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Abstract

Two subgraphs A,B of a graph G are anticomplete if they are vertex-disjoint and there are no edges
joining them. Is it true that if G is a graph with bounded clique number, and sufficiently large
chromatic number, then it has two anticomplete subgraphs, both with large chromatic number?
This is a question raised by El-Zahar and Erdős in 1986, and remains open. If so, then at least
there should be two anticomplete subgraphs both with large minimum degree, and that is one of our
results.

We prove two variants of this. First, a strengthening: we can ask for one of the two subgraphs
to have large chromatic number: that is, for all t, c ≥ 1 there exists d ≥ 1 such that if G has
chromatic number at least d, and does not contain the complete graph Kt as a subgraph, then there
are anticomplete subgraphs A,B, where A has minimum degree at least c and B has chromatic
number at least c.

Second, we look at what happens if we replace the hypothesis that G has sufficiently large
chromatic number with the hypothesis that G has sufficiently large minimum degree. This, together
with excluding Kt, is not enough to guarantee two anticomplete subgraphs both with large minimum
degree; but it works if instead of excluding Kt we exclude the complete bipartite graph Kt,t. More
exactly: for all t, c ≥ 1 there exists d ≥ 1 such that if G has minimum degree at least d, and does not
contain the complete bipartite graph Kt,t as a subgraph, then there are two anticomplete subgraphs
both with minimum degree at least c.



1 Introduction

We begin with some notation. If G is a graph and A ⊆ V (G), G[A] denotes the subgraph induced
on A. The chromatic number of G is denoted by χ(G), the size of its largest clique is denoted by
ω(G), and if A ⊆ V (G), we sometimes write χ(A) for χ(G[A]). If A,B are subsets of V (G), they are
anticomplete if A ∩B = ∅ and there are no edges of G between A and B.

There is a well-known problem of El-Zahar and Erdős [2, 3]:

1.1 Is the following true? For all integers t, c ≥ 1, there exists d ≥ 1, such that if χ(G) ≥ d and
ω(G) < t, then there are anticomplete subsets A,B ⊆ V (G) with χ(A), χ(B) ≥ c.

This remains open. El-Zahar and Erdős proved that under the same hypotheses, there are anticom-
plete subsets A,B ⊆ V (G) with χ(A) ≥ 3 and χ(B) ≥ c, but there has been little further progress.
(See [7] for results on an analogous question with infinite graphs and infinte chromatic number.) We
remark that if we omit the hypothesis about ω(G), the result is no longer true, and a large complete
graph is a counterexample.

Minimal graphs with large chromatic number have large minimum degree, and so if 1.1 is true,
under the same hypotheses there should at least be anticomplete subsets A,B ⊆ V (G) such that
G[A], G[B] have minimum degree at least c. This is true, and can be strengthened: we can require
that one of G[A], G[B] has chromatic number at least c. We will prove:

1.2 For all integers t, c ≥ 1, there exists d ≥ 1, such that if χ(G) ≥ d and ω(G) < t, then there are
anticomplete subsets A,B ⊆ V (G) where G[A] has minimum degree at least c and χ(B) ≥ c.

This suggests that a straightforward random graph counterexample to 1.1 is unlikely.
What if we relax the hypothesis that χ(G) is large, and just assume that G has large minimum

degree? With ω(G) bounded, can we still necessarily find anticomplete subsets A,B ⊆ V (G) such
that G[A], G[B] have minimum degree at least c? No: a large complete bipartite graph is a coun-
terexample. For this question, it becomes natural to bound τ(G) rather than ω(G), where τ(G) is
the largest integer t such that G contains Kt,t as a subgraph. We will prove:

1.3 For all integers t, c ≥ 1, there exists d ≥ 1, such that if G has minimum degree at least d and
τ(G) < t, then there are anticomplete subsets A,B ⊆ V (G) where G[A], G[B] both have minimum
degree at least c.

Finally, we will examine a possible extension of 1.1 to tournaments.

2 Some preliminary results

We denote the number of vertices of a graph G by |G|; and let us say the denseness of a non-null
graph G is |E(G)|/|G|. (In some papers this is called “density”, but density is also frequently used
to mean something else, so we prefer a different word.) The denseness of the null graph is zero. Also,
we define the minimum degree of the null graph to be zero.

The next result is well-known and standard.

2.1 Let d > 0. Every graph of minimum degree at least d has denseness at least d/2; and every
graph of denseness at least d has a subgraph with minimum degree at least d+ 1.
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Proof. The first statement is trivial. For the second, let G be a graph with denseness at least d,
and let H be a minimal subgraph of G with denseness at least d. Thus |E(H)| ≥ d|H|. If some
vertex v ∈ V (H) has degree at most d, then |H| ≥ 2 (since H has denseness at least d and d > 0),
so the graph H ′ obtained by deleting v is non-null and satisfies

|E(H ′)| ≥ |E(H)| − d ≥ d|H| − d = d|H ′|,

contrary to the minimality of H. This proves 2.1.

In view of 2.1, we can replace the conditions about minimum degree in 1.2 and 1.3 with conditions
about denseness, and this is a little more convenient.

If p ≥ 1 is an integer, let us say a p-rock of a graph G is a set A ⊆ V (G) such that

• A 6= ∅ and |E(G[A])| ≥ p|A|

• subject to the above, |A| is minimum; and

• subject to the two conditions above, |E(G[A])| is maximum.

We will need:

2.2 Let p ≥ 1 be an integer, let G be a graph, and let A be a p-rock of G. Then every vertex
v ∈ V (G) not in A has at most 2p+ 1 neighbours in A.

Proof. For a contradiction, suppose that v ∈ V (G) \ A has at least 2p + 2 neighbours in A. It
follows that |A| ≥ 2p + 2 ≥ 4. Choose u ∈ A with minimum degree in G[A], say degree δ. Let
A′ := (A\{u})∪{v} and A′′ := A\{u}. Since A is a p-rock and A′ has the same size as A, it follows
that G[A′] does not have more edges than G[A], and so δ ≥ 2p+ 1. But G[A′′] has minimum degree
at least δ − 1 ≥ 2p, and so has at least p|A′′| edges, contradicting that A is a p-rock. This proves
2.2.

We remark that the bound of 2.2 is tight, because for instance A might be a clique with 2p + 1
vertices. Our third lemma is rather obvious, but we will use it twice, so we might as well state it
explicitly:

2.3 Let H be a graph and q ≥ 1 an integer. Then there is a partition of E(H) into sets M0, . . . ,Mn

for some n ≥ 0, such that

• there is a subset X ⊆ V (H) with |X| ≤ 2q − 2 such that every edge in M0 is incident with a
vertex in X; and

• M1, . . . ,Mn are all matchings, each with cardinality q.

Proof. We use induction on |E(H)|. Suppose first that H has no matching with cardinality q. Let
M a maximal matching of H; then every edge of H has an end in X, where X is the set of vertices
incident with an edge of M , from the maximality of M . Since |M | ≤ q−1 and hence |X| ≤ 2q−2, we
may set M0 = E(H) and n = 0, and the theorem holds. So we may assume that H has a matching
M of cardinality q; but then the result follows from the inductive hypothesis applied to the graph
obtained from H by deleting the edges of M . This proves 2.3.
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Fourth, we need:

2.4 Let H be a graph. Build a set Z ⊆ V (H) by putting each vertex of H in Z independently with
probability 1/2.

• If M is a matching of H, the probability that at most |M |/8 edges in M have both ends in Z
is at most e−|M |/32.

• Let d ≥ 0, and for each v ∈ V (H), let 0 ≤ dv ≤ d, and let m :=
∑

v∈V (H) dv; then the

probability that
∑

v∈Z dv ≤ m/4 is at most e−m/(8d).

Proof. The first statement is immediate from Hoeffding’s inequality, since each edge of M has both
ends in Z independently with probability 1/4. For the second statement, since D :=

∑
v∈Z dv is a

sum of independent bounded random variables, and the expected value of D is m/2, we can apply
Hoeffding’s inequality, and deduce that the probability that D ≤ m/4 is at most

exp

(
−m2

8
∑

v∈V (H) d
2
v

)
.

But
∑

v∈V (H) d
2
v is at most md, since

∑
v∈V (H) dv = m and each dv ≤ d; so the probability that

D ≤ m/4 is at most e−m/(8d). This proves the second statement, and so proves 2.4.

3 The main proofs

Now we prove 1.2, but before that, we give a sketch of its proof. In view of 2.1, it suffices to show that
for all t, c ≥ 1, if G is a graph with ω(G) < t that does not contain anticomplete subsets A,B ⊆ V (G)
where G[A] has denseness at least c and χ(B) ≥ c, then χ(G) is bounded. We use induction on t, and
so we can assume that for every vertex of G, its set of neighbours has bounded chromatic number.
We can assume there is a p-rock A (where p = 32c). Since G[A] has large denseness, the set of
vertices with no neighbour in A has small chromatic number. If also |A| is bounded, then since the
set of neighbours of each vertex has bounded chromatic number, it follows that χ(G) is bounded as
required; so we may assume that |A| is at least any constant that we choose, which is convenient for
future calculations. But χ(A) is bounded, from the minimality of A in the definition of a p-rock; and
so we can assume that V (G) \A has large chromatic number. From 2.2, each vertex in V (G) \A has
at most 2p + 1 neighbours in A, and so if we take a partition of A into 4p + 2 sets A1, . . . , A4p+2,
each vertex in V (G) \ A has no neighbour in at least half of these sets. So there is a choice of half
the sets A1, . . . , A4p+2 (say Ai (i ∈ I)), such that the set of vertices in V (G) \ A with no neighbour
in
⋃

i∈I Ai has large chromatic number.
This suggests that we should try to choose the partition A1, . . . , A4p+2 carefully, such that for

every choice of half of them (say Ai (i ∈ I)), there are many edges with both ends in
⋃

i∈I Ai, enough
that

⋃
i∈I Ai has large denseness. If we can do this, then we win, since, as we just saw, there is

some choice of I such that the set of vertices in V (G) \ A with no neighbour in
⋃

i∈I Ai has large
chromatic number, and that will give us the pair of anticomplete subsets that the theorem claims.
Unfortunately, such a partition A1, . . . , A4p+2 need not exist, because perhaps some X ⊆ A with |X|
bounded meets most of the edges of G[A]. But in that case, we choose the partition A1, . . . , A4p+2
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such that for every choice of half of them (say Ai (i ∈ I)), there are many edges with both ends in
X ∪

⋃
i∈I Ai; and this turns out to be just as good, and can be used in the same way.

That completes the sketch of the proof; now let us give the actual proof. We are proving 1.2,
which we restate (in terms of denseness rather than minimum degree, which by 2.1 is equivalent):

3.1 For all integers t, c ≥ 1, there exists d ≥ 1, such that if G is a graph with χ(G) ≥ d and
ω(G) < t, then there are anticomplete subsets A,B ⊆ V (G) where G[A] has denseness at least c and
χ(B) ≥ c.

Proof. We proceed by induction on t. If t ≤ 2 we may take d = 2, because χ(G) ≤ 1 for every
graph G with ω(G) ≤ 1. Thus we may assume that t ≥ 3, and the result holds for t − 1. Choose
d′ ≥ 1 such that for every graph G, if χ(G) ≥ d′ and ω(G) < t − 1, then there are anticomplete
subsets A,B ⊆ V (G) where G[A] has denseness at least c and χ(B) ≥ c.

Let p = 32c; choose q such that e−q/32 < 2−4p−3, and choose d such that

d > max
(
2p+ 1 + 2qd′ + 24p+2c, 8q2d′/p+ c

)
.

We will show that d satisfies the theorem.
Let G be a graph with ω(G) < t, such that there do not exist anticomplete subsets A,B ⊆ V (G)

where G[A] has denseness at least c and χ(B) ≥ c. We will prove that χ(G) < d. From the inductive
hypothesis, it follows that for every vertex v, its set of neighbours N satisfies χ(N) ≤ d′. We may
assume that G has a non-null subgraph with minimum degree at least d − 1, because otherwise
χ(G) < d as required. Since p ≤ (d− 1)/2, there is a p-rock A of G. We may assume that:

(1) |A| ≥ 8q2/p.

Suppose not. Then the set of vertices of G with a neighbour in A (this set includes A, from the
minimality of A) has chromatic number at most d′|A| ≤ 8d′q2/p; and the set with no neighbour in A
(and that therefore do not belong to A) has chromatic number less than c, since it is anticomplete
to A and p ≥ c. Thus χ(G) < 8d′q2/p+ c ≤ d as required. This proves (1).

Let F := E(G[A]). By 2.3, F may be partitioned into M0,M1, . . . ,Mn for some n ≥ 0, such that

• there exists X ⊆ A with |X| ≤ 2q − 2 such that every edge in M0 has an end in X; and

• M1, . . . ,Mn are all matchings of cardinality q.

Let I be the set of all subsets of {1, . . . , 4p+ 2} with cardinality 2p+ 1.

(2) There is a partition of A into 4p + 2 subsets A1, . . . , A4p+2, such that for each I ∈ I, at least
|F |/32 ≥ p|A|/32 edges have both ends in X ∪

⋃
i∈I Ai.

For each v ∈ A, choose φ(v) ∈ {1, . . . , 4p + 2}, uniformly and independently at random. For
1 ≤ i ≤ 4p+ 2 let Ai be the set of all v ∈ A with φ(v) = i. Thus A1, . . . , A4p+2 are pairwise disjoint
sets with union A. We will show that with positive probability, the statement of (2) is satisfied. For
each I ∈ I let AI :=

⋃
i∈I Ai.
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There are two cases, depending whether |M1 ∪ · · · ∪ Mn| ≥ |F |/2 or not. Suppose first that
|M1 ∪ · · · ∪Mn| ≥ |F |/2. For I ∈ I and 1 ≤ j ≤ n, we say that j is bad for I if at most |Mj |/8
edges of Mj have both ends in AI . By the first statement of 2.4, since each vertex of A belongs to
AI independently with probability 1/2, and |Mj | = q, it follows that the probability that j is bad
for I is at most e−q/32. Consequently the expected number of values of j ∈ {1, . . . , n} such that j is
bad for some I ∈ I is at most

ne−q/32|I| ≤ ne−q/3224p+2 ≤ n/2.

Let J be the set of j ∈ {1, . . . , n} such that j is not bad for any I ∈ I. It follows that |J | ≥ n/2
with positive probability. If |J | ≥ n/2, then

|
⋃
j∈J

Mj | ≥ |M1 ∪ · · · ∪Mn|/2 ≥ |F |/4.

Moreover, for each I ∈ I, at least q/8 edges of Mj have both ends in AI , for each j ∈ J ; and so at
least 1/8 of the edges of

⋃
j∈J Mj have both ends in AI . Consequently, with positive probability at

least |F |/32 edges of G[A] have both ends in AI , and hence in this case the claim is true.
Now we assume that |M1 ∪ · · · ∪Mn| ≤ |F |/2, and so |M0| ≥ |F |/2. For each v ∈ A \X, let dv be

the number of neighbours of v in X, and let dv = 0 for v ∈ X. Let m =
∑

v∈A dv =
∑

v∈A\X dv. For

each I ∈ I, the probability that
∑

v∈AI
dv ≤ m/4 is at most e−m/(8|X|) ≤ e−m/(16q), by the second

statement of 2.4, taking d = |X|. Since |X| ≤ 2q − 2, there are at most 2q2 edges of F with both
ends in X. But |F | ≥ p|A| ≥ 8q2 by (1), and at least half the edges in F belong to M0, and therefore
have at least one end in X. It follows that at least 2q2 edges in F have exactly one end in X, and
so m ≥ 2q2. Consequently, for each I ∈ I, the probability that

∑
v∈AI

dv ≤ m/4 is at most e−q/8;

and hence the probability that
∑

v∈AI
dv > m/4 for each I ∈ I is at least 1 − 24p+2e−q/8 > 0. We

deduce that there is a partition of A into 4p + 2 subsets A1, . . . , A4p+2, such that
∑

v∈AI
dv > m/4

for each I ∈ I. But
∑

v∈AI
dv is at most the number of edges that have both ends in X ∪ AI . This

proves (2).

Choose A1, . . . , A4p+2 as in (2), and as before, let AI :=
⋃

i∈I Ai for each I ∈ I. Let W0 be the
set of vertices in V (G) \ A with a neighbour in X. For each I ∈ I, let WI be the set of vertices
v ∈ V (G) \A with no neighbour in X ∪AI . From 2.2, every vertex in V (G) \A has at most 2p+ 1
neighbours in A, and so V (G) \ A is the union of W0 and the sets WI (I ∈ I). Since G[A] has no
non-null subgraph with minimum degree at least 2p + 1 (from the minimality of A), it follows that
χ(A) ≤ 2p + 1. Also, χ(W0) ≤ |X|d′ ≤ 2qd′. Let I ∈ I. Thus G[X ∪ AI ] has at least p|A|/32
edges (by the choice of A1, . . . , A4p+2) and at most |A| vertices, and therefore its denseness is at least
p/32 = c. Since G[X ∪ AI ] is anticomplete to WI , we may assume that χ(WI) < c, since otherwise
the theorem holds. Since |I| ≤ 24p+2, it follows that

χ(G) ≤ 2p+ 1 + 2qd′ + 24p+2c < d,

as required. This proves 3.1.

Now we turn to 1.3. Again, we first sketch the proof. As before, the result can be stated in terms
of denseness. Given t, c ≥ 1, we will show that if G is a graph with τ(G) < t that does not contain
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two anticomplete subsets A,B ⊆ V (G) where G[A], G[B] both have denseness at least c, then G has
bounded denseness. Unlike the proof of 3.1, the proof does not use induction on t, but it does share
some ideas with that proof.

Let p := max(32c, 4t). A p-rock R of an induced subgraph H of G is little if |R| ≤ s. The
first idea is to choose a sequence R1, . . . , Rk of disjoint sets, where each Ri is a little p-rock of
G\ (R1∪ · · ·∪Ri−1) for each i, with k maximum. We claim that k ≤ 2t. The reason is, suppose that
k ≥ 2t. Only a bounded number of vertices have a neighbour in t of the sets R1, . . . , R2t (because
otherwise we could find a Kt,t subgraph, a contradiction). So, if G has large denseness, most edges
of G have no end in R1 ∪ · · · ∪R2t, and are anticomplete to one of R1, . . . , R2t. On the other hand,
for each i, not many edges are anticomplete to Ri, or else we could find the anticomplete pair A,B;
and this gives a contradiction. So k is bounded. Let R = R1 ∪ · · · ∪ Rk; and so |R| is bounded. It
follows that if G has large denseness, then so does G \ R, and hence contains a p-rock A; and we
know A is not little, from the maximality of k.

Now the proof proceeds something like that of 3.1. We try to partition A into 8p + 4 subsets
A1, . . . , A8p+4, such that for every choice of half of them, say Ai (i ∈ I), the subgraph G[

⋃
i∈I Ai] has

large denseness. If we can do this, then we win much as before. (Since we are working with denseness
instead of chromatic number, we need that many edges of G \ A are anticomplete to

⋃
i∈I Ai, for

some I, instead of a set of vertices with large chromatic number. This is why we move to 8p + 4
instead of 4p+ 2.) In the previous proof, there was a problem here: there might be a subset X ⊆ A
of bounded size that meets many of the edges of G[A]. If such a set were to exist, it would be a
serious headache since the method we used in the previous proof to handle it no longer applies. But
in fact no such set X exists, because if it did we could find a Kt,t subgraph, by counting the edges
between X and A \X.

That completes the sketch; now the proof itself. We are proving 1.3, which we restate in terms
of denseness as follows:

3.2 For all integers t, c ≥ 1, there exists d ≥ 1, such that if G has denseness at least d and τ(G) < t,
then there are anticomplete subsets A,B ⊆ V (G) where G[A], G[B] both have denseness at least c.

Proof. Define p := max(32c, 4t) and let q be an integer with e−q/3228p+4 ≤ 1/2. Choose s with
st ≥ 2q2 + 22q+1q(t− 1), and choose d with

d > max
(
p+ 2st, 2ct+ 2st+ tst22t, 2st+ 28p+4c+ 3p+ 2

)
.

We will show that d satisfies the theorem.
Let G be a graph with denseness at least d and τ(G) < t. Choose vertex-disjoint subsets

R1, . . . , Rk of V (G) with k maximum, such that for 1 ≤ i ≤ k, Ri is a p-rock of G \ (R1 ∪ · · · ∪Ri−1)
and |Ri| ≤ s.

(1) k ≤ 2t.

Suppose that k ≥ 2t, and let R1 ∪ · · · ∪ R2t = R. For 1 ≤ i ≤ 2t let Zi be the set of all ver-
tices in V (G) \ Ri that have no neighbour in Ri. Let W be the set of all v ∈ V (G) \ R that have
a neighbour in Ri for at least t values of i ∈ {1, . . . , 2t}. For each I ⊆ {1, . . . , 2t} with |I| = t, and
each choice of ai ∈ Ri for each i ∈ I, there are fewer than t vertices in V (G) \ R adjacent to ai for
each i ∈ I, since τ(G) < t. For each I there are at most st choices of the vertices ai (i ∈ I), and

6



so there are at most tst vertices in V (G) \ R with a neighbour in Ri for each i ∈ I. Since there are
at most 22t choices of I, it follows that |W | ≤ tst22t. Thus |R ∪W | ≤ 2st + tst22t, and so at most
(2st + tst22t)|G| edges have an end in R ∪W . Since G has at least d|G| edges, there are at least
(d− (2st+ tst22t))|G| edges with neither end in R ∪W . For every such edge, say uv, since u has a
neighbour in at most t− 1 of R1, . . . , R2t, and the same for v, there exists i ∈ {1, . . . , 2t} such that
neither of u, v has a neighbour in Ri, that is, u, v ∈ Zi. Consequently there exists i ∈ {1, . . . , 2t}
such that at least (d − (2st + tst22t))|G|/(2t) edges uv of G have both ends in Zi. It follows that
G[Zi] has denseness at least (d− (2st+ tst22t))/(2t) ≥ c, and it is anticomplete to the p-rock Ri, and
so the theorem holds. This proves (1).

Let R = R1 ∪ · · · ∪Rk. Thus |R| ≤ 2st by (1). Consequently at most 2st|G| edges of G have an
end in R, and so the graph G \ R has at least (d− 2st)|G| edges. Since d− 2st ≥ p, there is a rock
A of G \R. From the maximality of k, |A| > s.

From 2.3, there is a partition of E(G[A]) into sets M0, . . . ,Mn for some n ≥ 0, such that

• there is a subset X ⊆ A with |X| ≤ 2q− 2 such that every edge in M0 is incident with a vertex
in X; and

• M1, . . . ,Mn are all matchings, each with cardinality q.

(2) |M0| ≤ 2t|A| ≤ p|A|/2, and hence M1 ∪ · · · ∪Mn has cardinality at least p|A|/2.

There are at most 2q2 edges in E(G[A]) with both ends in X, since |X| ≤ 2q. We need to count the
number of edges with exactly one end in X. For each subset Y of X with |Y | = t, there are at most
t − 1 vertices adjacent to each vertex in Y , and so there are at most 22q(t − 1) vertices in A \ X
with at least t neighbours in X. Hence there are at most 22q(t − 1)|X| ≤ 22q+1q(t − 1) edges uv of
G[A] with u ∈ X and v ∈ A \X such that v has at least t neighbours in X. But there are at most
(t− 1)|A| edges uv of G[A] with u ∈ X and v ∈ A \X such that v has fewer than t neighbours in X;
so altogether there are at most

2q2 + 22q+1q(t− 1) + (t− 1)|A| ≤
(
(2q2 + 22q+1q(t− 1))/s+ (t− 1)

)
|A| ≤ 2t|A| ≤ p|A|/2

edges of G[A] with an end in X, since |A| ≥ s. This proves the first statement of (2). The second
follows since |E(G[A])| ≥ p|A|. This proves (2).

Let I be the set of all subsets of {1, . . . , 8p+ 4} with cardinality 4p+ 2.

(3) There is a partition of A into 8p + 4 subsets A1, . . . , A8p+4, such that for each I ∈ I there
are at least p|A|/32 edges of G[A] that have both ends in

⋃
i∈I Ai.

For each v ∈ A, choose φ(v) ∈ {1, . . . , 8p + 4}, uniformly and independently at random. For
1 ≤ i ≤ 8p+ 4 let Ai be the set of all v ∈ A with φ(v) = i. Thus A1, . . . , A8p+4 are pairwise disjoint
sets with union A. We will show that with positive probability, the statement of (3) is satisfied. For
each I ∈ I let AI :=

⋃
i∈I Ai.

For I ∈ I and 1 ≤ j ≤ n, we say that j is bad for I if at most q/8 edges of Mj have both
ends in AI . By the first statement of 2.4, since each vertex of A belongs to AI independently with
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probability 1/2, it follows that the probability that j is bad for I is at most e−q/32. Consequently
the expected number of values of j ∈ {1, . . . , n} such that j is bad for some I ∈ I is at most

ne−q/32|I| ≤ ne−q/3228p+4 ≤ n/2.

Let J be the set of j ∈ {1, . . . , n} such that j is not bad for any I ∈ I. It follows that |J | ≥ n/2
with positive probability. Moreover, if |J | ≥ n/2, then

|
⋃
j∈J

Mj | ≥ |M1 ∪ · · · ∪Mn|/2 ≥ p|A|/4

by (2). But for each I ∈ I, at least q/8 edges of Mj have both ends in AI , for each j ∈ J ; and so at
least 1/8 of the edges of

⋃
j∈J Mj have both ends in AI . Consequently, with positive probability at

least p|A|/32 edges of G[A] have both ends in AI . This proves (3).

Choose A1, . . . , A8p+4 as in (3), and as before, let AI :=
⋃

i∈I Ai for each I ∈ I. For each I ∈ I,
let WI be the set of vertices in V (G) \ (A ∪R) with no neighbour in AI . Since for every edge uv of
G \R with u, v /∈ A, u has a neighbour in Ai for at most 2p+ 1 values of i ∈ {1, . . . , 8p+ 4} by 2.2,
and the same for v, it follows that there exists I ∈ I with u, v ∈WI . But, since G[AI ] has denseness
at least p/32 ≥ c by (3), and is anticomplete to WI , we may assume that G[WI ] has denseness less
than c, and so there are at most c|G| edges of G \ R with both ends in WI . We will show that this
leads to a contradiction. Since there are only at most 28p+4 choices of I, there are at most 28p+4c|G|
edges of G \R with neither end in A. But there are at most (2p+ 1)|G| edges with one end in A and
the other in V (G) \ (A ∪R), since every vertex in V (G) \ (A ∪R) has at most 2p+ 1 neighbours in
A by 2.2. Also, from the minimality of A (in the definition of a rock), if we delete a vertex of A, the
remainder induces a graph with fewer than p(|A| − 1) edges, and so G[A] has fewer than

p(|A| − 1) + |A| ≤ (p+ 1)|A| ≤ (p+ 1)|G|

edges. Altogether, then, G \R has fewer than

28p+4c|G|+ (2p+ 1)|G|+ (p+ 1)|G| < (d− 2st)|G|

edges. But we already saw that G \ R has at least (d − 2st)|G| edges, a contradiction. This proves
3.2.

4 Tournaments

There is an interesting extension of 1.1 to tournaments. If G is a tournament, a subset X ⊆ V (G)
is acyclic if G[X] has no directed cycle; and χ(G) is the minimum k such that V (G) is the union of
k acyclic subsets. Again, we write χ(A) for χ(G[A]) when A ⊆ V (G). If A,B ⊆ V (G) are disjoint,
we say A is complete to B if every vertex in B is adjacent from every vertex in A.

One might hope that:

4.1 Conjecture: For all integers c ≥ 1 there exists d ≥ 1 such that if G is a tournament and
χ(G) ≥ d, there are disjoint A,B ⊆ V (G), with A complete to B, and both inducing tournaments
with chromatic number at least c.
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We discuss this further in another paper [8], where we prove that it implies 1.1. (Indeed, very recently
Klingelhoefer and Newman [6] have extended that result, proving that 4.1 is equivalent to 1.1.) We
also prove the following two results (among others):

4.2 For all c ≥ 1 there exists d ≥ 1 such that if G is a tournament with χ(G) ≥ d, then there exist
disjoint A,B ⊆ V (G) with A complete to B, where A is a cyclic triangle and χ(B) ≥ c.

(A cyclic triangle is a three-vertex set inducing a directed cycle.) The second result concerns domi-
nation number. A tournament G has domination number k if k is minimum such that for some set
X ⊆ V (G) with |X| = k, every vertex in V (G) \X is adjacent from some vertex in X.

4.3 For every integer c ≥ 1, there exists d ≥ 1 such that if G is a tournament with domination num-
ber at least d, then there are disjoint A,B ⊆ V (G), such that A is complete to B and χ(A), χ(B) ≥ c.
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