph with at least δ|G| vertices.

The original proof of Rödl used the regularity lemma and gave tower-type dependence of δ on ε.

Fox and Sudakov [12] provided a proof that produces the bound δ = 2−d(log 1
ε
)2 for Theorem 1.3 (here

d > 0 is some constant depending on H only); and currently the best known bound for this theorem is

δ = 2−d(log 1
ε
)2/ log log 1

ε , obtained in [4]. Fox and Sudakov [12] also conjectured that in Theorem 1.3, δ

can be taken to be a power of ε. More exactly, we say that a graph H has the polynomial Rödl property

if there exists d > 0 such that for every ε ∈ (0, 12), every H-free graph G has an ε-restricted induced

subgraph with at least εd|G| vertices. It is not hard to check that H has the Erdős-Hajnal property if it

has the polynomial Rödl property. The Fox–Sudakov conjecture is then the following:

Conjecture 1.4. Every graph H has the polynomial Rödl property.

It is unknown whether Conjecture 1.1 implies Conjecture 1.4. As mentioned above, the main result of

this paper says that Conjecture 1.4 holds for H = P5, which contains Theorem 1.2:

Theorem 1.5. P5 has the polynomial Rödl property.

2. Blockades, and some proof ideas

If k ≥ 0 is an integer, we define [k] := {1, 2, . . . , k}. If G is a graph, and A,B ⊆ V (G) are disjoint, we

say that (A,B) is anticomplete in G (or A is anticomplete to B in G) if there is no edge between A,B;

and we say that (A,B) is complete in G (or A is complete to B in G) if (A,B) is anticomplete in G.

Also, a vertex v ∈ V (G) \A is mixed on A if it has a neighbour and a nonneighbour in A. A blockade in

G is a sequence B = (B1, . . . , Bk) of disjoint (and possibly empty) subsets of V (G); its length is k and

its width is mini∈[k]|Bi|. For ℓ, w ≥ 0, B is an (ℓ, w)-blockade if it has length at least ℓ and width at least

w. We say that B is pure if (Bi, Bj) is complete or anticomplete for all distinct i, j ∈ [k], complete in G

if (Bi, Bj) is complete in G for all distinct i, j ∈ [k], and anticomplete in G if (Bi, Bj) is anticomplete in

G for all distinct i, j ∈ [k].

For x > 0 and disjoint A,B ⊆ V (G), we say that B is x-sparse to A in G if every vertex in B has at

most x|A| neighbours in A. For A,B ̸= ∅, the edge density between A,B in G is the number of edges

between A,B in G divided by |A||B|; and we say that (A,B) is weakly x-sparse in G if the edge density

between A,B in G is at most x. A blockade B = (B1, . . . , Bk) in G is x-sparse in G if Bj is x-sparse to

Bi in G for all i, j ∈ [k] with i < j.

The proof of Theorem 1.5 is in two parts; first we prove a lemma, and then we use the lemma to prove

the main theorem. The lemma is of some interest in its own right, so let us discuss it here before we go

on. The following was proved in [7]:

Theorem 2.1. If H is a forest, there exists c > 0 such that if G is an H-free, c-sparse graph with

|G| ≥ 2, then there exist disjoint A,B ⊆ V (G) with |A|, |B| ≥ c|G| such that A,B are anticomplete. If

H is not a forest, there is no such c.

It is straightforward, using Theorem 1.3 and Theorem 2.1 (applied in the complement), to deduce the

following, a version of Theorem 2.1 without the sparsity hypothesis:

Theorem 2.2. If H is a forest, then for all d with 0 < d ≤ 1/2 there exists c > 0 such that if G is an

H-free graph with |G| ≥ 2, then there exist disjoint A,B ⊆ V (G) with |A|, |B| ≥ c|G| such that either

A,B are complete, or A,B are weakly d-sparse to each other. If H is not a forest, then for all d with

0 < d ≤ 1/2, there is no such c.

Let H be a graph: let us say H is nice (for lack of a better word) if there exist a, b > 0 such that for

every H-free graph G and every ε with 0 < ε ≤ 1/2, there is an (ε−1, ⌊εa|G|⌋)-blockade (B1, . . . , Bℓ) in
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G, such that for all distinct i, j ∈ [ℓ], (Bi, Bj) is either complete or weakly εb-sparse in G. A key lemma

of this paper is that P5 is nice; but before we go on to its proof, let us consider niceness in general. Which

graphs are nice? By taking ε = 1/2, Theorem 2.2 implies that every nice graph is a forest; but perhaps

all forests are nice. We have not been able to decide that, but we would like to make three points:

• Perhaps niceness is a halfway point towards proving Theorem 1.5 for forests, because every forest

H with the polynomial Rödl property is nice. To see this, suppose H has the polynomial Rödl

property; then we have some d > 0 such that for every ε ∈ (0, 12) and every H-free graph G, there

exists an ε2d-restricted S ⊆ V (G) with |S| ≥ ε2d
2 |G|. If G[S] is ε2d-sparse then it is easy to get a

weakly εd-sparse (ε−1, ⌊ε10d2 |G|⌋)-blockade in G[S]. If G[S] is ε2d-sparse then we can increase d if

necessary and iterate Theorem 2.1 to get a complete (ε−1, ⌊ε10d2 |G|⌋)-blockade in G[S] (we omit

the details).

• The niceness of a forest H by itself does not seem enough to prove the Erdős-Hajnal (or polynomial

Rödl) property for H directly. Niceness gives us a blockade in which all the pairs are sparse or

complete. We can make a graph with a vertex for each block, with an edge for each complete pair

of blocks, and we would know that this “pattern graph” is H-free; but we know nothing else about

it. If we apply induction to it, we prove just the “near-polynomial Rödl” property of H (that is,

δ can be taken as 2−(log 1
ε
)1+o(1)

in Theorem 1.3), which implies the “near-Erdős-Hajnal” property

(2(logn)
1−o(1)

in place of nc).

• Let us say H is strongly nice if it satisfies the niceness condition with “weakly εd-sparse” changed to

“anticomplete”. This is too strong to be interesting, because when ε is a constant that would mean

everyH-free graph contains a linear pure pair, which is not true unless |H| ≤ 4 (see [7]). In the other

direction, let us say H is weakly nice if it satisfies the niceness condition with “complete” changed

to “weakly εb-sparse in G”. This is still an interesting property. We don’t know that being weakly

nice is equivalent to either the polynomial Rödl property or the near-polynomial Rödl property,

but it is somewhere between them: every graph H with the polynomial Rödl property is weakly

nice (not just forests); and every weakly nice graph has the near-polynomial Rödl property. We

have nothing else to say about it in this paper.

Returning to P5: the first half of the proof of Theorem 1.5 is to prove a lemma that says that P5 is

nice. We will in fact prove:

Lemma 2.3. There exists d ≥ 40 for which the following holds. Let ε ∈ (0, 12), and let G be a P5-free

graph. Then there is an (ε−1, ⌊ε10d2 |G|⌋)-blockade (B1, . . . , Bℓ) in G such that for all distinct i, j ∈ [ℓ],

(Bi, Bj) is either complete or weakly εd-sparse in G.

Both the proof of Lemma 2.3, and its application to prove Theorem 1.5, use what we call “iterative

sparsification”, which can be summarized as follows. We start with a graph G, that is H-free for some

fixed H, and we are given x with 0 < x ≤ 1/2. In order to prove the polynomial Rödl property for H, we

need to show that G contains an x-restricted induced subgraph with at least poly(x)|G| vertices, where
the polynomial depends on H but not in G. We can assume that x is at most any positive constant that

is convenient. For the method to work, there needs to be a lemma that says that for any value of y ≥ x,

if we have an induced subgraph F of G that is y-restricted, then either

• there is an induced subgraph F ′ of F with |F ′| ≥ poly(y′)|F | that is y′-restricted, where yD ≤ y′ ≤
yd for some fixed D ≥ d > 1; or

• some other good thing happens.

To use the lemma, we choose a subgraph F of linear size that is y-restricted for y some small constant

(we can do this, for instance by applying Rödl’s theorem). Now we apply the lemma to F , and, if the

“other good thing” does not happen, we find F ′ and y′. Repeat, and if the “other good thing” never

happens, we recursively generate a nested sequence of induced subgraphs that are y-restricted for smaller
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and smaller values of y, and with size at least some polynomial in (the current value of) y times |G|. If y
becomes smaller than the target x, then the first time it does so, it is not much smaller than x (because

it is not much smaller than the previous value of y), and then we have the x-restricted induced subgraph

that we wanted. So we can assume that at some stage the “other good thing” happens.

3. Some preliminaries

In this section we gather several basic results. A graph G is anticonnected if G is connected; and an

induced subgraph F of G is an anticonnected component of G if F is a connected component of G. The

following fact says that graphs without large anticonnected components contain long and wide complete

blockades.

Lemma 3.1. Let k ≥ 2 be an integer, and let G be a graph whose anticonnected components have size

less than |G|/k. Then there is a complete (k, |G|/k2)-blockade in G.

Proof. By the hypothesis, there exists n ≥ 0 minimal for which there is a partition S0 ∪ S1 ∪ · · · ∪ Sn =

V (G) such that (S0, S1, . . . , Sn) is a complete blockade in G with |Si| < |G|/k for all i ∈ [n] ∪ {0}. In

particular n+ 1 > k and so n ≥ k. We may assume |S0| ≤ |S1| ≤ . . . ≤ |Sn|. If there exists i ∈ [n] with

|Si| < |G|/(2k), then |Si−1 ∪ Si| < |G|/k and so (S0, . . . , Si−2, Si−1 ∪ Si, Si+1, . . . , Sn) would contradict

the minimality of n. Hence |Si| ≥ |G|/(2k) ≥ |G|/k2 for all i ∈ [n]; and so (S1, . . . , Sn) is a complete

(k, |G|/k2)-blockade in G. This proves Lemma 3.1. ■

The following simple probabilistic lemma will be useful in Section 4.

Lemma 3.2. Let x ∈ (0, 12). Let G be a bipartite graph with bipartition (A,B) where every vertex in B

has at least x|A| neighbours in A. Then there exists A′ ⊆ A such that |A′| ≤ 1/x and there are at least
1
2 |B| vertices in B with a neighbour in A′.

Proof. Let k := ⌊1/x⌋; we may assume that |A| ≥ k. Choose s1, . . . , sk ∈ A uniformly and independently

at random, and let S = {s1, . . . , sk}. For each v ∈ B, since v has at least x|A| neighbours in A, the

probability that none of s1, . . . , sk is such a neighbour is at most(
|A| − x|A|

|A|

)k

= (1− x)⌊1/x⌋.

If x > 1/3, then (1− x)⌊1/x⌋ = (1− x)2 ≤ 4/9 ≤ 1/2. If x ≤ 1/3, then x⌊1/x⌋ ≥ 3/4, and so

(1− x)⌊1/x⌋ ≤ e−x⌊1/x⌋ ≤ e−3/4 ≤ 1/2.

So, in either case, the expected number of vertices in B with no neighbour in S is at most |B|/2; and
hence there is a choice of A′ ⊆ A with the desired property. This proves Lemma 3.2. ■

For ℓ, w ≥ 0 and a graph G, an (ℓ, w)-comb in G is a sequence of pairs ((ai, Bi) : i ∈ [k]) where

• (B1, . . . , Bℓ) is an (ℓ, w)-blockade in G;

• a1, . . . , ak are pairwise distinct, and {a1, . . . , ak}, B1, . . . , Bk are pairwise disjoint subsets of V (G);

and

• for all distinct i, j ∈ [k], ai is adjacent to every vertex of Bi in G and nonadjacent to every vertex

of Bj in G.

We call a1, . . . , ak the apexes of the comb.

To prove Lemma 2.3, we need a special case of the “comb” lemma from [8].

Lemma 3.3. Let G be a graph and let A,B ⊆ V (G) be nonempty and disjoint, such that each vertex in

A has at most ∆ > 0 neighbours in B. Then either:

• at most 20
√
|B|∆ vertices in B have a neighbour in A; or
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• for some integer k ≥ 1, there is a (k, |B|/k2)-comb ((ai, Bi) : i ∈ [k]) in G where ai ∈ A and

Bi ⊆ B for all i ∈ [k].

The final ingredient we need is a well-known result for sparse P5-free graphs [3], a special case of

Theorem 2.1. We include a short proof here for completeness.

Lemma 3.4. Let η = 2−5; then for every η-sparse P5-free graph G, there is an anticomplete (2, ⌊η|G|⌋)-
blockade in G.

Proof. Let G be η-sparse and P5-free; and suppose that there is no anticomplete (2, ⌊η|G|⌋)-blockade in
G. Then |G| ≥ η−1; and by Lemma 3.1 with k = 2, G has a connected component F with |F | ≥ 1

2 |G|.
Let v ∈ V (F ) and A be the set of neighbours of v in F ; then A ̸= ∅. Let F ′ := F \ (A ∪ {v}). Since

|F ′| ≥ |F | − |A| − 1 ≥ (12 − 2η)|G| ≥ 1
3 |G|, and therefore 1

4 |F
′| ≥ η|G|, Lemma 3.1 gives a connected

component J of F ′ with |J | ≥ 1
2 |F

′| ≥ 1
6 |G|. Since F is connected, there are u ∈ A,w ∈ V (J) with

uw ∈ E(F ). Let B be the set of vertices in J adjacent to u in F ; then w ∈ B and |B| ≤ η|G|. Thus

|J \B| ≥ 1
6 |G|−η|G| ≥ 1

8 |G| = 4η|G|. Again, by Lemma 3.1 with k = 2, J \B has a connected component

J ′ with |J ′| ≥ 1
2 |J \B| ≥ 2η|G|. Hence, since J is connected and w has degree at most η|G| < |J ′|, w is

mixed on V (J ′) in J ; and so there are z, z′ ∈ V (J ′) with wz ∈ E(J), wz′ /∈ E(J). But then {u, v, w, z, z′}
forms a copy of P5 in G, a contradiction. This proves Lemma 3.4. ■

4. Using a comb

We will obtain Lemma 2.3 as a consequence of the followng:

Lemma 4.1. There exists d ≥ 40 for which the following holds. For every x ∈ (0, 2−d) and every P5-free

graph G with |G| ≥ x−d, there exist k ∈ [2, 1/x] and a pure or x-sparse (k, |G|/kd)-blockade in G.

And the first step of the proof of Lemma 4.1 is Lemma 4.2 below; let us sketch the proof of that. Let

x ≤ y be sufficiently small positive variables, and let G be a y-sparse P5-free graph. If G is actually

y/2-sparse then G is already (much) sparser than what we knew about it; so let us assume that there

is a vertex v of degree at least (y/2)|G| in G. We will apply Lemma 3.3 to obtain a comb between the

neighbourhood B of v and the rest of the graph; but instead of taking a comb with apexes in B that

expands into the rest of G (as was done in [8]), we will build an “upside-down” comb ((ai, Bi) : i ∈ [k])

(for some k ≥ 1), with apexes in V (G) \ B that goes from the rest of G back into B (in other words, v

is nonadjacent to a1, . . . , ak and adjacent to every vertex in B1 ∪ · · · ∪ Bk; see Fig. 1). Such a comb is

potentially useful, because if we can arrange for every G[Bi] to be anticonnected (Lemma 3.1), then the

blockade B = (B1, . . . , Bk) has to be pure: whenever there is a vertex from some Bj mixed on another

block Bi, the anticonnectivity of G[Bi] would then give a copy of the house P5 in G that contains v and

ai (Fig. 1).

Thus, B is pure; but to satisfy the lemma, it must have the right length and width. First, we

need its width to be at least poly(1/k)|G| where k is its length. The blocks B1, . . . , Bk are subsets of

B; and the application of Lemma 3.3 tells us that B is a (k, |B|/O(k2))-blockade in G[B], and so a

(k, (y/2)|G|/O(k2))-blockade in G, but it gives us no lower bound on k. To ensure that the width of B
is at least poly(1/k)|G|, we need k to be at least some small power of y−1. But we can arrange this as

follows. Let us choose the comb to that it contains no vertices outside B that see at least a y1/2 fraction

of B. There are not many such vertices (at most O(y1/2)|G|), because |B| ≥ y|G| and everyone in B sees

at most y|G| vertices outside. In other words, by letting A be the set of vertices with at most y1/2|B|
neighbours in B, we have |A| ≥ (1−O(y1/2))|G|; so let us choose the comb with every apex ai in A. Then

the width of the comb is at least |B|/O(k2) and at most y1/2|B|, and this ensures that k ≥ Ω(y−1/4), as

we wanted. Consequently we can arrange that B is a pure (k, |G|/O(k6))-comb in G.
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Another thing we need, for B to satisfy the lemma, is a good upper bound on its length k. We

can arrange that k ≤ poly(1/x) (or another good thing happens), by putting a further restriction on

how we choose the comb. Given A,B as above, if there are too many vertices of B (at least half,

say) seeing fewer than x2|A| vertices in A, then it is easy to obtain subsets A′ ⊆ A, B′ ⊆ B with

|A′| ≥ (1−O(x))|A| ≥ (1−O(y1/2))|G| and |B′| ≥ 1
2 |B| ≥ Ω(y)|G| such that A′ is x-sparse to B′. This

is another desirable outcome for us, since we can iterate inside A′, and if we keep getting this outcome,

we will produce an x-sparse (Ω(y−1/2),Ω(y)|G|)-blockade. So we may assume there are at least 1
2 |B|

vertices of B with at least x2|A| neighbours in A; and then Lemma 3.2 gives us some subset S of A of

size at most x−2 that “covers” a constant fraction of B. By Lemma 3.3, the apexes a1, . . . , ak of the

comb can be taken from S, and so k ≤ x−2 as a consequence.

That was a sketch of the proof of Lemma 4.2. Next we will write it out, with cosmetic adjustments in

the constant factors and exponents.

v

B1B1

a1

B2B2

a2

Bk

ak

· · · · · ·

ai

Bi Bj

v

Figure 1. Making a house from an upside-down comb with anticonnected blocks.

We begin with the following lemma:

Lemma 4.2. Let x, y > 0 with x ≤ y ≤ 2−8, and let G be a y3-sparse P5-free graph. Then either:

• G is 2y4-sparse;

• there exist k ∈ [y−1/4, 1/x] and a pure (k, |G|/k26)-blockade in G; or

• there are disjoint X,Y ⊆ V (G) such that |X| ≥ ⌊y4|G|⌋, |Y | ≥ (1−4y)|G|, and Y is x-sparse to X.

Proof. Assume that the first and third outcomes do not hold; then y4|G| ≥ 1. Since the first outcome

does not hold, G has a vertex v of degree at least 2y4|G|. Let N be its set of neighbours.

Claim 4.3. There exist A ⊆ V (G) \ (N ∪ {v}) and B ⊆ N such that

• |B| ≥ y4|G| and |A| ≥ (1− 3y)|G|; and
• every vertex in B has at least x2|A| neighbours in A and A is y2-sparse to B.

Subproof. We have |N | ≥ 2y4|G|. Let A′ be the set of vertices in V (G) \ (N ∪ {v}) with at least
1
2y

2|N | neighbours in N . By averaging, there is a vertex in N with at least 1
2y

2|A′| neighbours in A′;

and so 1
2y

2|A′| ≤ y3|G|, which yields that |A′| ≤ 2y|G|. Let A := V (G) \ (N ∪ A′ ∪ {v}); then since

1 + y2|G| ≤ y|G|, we have

|A| ≥ |G| − (1 + y2|G|+ 2y|G|) ≥ (1− 3y)|G|.

Let N ′ be the set of vertices in N with at most x2|A| neighbours in A, and let B := N \N ′. There are

at most x|A| vertices in A with more than x|N ′| neighbours in N ′, since there are at most x2|A| · |N ′|
edges between A and N ′; so there are at least

|A| − x|A| ≥ (1− 3y)|G| − x|G| ≥ (1− 4y)|G|
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vertices in A with at most x|N ′| neighbours in N ′. Thus, |N ′| ≤ y4|G| ≤ 1
2 |N |, since the third outcome

of the lemma does not hold, and so

|B| = |N | − |N ′| ≥ 1
2 |N | ≥ y4|G|.

Since A is 1
2y

2-sparse to N , it is y2-sparse to B. This proves Claim 4.3. □

Let A,B be given by Claim 4.3; then Lemma 3.2 (with x2 in place of x) gives S ⊆ A with |S| ≤
x−2 such that there are at least 1

2 |B| vertices in B with a neighbour in S. Since y < 1
40 , more than

20
√
|B|∆ = 20y|B| vertices in B have a neighbour in S. So by Lemma 3.3 with ∆ = y2|B| for some

integer ℓ ≥ 1, there is an (ℓ, |B|/ℓ2)-comb ((ai, Bi) : i ∈ [ℓ]) in G where ai ∈ S and Bi ⊆ B for all i ∈ [ℓ].

Since A is y2-sparse to B, |B|/ℓ2 ≤ y2|B| and so ℓ ∈ [y−1, x−2]. Let k := ⌈ℓ1/4⌉ ∈ [y−1/4, 1/x]; then

|B| ≥ y4|G| ≥ |G|/ℓ4 ≥ |G|/k16 and (B1, . . . , Bk) is a (k, |B|/k8)-blockade (note that k ≤
√
ℓ ≤ x−1/2).

Let I := [k].

Claim 4.4. There is a pure (k, |B|/k10)-blockade in G[B].

Subproof. For each i ∈ I, if G[Bi] has no anticonnected component of size at least |Bi|/k, then Lemma 3.1

gives a complete (k, |Bi|/k2)-blockade in G[Bi] (note that k ≥ y−1/4 ≥ 4); and this satisfies the claim

since |Bi|/k2 ≥ |B|/k10. Hence, we may assume each G[Bi] has an anticonnected component Di with

|Di| ≥ |Bi|/k2 ≥ |B|/k10.

For distinct i, j ∈ I, if there exists some u ∈ Dj mixed on Di, then u would have a neighbour w ∈ Di

and a nonneighbour z ∈ Di such that wz /∈ E(G) since Di is anticonnected; and so {v, u, w, z, ai} would

form a copy of P5 in G (see Fig. 1), a contradiction. Thus (Di : i ∈ I) is a pure blockade in G[B] of

length k and width at least |B|/k10. This proves Claim 4.4. □

Since |B|/k10 ≥ |G|/k26, Claim 4.4 gives a pure (k, |G|/k26)-blockade inG, which is the second outcome

of the lemma. This proves Lemma 4.2. ■

Next, we iterate Lemma 4.2 to turn its third outcome (an x-sparse pair) into an x-sparse blockade

outcome, as follows.

Lemma 4.5. Let c := 2−8. Let x, y > 0 with x ≤ y ≤ c, and let G be a cy3-sparse P5-free graph.

Then either:

• there exists S ⊆ V (G) such that |S| ≥ c|G| and G[S] is 2y4-sparse;

• there exist k ∈ [y−1/4, 1/x] and a pure (k, |G|/k30)-blockade in G; or

• there is an x-sparse (y−1, ⌊y6|G|⌋)-blockade in G.

Proof. Suppose that none of the outcomes holds; then y6|G| ≥ 1. Thus there exists n ≥ 0 maximal

such that there is an x-sparse blockade (B0, B1, . . . , Bn) with |Bi−1| ≥ ⌊y6|G|⌋ for all i ∈ [n] and

|Bn| ≥ (1−4y)n|G|. Since the third outcome does not hold, n < y−1; and so by the inequality 1−t ≥ 4−t

for all t ∈ [0, 12 ],

|Bn| ≥ (1− 4y)n|G| ≥ 4−4yn|G| > 4−4|G| = c|G| ≥ y|G| ≥ x|G|.

Hence G[Bn] has maximum degree at most cy3|G| < y3|Bn|; and since the first outcome does not hold,

G[Bn] is not 2y
4-sparse. Therefore, by Lemma 4.2, either:

• there exist k ∈ [y−1/4, 1/x] and a pure (k, |Bn|/k26)-blockade in G; or

• there are disjoint X,Y ⊆ Bn such that |X| ≥ ⌊y6|Bn|⌋, |Y | ≥ (1− 4y)|Bn|, and Y is x-sparse to X.

The first bullet cannot hold since |Bn|/k26 ≥ y|G|/k26 ≥ |G|/k30 and the second outcome of the

lemma does not hold. Thus the second bullet holds; but then (B0, B1, . . . , Bn−1, X, Y ) would contradict

the maximality of n since |X| ≥ ⌊y5|Bn|⌋ ≥ ⌊y6|G|⌋. This proves Lemma 4.5. ■
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The next result contains the “iterative sparsification” step of the proof. It allows us to replace the

the cy3-sparsity hypothesis of Lemma 4.5 with a “sparsity a small constant” hypothesis and still deduce

(essentially) the same conclusion.

Lemma 4.6. Let c := 2−8. Let x ∈ (0, c5), and let G be a c16-sparse P5-free graph. Then either:

• for some k ∈ [1/c, 1/x], there is a pure (k, |G|/k34)-blockade in G; or

• for some y ∈ [x, c5], there is an x-sparse (y−1, ⌊y7|G|⌋)-blockade in G.

Proof. Suppose that neither of the two outcomes holds. Let y ∈ [cx, c5] be minimal such that G

has a cy3-sparse induced subgraph F with |F | ≥ y|G|. (This is possible, since taking y = c5 has the

property.) Suppose that y < x; then F is x3-sparse with |F | ≥ y|G| ≥ cx|G| ≥ x2|G| ≥ x−5. Because

⌈x−1⌉ · ⌈14x|F |⌉ ≤ 2x−1 · 12x|F | = |F |, there is an (x−1, 14x|F |)-blockade in F , which is then x-sparse since
1
4x ≥ x2. Thus, since 1

4x|F | ≥ 1
4cx

2 ≥ x3|G|, this would be an x-sparse (x−1, x3|G|)-blockade in G, a

contradiction.

Consequently y ≥ x. By Lemma 4.5 applied to F , either:

• F has a 2y4-sparse induced subgraph with at least c|F | ≥ cy|G| vertices;
• there exist k ∈ [y−1/4, 1/x] ⊆ [1/c, 1/x] and a pure (k, |F |/k30)-blockade in F ; or

• there is an x-sparse (y−1, ⌊y6|F |⌋)-blockade in F .

The first bullet would give a 2y4-sparse induced subgraph of F (and so of G) with at least cy|G| vertices,
which contradicts the minimality of y since 2y4 ≤ c4y3 = c(cy)3. If the second bullet holds, then since

|F |/k30 ≥ y|G|/k30 ≥ |G|/k34, there would be a pure (k, |G|/k34)-blockade in G, a contradiction. If the

third bullet holds, then since y6|F | ≥ y7|G|, there would be an x-sparse (y−1, ⌊y7|G|⌋)-blockade in G, a

contradiction. This proves Lemma 4.7. ■

Next, by applying Rödl’s theorem 1.3, we remove the sparsity hypothesis in Lemma 4.6 completely,

and prove Lemma 4.1, which we restate:

Lemma 4.7. There exists d ≥ 40 for which the following holds. For every x ∈ (0, 2−d) and every P5-free

graph G with |G| ≥ x−d, there exist k ∈ [2, 1/x] and a pure or x-sparse (k, |G|/kd)-blockade in G.

Proof. Let c := 2−8, and η := 2−5, and let ξ := c16). By Theorem 1.3, there exists θ ∈ (0, 1) such that

every P5-free graph G contains a ξ-restricted induced subgraph with at least θ|G| vertices. We shall prove

that every d ≥ 40 with 2d−1 ≥ (ηθ)−1 satisfies the lemma. To show this, let x ∈ (0, 2−d), and let G be

P5-free with |G| ≥ x−d. We must show that there exists k ∈ [2, 1/x] such that there is a pure or x-sparse

(k, |G|/kd)-blockade in G. By the choice of θ, G has a ξ-restricted induced subgraph F with |F | ≥ θ|G|.
If F is ξ-sparse, then since F is P5-free, Lemma 3.4 gives an anticomplete (2, ⌊η|F |⌋)-blockade in F ; and

we are done since ⌊η|F |⌋ ≥ ⌊ηθ|G|⌋ ≥ ⌊|G|/2d−1⌋ ≥ |G|/2d by the choice of d. Hence, we may assume

that F is ξ-sparse (and so is c16-sparse). Since x ∈ (0, 2−d) ⊆ (0, c5), Lemma 4.6 implies that either:

• for some k ∈ [1/c, 1/x], there is a pure (k, |S|/k34)-blockade in F ; or

• for some y ∈ [x, c5], there is an x-sparse (y−1, ⌊y7|F |⌋)-blockade in F .

If the first bullet holds, then |G| ≥ x−d ≥ kd, k ≥ 1/c = 28, and d ≥ 40 which together imply

|F |/k34 ≥ θ|F |/k34 ≥ 2−d|F |/k34 ≥ k−d/8|G|/k34 ≥ |F |/kd;

and so there would be a pure (k, |F |/kd)-blockade in G and we are done. If the second bullet holds, then

since

⌊y7|F |⌋ ≥ ⌊θy7|G|⌋ ≥ ⌊21−dy7|G|⌋ ≥ ⌊2yd/8+7|G|⌋ ≥ ⌊2yd|G|⌋ ≥ yd|G|,

there would be an x-sparse (y−1, yd|G|)-blockade in G and we are done. This proves Lemma 4.7. ■
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5. The proof of Lemma 2.3

Next we will deduce Lemma 2.3 from Lemma 4.7. If we take x to be a power of εd, then Lemma 4.7

already gives us something like what we want for Lemma 2.3, but the blockade we obtain might have

length too small. If so, then it still has very large blocks, and we can apply Lemma 4.7 to each block

to get a longer blockade, and repeat. This idea is formalized in the following general theorem (with no

P5-free condition), which is a slight modification of a theorem of [15].

Theorem 5.1. Let G be a graph, and let ε ∈ (0, 12) and d ≥ 1. Let x := ε5d. Assume that for every

induced subgraph F of G with |F | ≥ εd|G|, there exists k ∈ [2, 1/x] such that there is a pure or x-sparse

(k, |F |/kd)-blockade in F . Then there is an (ε−1, ⌊x2d|G|⌋)-blockade (B1, . . . , Bℓ) in G, such that for all

distinct i, j ∈ [ℓ], (Bi, Bj) is either complete or weakly εd-sparse in G.

Proof. We may assume that |G| ≥ x−2d. Let J be a graph; and for each j ∈ V (J) let Aj be a nonempty

subset of V (G), pairwise disjoint, such that for all distinct i, j ∈ J , Ai is complete to Aj whenever i, j

are adjacent in J . We call L = (J, (Aj : j ∈ V (J))) a layout. A pair {u, v} of distinct vertices of G is

undecided for a layout (J, (Aj : j ∈ V (J))) if there exists j ∈ V (J) with u, v ∈ Aj ; and decided otherwise.

A decided pair {u, v} is wrong for (J, (Aj : j ∈ V (J))) if there are distinct i, j ∈ V (J) such that u ∈ Ai,

v ∈ Aj , and u, v are adjacent in G while i, j are nonadjacent in J . We are interested in layouts in which

the number of wrong pairs is only a small fraction of the number of decided pairs. Choose a layout

L = (J, (Aj : j ∈ V (J))) satisfying the following:

• |Aj | ≥ ε2d|G| for each j ∈ V (J);

•
∑

j∈V (J) |Aj |1/d ≥ |G|1/d;
• the number of wrong pairs is at most x times the number of decided pairs; and

• subject to these three conditions, |J | is maximum.

(This is possible since we may take |J | = 1 and A1 = V (G) to satisfy the first three conditions.)

Claim 5.2. We may assume that |J | ≤ ε−1.

Subproof. Assume that |J | ≥ ε−1. Since the number of wrong pairs is at most x times the number of

decided pairs and so at most x|G|2, for every distinct i, j ∈ V (J) that are nonadjacent in J , the number

of edges between Ai, Aj is at most x|G|2 ≤ xε−4d|Ai||Aj | = εd|Ai||Aj |; that is, (Ai, Aj) is weakly εd-

sparse. Since |Ai| ≥ ε2d|G| ≥ x2d|G| for each j ∈ V (J), (Aj : j ∈ V (J)) is thus a blockade satisfying the

theorem. This proves Claim 5.2. □

Let A ∈ {Aj : j ∈ V (J)} satisfy |A| = maxj∈V (J) |Aj |. Since
∑

j∈V (J) |Aj |1/d ≥ |G|1/d, and |J | ≤ ε−1

by Claim 5.2, it follows that |A|1/d ≥ ε|G|1/d, that is, |A| ≥ εd|G|. By applying the hypothesis to G[A],

we obtain a pure or x-sparse (k, |A|/kd)-blockade (B1, . . . , Bℓ) in G[A], for some k ∈ [2, 1/x]. Let K be

the graph with vertex set [ℓ], such that for all distinct p, q ∈ [ℓ], p is adjacent to q in K if and only if Bp

is complete to Bq in G[A]; in particular K is edgeless if (B1, . . . , Bℓ) is x-sparse in G[A].

Claim 5.3. k ≥ ε−1.

Subproof. Suppose that k ≤ ε−1. Then each of the sets B1, . . . , Bℓ has size at least |A|/kd ≥ εd|A|. By

substituting K for the vertex of J corresponding to A, and replacing A by B1, . . . , Bℓ, we obtain a new

layout L′ = (J ′, (A′
j : j ∈ V (J ′))) say, where |J ′| > |J |. We claim that this violates the choice of L; and

so we must verify that L′ satisfies the first three bullets in the definition of L. To see this, observe that

each Bp satisfies |Bp| ≥ εd|A| ≥ ε2d|G|, and so the first bullet is satisfied. For the second bullet, since

B1, . . . , Bℓ all have size at least |A|/kd, it follows that

|B1|1/d + · · ·+ |Bℓ|1/d ≥ |A|1/d,
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and so
∑

j∈V (J ′) |A′
j |1/d ≥ |G|1/d. For the third bullet, let P be the set of all decided pairs for L, and

Q ⊆ P the set of wrong pairs for L; and define P ′, Q′ similarly for L′. Then P ⊆ P ′ and |Q| ≤ x|P | ≤
x|P ′|. Let R be the set of all pairs {u, v} with u, v ∈ A such that u, v belong to different blocks of

(B1, . . . , Bℓ). Then R ⊆ P ′ \ P and Q′ \Q ⊆ R. If (B1, . . . , Bℓ) is pure in G[A] then |Q′| ≤ |Q| ≤ x|P ′|;
and if (B1, . . . , Bℓ) is x-sparse in G[A], then |Q′ \Q| ≤ x|R| which yields |Q′ \Q| ≤ x|P ′ \ P |, and so

|Q′| ≤ |Q|+ |Q′ \Q| ≤ x|P |+ x|P ′ \ P | = x|P ′|.

This contradicts the choice of L, and so proves Claim 5.3. □

Since k ≤ 1/x and |A| ≥ εd|G| ≥ xd|G|, we have |Bp| ≥ |A|/kd ≥ xd|A| ≥ x2d|G| for each p ∈ [ℓ];

and for all distinct p, q ∈ [ℓ], (Bp, Bq) is either complete or weakly εd-sparse since x = ε5d ≤ εd. Hence

(B1, . . . , Bℓ) satisfies the theorem. This proves Theorem 5.1. ■

By combining Lemma 4.7 and Theorem 5.1, we prove Lemma 2.3, which we restate:

Lemma 5.4. There exists d ≥ 40 for which the following holds. Let ε ∈ (0, 12), and let G be a P5-free

graph. Then there is an (ε−1, ⌊ε10d2 |G|⌋)-blockade (B1, . . . , Bℓ) in G, such that for all distinct i, j ∈ [ℓ],

(Bi, Bj) is either complete or weakly εd-sparse in G.

Proof. We claim that d ≥ 40 given by Lemma 4.7 satisfies the lemma. Let x := ε5d ∈ (0, 2−d); and we

may assume that |G| ≥ ε−10d2 = x−2d. For every induced subgraph F of G with |F | ≥ εd|G|, we have

|F | ≥ εdx−2d ≥ x−d; and so by the choice of d, there exists k ∈ [2, 1/x] such that there is a pure or

x-sparse (k, |F |/kd)-blockade in F . Theorem 5.1 now gives an (ε−1, ⌊x2d|G|⌋)-blockade (B1, . . . , Bℓ) in G,

such that for all distinct i, j ∈ [ℓ], (Bi, Bj) is either complete or weakly εd-sparse in G. Since x2d = ε10d
2
,

this proves Lemma 5.4. ■

This completes the first half of the proof of Theorem 1.5.

6. Deducing Theorem 1.5

In this section we complete the proof of Theorem 1.5. Let us make one point which might clarify

why we need two rounds of iterative sparsification. Lemma 5.4 gives us blockades with the property

that every pair of blocks is complete or weakly sparse: let us call them “semisparse” for this discussion.

Lemma 4.5 tells us essentially that:

• If G is P5-free and O(y3)-sparse, then either we can sparsify further or there is a semisparse blockade

of length at least (1/y)1/4 and at most 1/x.

That result passed through the machinery of iterative sparsification, and was converted to Lemma 5.4.

The latter works in any P5-free graph, with no sparsity condition, and we can specify the length of the

blockade it gives us, by choose 1/ε appropriately. In particular, we can apply it in a y-sparse graph,

choosing ε to be some huge power of y; and we deduce that:

• If G is P5-free and y-sparse, then either we can sparsify further or there is a semisparse blockade

of length a huge power of 1/y.

So this is a much more powerful version of Lemma 4.5, and the length of this blockade gives rise to a

new way to sparsify, that is the key to the remainder of the proof of Theorem 1.5.

After Lemma 5.4, the next step in the proof of Theorem 1.5 is to prove Lemma 6.1 below, and that

is where we use the blockades given by Lemma 2.3. Let us sketch its proof. Let y be a small positive

variable, and let G be a y-sparse P5-free graph. Again, we try to do sparsification; if we can find a slightly

smaller value y′ such that there is a y′-sparse induced subgraph of size poly(y′/y)|G|, we will take that

as an outcome. We apply Lemma 5.4 with ε = yd to get a (y−d, ⌊y10d3 |G|⌋) blockade B = (B1, . . . , Bℓ)

in G (where ℓ = ⌈y−d⌉) such that every pair (Bi, Bj) is either complete or weakly yd
2
-sparse. Here we

can arrange each Bi to be anticonnected in G and of size about y10d
3 |G| (up to minor changes in their
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sizes and the density between them). How does the rest of G attach to B? Let v be some vertex not in

any of the blocks of B. Then v is anticomplete to some of the blocks, complete to others, and mixed on

the remainder. If there is some v outside of B that is mixed on at least yℓ blocks, then no two of these

blocks are complete to each other; for otherwise there would be a copy of P5; this is where the complete

property is crucial (see Fig. 2). Hence, these yℓ blocks are pairwise weakly yd
2
-sparse; and so their union

has edge density about O((yℓ)−1) = O(yd−1) and size at least y10d
3 |G|, which is a desirable sparsification

outcome. So we assume that there is no such v. It follows that there is some Bi with at most O(y)|G|
vertices of G mixed on it. But only a few vertices are complete to Bi since G is y-sparse; so almost all

are anticomplete to Bi. More exactly, Bi is anticomplete to a vertex subset of size (1−O(y))|G|, which
is another desirable outcome since |Bi| is about y10d

3 |G|. (This type of argument also appears in [17]

where we show that graphs of bounded VC-dimension have polynomial-sized cliques or stable sets.)

v

B1 B2 Br

≥ yℓ

ℓ

· · · · · · · · · Bi Bj

v

Figure 2. Using a really long semisparse blockade.

Lemma 6.1. There exists d ≥ 40 such that the following holds. Let y ∈ (0, 12), and let G be a y-sparse

P5-free graph. Then either:

• there exists S ⊆ V (G) with |S| ≥ y30d
3 |G| such that G[S] is y2d-sparse;

• there is a complete (y−1, y33d
3 |G|)-blockade in G; or

• there are disjoint X,Y ⊆ V (G) such that |X| ≥ y33d
3 |G|, |Y | ≥ (1− 3y)|G|, and Y is anticomplete

to X in G.

Proof. We claim that d ≥ 40 given by Lemma 5.4 satisfies the lemma. To show this, let y,G be as in the

lemma statement; and assume that the first two outcomes do not hold. In particular |G| ≥ y−30d3 since

the first outcome does not hold. Let ε := y3d ∈ (0, 2−3d); then |G| ≥ y−30d3 = ε−10d2 . Let ℓ := ⌈ε−1⌉
and m := ⌊ε10d2 |G|⌋ ≥ 1

2ε
10d2 |G|.

Claim 6.2. There is a blockade (B1, . . . , Bℓ) in G such that:

• for all i ∈ [ℓ], Bi is anticonnected in G and |Bi| = ⌈ε2m⌉; and
• for all distinct i, j ∈ [ℓ], (Bi, Bj) is either complete or εd−8-sparse to each other in G.

Subproof. By Lemma 5.4, there is an (ε−1, ⌊ε10d2 |G|⌋)-blockade (A1, . . . , Aℓ) in G, where ℓ = ⌈ε−1⌉ ≤
2ε−1, such that for all distinct i, j ∈ [ℓ], (Ai, Aj) is complete or weakly εd-sparse in G. Let J be the graph

with vertex set [ℓ] where distinct i, j ∈ V (J) are adjacent in J if and only if Ai is complete to Aj in G.

For each i ∈ [ℓ], let Xi be a uniformly random subset of Ai of size m = ⌊ε10d2 |G|⌋. For all distinct

i, j ∈ [ℓ] with ij /∈ E(J), the expected number of edges between Xi, Xj in G is at most εd|Xi||Xj |; and
so, since 1

2ℓ
2 = 1

2⌈ε
−1⌉2 ≤ ε−2, with positive probability (Xi, Xj) is weakly εd−2-sparse for all distinct

i, j ∈ [ℓ] with ij /∈ E(J).

For i = 1, 2, . . . , ℓ in turn, define a subset Bi of Xi as follows. Assume that B1, . . . , Bi−1 have been

defined, such that |Bp| = ⌈ε2m⌉ for all 1 ≤ p < q ≤ ℓ with pq /∈ E(J) and p < i,
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• Bp is εd−6-sparse to Bq and Bq is εd−8-sparse to Bp if q < i; and

• Bp is εd−4-sparse to Xq if q ≥ i.

For each p ∈ [ℓ] \ {i} with pi /∈ E(J), let Cp be the set of vertices in Xi with at least εd−8|Bp| neighbours
in Bp if p < i, and let Cp be the set of vertices in Xi with at least εd−4|Xp| neighbours in Xp if p > i;

then |Cp| ≤ ε2|Xi| for all p ∈ [ℓ] \ {i}. Let Di := Xi \ (
⋃

p∈[ℓ]\{i},pi/∈E(J)Cp); then |Di| ≥ (1− ε2ℓ)|Xi| ≥
(1−2ε)|Xi| ≥ 1

2m. If G[Di] has no anticonnected component of size at least |Di|/ℓ, then Lemma 3.1 (with

k = ℓ) would give a complete (ℓ, |Di|/ℓ2)-blockade in G[Di]; but this satisfies the second outcome of the

lemma since |Di|/ℓ2 ≥ 1
8ε

2m ≥ 1
16ε

2+10d2 |G| ≥ ε11d
2 |G| = y33d

3 |G| and ℓ ≥ ε−1 ≥ y−1, a contradiction.

Thus, G[Di] has an anticonnected component Bi with |Bi| ≥ |Di|/ℓ ≥ 1
4εm ≥ ε2m. By removing vertices

from Bi if necessary, we may assume that |Bi| = ⌈ε2m⌉. For every 1 ≤ p < i with pi /∈ E(J), since Bp is

εd−4-sparse to Xi, it follows that Bp is εd−6-sparse to Bi; and Bi is ε
d−8-sparse to Bp by definition.

This completes the inductive definition of B1, . . . , Bℓ; and it is not hard to check that (B1, . . . , Bℓ) is

a blockade of G satisfying the claim. This proves Claim 6.2. □

Let B := V (G) \ (B1 ∪ · · · ∪Bℓ); then since ε ≤ y2, we have

|B| ≥ |G| − ℓ⌈ε2m⌉ ≥ |G| − 2ℓε2m ≥ |G| − 4εm ≥ |G| −m ≥ (1− ε)|G| ≥ (1− y2)|G|.

Claim 6.3. No vertex in B is mixed on at least yℓ blocks among (B1, . . . , Bℓ).

Subproof. Suppose there is such a vertex v ∈ B; and assume that it is mixed on B1, . . . , Br, where

r ≥ yℓ ≥ y2d+1. If there are distinct i, j ∈ [r] such that Bi is complete to Bj in G, then since Bi, Bj

are anticonnected in G, there would be ui, wi ∈ Bi and uj , wj ∈ Bj such that uiv, ujv ∈ E(G) and

wiv, wjv /∈ E(G); but then {v, ui, uj , vi, vj} would form a copy of P5 in G (see Fig. 2), a contradiction.

Thus, Bi is εd−8-sparse to Bj for all distinct i, j ∈ [r]. Let S :=
⋃

i∈[r]Bi; then |S| = rm and G[S] has

maximum degree at most

m+ rεd−8m ≤ (y2d+1 + εd−8)rm ≤ 2y2d+1rm ≤ y2drm = y2d|S|

where the penultimate inequality holds since εd−8 = y3d(d−8) ≤ y3d ≤ y2d+1 (note that d ≥ 40). ThusG[S]

is y2d-sparse; but then S satisfies the first outcome of the lemma since |S| = rm ≥ ε10d
2 |G| = y30d

2 |G|,
a contradiction. This proves Claim 6.3. □

Claim 6.3 says that every vertex in B is mixed on fewer than yℓ blocks among (B1, . . . , Bℓ); and so

there exists i ∈ [ℓ] such that there are fewer than y|B| vertices in B mixed on Bi. Thus, since G is

y-sparse, there are at most y|G|+ y|B| vertices in B with a neighbour in Bi. Let Y be the set of vertices

in B with no neighbour in Bi; then, because |B| ≥ (1− y2)|G|, we have

|Y | ≥ (1− y)|B| − y|G| ≥ (1− y)(1− y2)|G| − y|G| ≥ (1− 3y)|G|

and the third outcome of the lemma holds since |Bi| ≥ ε2m ≥ 1
2ε

2+10d2 |G| ≥ ε11d
2 |G| = y33d

2 |G|. This

proves Lemma 6.1. ■

Let us now turn the third outcome of Lemma 6.1 into an anticomplete blockade outcome.

Lemma 6.4. There exists d ≥ 40 such that the following holds. Let y ∈ (0, 4−6], and let G be a y-sparse

P5-free graph. Then either:

• there exists S ⊆ V (G) with |S| ≥ y16d
3 |G| such that G[S] is yd-sparse; or

• there is a complete or anticomplete (y−1/2, y18d
3 |G|)-blockade in G.

Proof. We claim that d ≥ 40 given by Lemma 6.1 satisfies the lemma. We may assume |G| ≥ y−16d3 ,

for otherwise the first outcome trivially holds. Let n ≥ 0 be maximal such that there is an anticomplete

blockade (B0, B1, . . . , Bn) of G with |Bn| ≥ (1 − 2y1/2)n|G| and |Bi−1| ≥ y18d
3 |G| for all i ∈ [n]. If
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n ≥ y−1/2 then the second outcome of the lemma holds; and so we may assume n < y−1/2. Then since

y ≤ 4−6,

|Bn| ≥ (1− 3y1/2)n|G| ≥ 4−3y1/2n|G| ≥ 4−3|G| ≥ y|G| ≥ y−15d3 = (y−1/2)30d
3

and soG[Bn] has maximum degree at most y|G| ≤ 43y|Bn| ≤ y1/2|Bn| since y ≤ 4−6. Thus, by Lemma 6.1

(with y1/2 in place of y), either:

• there exists S ⊆ Bn with |S| ≥ y15d
3 |Bn| such that G[S] is yd-sparse;

• there is a complete (y−1/2, y17d
3 |Bn|)-blockade in G[Bn]; or

• there are disjointX,Y ⊆ Bn such that |X| ≥ y17d
3 |Bn|, |Y | ≥ (1−2y1/2)|Bn|, and Y is anticomplete

to X in G.

If the first bullet holds, then |S| ≥ y15d
3 |Bn| ≥ y16d

3 |G| and the first outcome of the lemma holds. If

the second bullet holds, then since y17d
3 |Bn| ≥ y18d

3 |G|, the second outcome of the lemma holds. If the

third bullet holds, then since |X| ≥ y17d
3 |Bn| ≥ y18d

3 |G| and |Y | ≥ (1− 2y1/2)|Bn| ≥ (1− 2y1/2)n+1|G|,
(B0, B1, . . . , Bn−1, X, Y ) would contradict the maximality of n. This proves Lemma 6.4. ■

Next we eliminate the sparsity hypothesis of Lemma 6.4, by means of Rödl’s theorem 1.3 and iterative

sparsification.

Lemma 6.5. There exists a ≥ 1 such that the following holds. For every x ∈ (0, 12) and every P5-free

graph G, either:

• G has an x-restricted induced subgraph with at least xa|G| vertices; or
• there is a complete or anticomplete (k, |G|/ka)-blockade in G, for some k ∈ [2, 1/x].

Proof. Let c := 4−6 and η = 2−5. Let d ≥ 40 be given by Lemma 6.4. By Theorem 1.3, there exists

t ≥ 36d2 such that for every P5-free graph G, there exists S ⊆ V (G) with |S| ≥ ct|G| such that G[S] is

c-restricted. We shall prove that every a ≥ 2dt with 2a−1 ≥ (ηct)−1 satisfies the lemma. To show this, let

x ∈ (0, c), and let G be P5-free with |G| ≥ x−a. Assume that the second outcome of the lemma does not

hold; that is, there is no k ∈ [2, 1/x] such that there is a complete or anticomplete (k, |G|/ka)-blockade
in G. By the choice of θ, there is a c-restricted S ⊆ V (G) with |S| ≥ θ|G|. If G[S] is c-sparse, then

since G[S] is P5-free, Lemma 3.4 gives an anticomplete (2, ⌊η|S|⌋)-blockade in G[S], a contradiction since

⌊η|S|⌋ ≥ ⌊ηct|G|⌋ ≥ ⌊|G|/2a−1⌋ ≥ |G|/2a by the choice of a. Hence, G[S] is c-sparse. Thus, there exists

y ∈ [xd, c] minimal (note that xd < 2−d < 2−12 = c) such that G has a y-sparse induced subgraph F

with |F | ≥ yt|G|.

Claim 6.6. y < x.

Subproof. Suppose not. By Lemma 6.4, either:

• F has a yd-sparse induced subgraph with at least y16d
3 |F | vertices; or

• there is a complete or anticomplete (y−1/2, y18d
3 |F |)-blockade in F .

Note that 18d3 + t ≤ dt ≤ 1
2a since d ≥ 2, t ≥ 36d2 ≥ 18d3

d−1 , and a ≥ 2dt. Thus, if the first bullet

holds, then G would have a yd-sparse induced subgraph with at least y16d
3 |F | ≥ y16d

3+t ≥ ydt|G| vertices,
which contradicts the minimality of y since yd ≥ xd. If the second bullet holds, then since y18d

3 |F | ≥
y18d

3+t|G| ≥ ydt|G| ≥ ya/2|G|, there would be a complete or anticomplete (y−1/2, ya/2|G|)-blockade in

G, which satisfies the second outcome of the lemma (with k = y−1/2) because x ≤ y1/2 ≤ c1/2 ≤ 1
2 , a

contradiction. This proves Claim 6.6. □

Since xd ≤ y < x, we have that F is x-sparse and |F | ≥ yt|G| ≥ xdt|G| ≥ xa|G|. Thus the first

outcome of the lemma holds, proving Lemma 6.5. ■

We are now ready to deduce the polynomial Rödl property of P5. The proof method holds under a

more general setting, and is similar to and simpler in part than that of Theorem 5.1.
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Theorem 6.7. Let ε ∈ (0, 12) and a ≥ 1, and let G be a graph. Assume that for every induced subgraph F

of G with |F | ≥ ε2a|G|, there exists k ∈ [2, 1/ε] such that there is a complete or anticomplete (k, |F |/ka)-
blockade in F . Then G has an ε-restricted induced subgraph with at least ε3a|G| vertices.

Proof. A cograph is a graph with no induced four-vertex path; and it is well known that every n-vertex

cograph has a clique or stable set of size at least
√
n. Let q ≥ 1 be a maximal integer such that there

exist a cograph J with vertex set [q] and a pure (q, ε3a|G|)-blockade (A1, . . . , Aq) in G satisfying:

• for all distinct i, j ∈ [q], (Ai, Aj) is complete in G if and only if ij ∈ E(J); and

•
∑

j∈[q]|Aj |1/a ≥ |G|1/a.

Claim 6.8. q ≥ ε−2.

Subproof. Suppose not. We may assume |A1| = maxj∈[q]|Aj |; then q|A1|1/a ≥ |G|1/a which yields |A1| ≥
|G|/qa ≥ ε2a|G|. Thus, the hypothesis gives k ∈ [2, 1/ε] and a complete or anticomplete (k, |A1|/ka)-
blockade (B1, . . . , Bℓ) in G[A1]. Let J ′ be the graph obtained from J by substituting a complete or

edgeless graph K for vertex 1 in J , such that |K| = ℓ and K is complete if and only if (B1, B2) is

complete in G[A1]. Then J ′ is a cograph with |J ′| > q. Now |Bi| ≥ |A1|/ka ≥ εa|A1| ≥ ε3a|G| for all

i ∈ V (K); and
∑

i∈V (K)|Bi|1/a ≥ k(|A1|/ka)1/a = |A1|1/a which implies∑
j∈[q]\{1}

|Aj |1/a +
∑

i∈V (K)

|Bi|1/a ≥
∑
j∈[q]

|Aj |1/a ≥ |G|1/a.

Consequently J ′ violates the maximality of q, a contradiction. This proves Claim 6.8. □

Since J is a cograph, it has a clique or stable set I with |I| ≥ √
q ≥ 1/ε. For every j ∈ I, let Sj ⊆ Aj

with |Sj | = ⌈ε3a|G|⌉; and let S :=
⋃

j∈I Sj . Then |S| = |I| · |Sj | ≥ ε3a|G| for all j ∈ I. If I is a clique

in J , then G[S] has maximum degree at most |S|/|I| ≤ ε|S|; and if I is a stable set in J , then G[S] has

maximum degree at most |S|/|I| ≤ ε|S|. Thus G[S] is an ε-restricted induced subgraph of G with at

least ε3a|G| vertices. This proves Theorem 6.7. ■

Proof of Theorem 1.5. Let a ≥ 1 be given by Lemma 6.4. It suffices to show that for every ε ∈ (0, 12),

every P5-free graph G has an ε-restricted induced subgraph with at least ε3a|G| vertices. Suppose not.

By Lemma 6.4 with x = ε, for every induced subgraph F of G with |F | ≥ ε2a|G|, either:
• F has an ε-restricted induced subgraph with at least εa|F | ≥ ε3a|G| vertices; or
• there is a complete or anticomplete (k, |F |/ka)-blockade in F for some k ∈ [2, 1/x].

Since the first bullet cannot hold by our supposition, the second bullet holds for every such induced

subgraph F . Then Theorem 6.7 implies that G has an ε-restricted induced subgraph with at least ε3a|G|
vertices, contrary to the supposition. This proves Theorem 1.5. ■

7. The viral property

A graph H is viral if there exists d > 0 such that for every ε ∈ (0, 12), every graph G with fewer than

(εd|G|)|H| copies of H contains an ε-restricted induced subgraph with at least εd|G| vertices; in other

words, H is viral if and only if it satisfies the polynomial form of Nikiforov’s theorem [18]. Thus, all viral

graphs have the polynomial Rödl property and hence the Erdős-Hajnal property. It was shown in this

series that, conversely, all graphs known to have the Erdős-Hajnal property are indeed viral (except for

the five-vertex cycle; that will be shown to be viral in Tung Nguyen’s thesis [14]). Indeed, we showed

in [15] that various new graphs have the Erdős-Hajnal property, and in that paper it was essential for

inductive purposes to prove the stronger result that they were viral.

What about P5? One can bootstrap the Erdős-Hajnal property of P5 into its viral property, by

adapting the arguments in Section 4 to sparse graphs with few copies of P5 and using an extension of

Lemma 3.4 to sparse graphs with few copies of P5. We omit the details, which will appear in [14].
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[4] M. Bucić, T. Nguyen, A. Scott, and P. Seymour. Induced subgraph density. I. A log log step towards Erdős–Hajnal,
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