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Abstract

Consider a ‘dense’ Erdős–Rényi random graph model G = Gn,M with n vertices
and M edges, where we assume the edge density M/

(
n
2

)
is bounded away from 0

and 1. Fix k = k(n) with k/n bounded away from 0 and 1, and let S be a random
subset of size k of the vertices of G. We show that with probability 1−exp(−nΩ(1)),
G satisfies both a central limit theorem and a local limit theorem for the empirical
distribution of the edge count e(G[S]) of the subgraph of G induced by S, where
the distribution is over uniform random choices of the k-set S.

1 Introduction
Consider an Erdős-Rényi random graph model G = Gn,M with n vertices and M edges.
Set N :=

(
n
2

)
and assume M/N ∈ [δ, 1− δ] for some fixed δ > 0, so that M/N is bounded

away from both 0 and 1 and both G and its complement are dense. Fix k = k(n) and
assume k/n ∈ [δ, 1−δ] is also bounded away from 0 and 1. Letting S be a uniformly chosen
random subset of the vertices of G of size k, we will study the edge count e(S) := e(G[S])
of the subgraph of G induced by S. Throughout, we shall always assume that the number
of vertices n is sufficiently large, and M , k and S are defined as above unless otherwise
indicated within the scope of specific statements. We say that an event E happens in
Gn,M with very high probability (w.v.h.p.) if there exists ε > 0 such that, for sufficiently
large n, we have P(E) ≥ 1 − exp(−nε). In this paper, we show that with very high
probability (in choice of G), the empirical statistics of e(S) satisfy both a central limit
theorem and a local limit theorem.

We will be considering probabilities in various probability spaces. Notably, this will
involve probabilities with respect to the random graph models Gn,p or Gn,M , as well as
probabilities with respect to the random vertex set S that we choose. Where helpful, we
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will use subscripts such as PG for probabilities over the choice of the random graph, and
PS for probabilities over the choice of S conditioned on a fixed choice of random graph G.

By using a multidimensional version of Stein’s method as described in [11], we first deduce
in Section 2 a central limit theorem for e(S). Define

λ :=
(n2 − k2)k2

2n4
· M(N −M)

N2
. (1)

and note that λ = Θ(1). Set K :=
(
k
2

)
.

Theorem 1. Assume that for some fixed δ > 0, M/N, k/n ∈ [δ, 1 − δ]. Then for any
ε > 0 and w.v.h.p. in G = Gn,M we have for all z ∈ R,∣∣PS(e(S) ≤ z)− P(Z ≤ z)

∣∣ ≤ n−1/4+ε, (2)

where S ⊆ V (G) is a uniformly chosen random subset of size k and Z ∼ N(KM/N, λn2)
is a normal random variable with mean KM/N and variance λn2 with λ given by (1).

This central limit theorem serves as a starting point for an iterative smoothing argument
that we employ in Section 3 to descend to the following local limit theorem, which is our
main result.

Theorem 2. Assume that for some fixed δ > 0, M/N, k/n ∈ [δ, 1 − δ]. Then for any
ε > 0 and w.v.h.p. in G = Gn,M we have that for all integers z

n
∣∣PS(e(S) = z)− ϕ(z)

∣∣ ≤ n−1/14+ε,

where ϕ is the density function of a normal random variable Z ∼ N(KM/N, λn2).

In particular, this shows that the point probabilities of e(S) are of order 1/n around its
peak, i.e., within O(n) of its mean KM/N , and the relative error is at most n−1/14+ε in
this range.

Somewhat surprisingly, Theorem 1 and Theorem 2 are the first such results on the em-
pirical distribution of edge counts in this very natural setting of subgraphs induced by
k-subsets, although there is a good deal of related work which we discuss in Section 1.1.

Results that hold w.v.h.p. can in general be easily transferred between the above setting in
Gn,M and Gn,p for p ∈ [δ, 1−δ]; given a statement holding in Gn,M and setting p = M/N ,
there is a polynomial probability (on the order of 1/n) that e(Gn,p) = M . In that case we
have (Gn,p | e(Gn,p) = M) ∼ Gn,M , so the conclusion of the smoothing lemma (Lemma 17
below) transfers to Gn,M again with very small failure probability. Consequently, it will
be convenient to prove most of our lemmas en route w.v.h.p. for Gn,p.

However, we remark that the edge count of Gn,p can typically vary by order n and so
KM/N also varies by order n, which is of the same order as the standard deviation
of Z. Hence, we can’t just replace M by p

(
n
2

)
and obtain the same results as above when

working in Gn,p.

We also remark that, due to the exponentially small failure probability, a union bound
implies slightly stronger versions of the above results which say that for fixed δ > 0,
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w.v.h.p. Gn,M satisfies the desired properties for all k,M with k/n,M/N ∈ [δ, 1− δ]. For
the most part, it will be more convenient for us to view k and M as fixed, but analogous
union bound arguments will later come up for other parameters.

1.1 Discussion

Both Theorems 1 and 2 are concerned with induced subgraphs of fixed size. We can also
consider a random size model where we take a subgraph induced by a random subset S,
where each vertex independently belongs to S with constant probability r. In this case,
it is straightforward to show that w.v.h.p. e(S) satisfies a central limit theorem. We
write e(S) in the form

∑
i<j aijXiXj, where A = (aij) is the adjacency matrix and the

Xi are independent Bernoulli random variables with mean r. Then a standard sufficient
condition for asymptotic normality is that

Tr(A4)

σ4
→ 0 and

maxi
∑

j a
2
ij

σ2
→ 0, (3)

where σ2 is the variance of e(S) (see [5, 6, 9, 12] for more details, including error bounds).
This is immediate in the random size model, as σ2 is of order n3 w.v.h.p. (driven by copies
of K1,2), while Tr(A4) = O(n4) and maxi

∑
j a

2
ij = ∆(G) ≤ n. In fact, this holds for any

sequence of graphs with density bounded away from 0 (as these contain quadratically
many copies of K1,2).1 However, we cannot hope for a local limit theorem when the size
of S varies. Indeed, a change of size of S of just 1 will move the mean in Theorem 2
by order n, which is the same order as the standard deviation for fixed |S|. Thus the
distribution will approach a rapidly varying function which is the sum of many small
Gaussians (see [10]).

There has been previous work on monochromatic edges in random c-colourings of random
graphs: for a fixed c, consider a function φ : V (G)→ [c] chosen uniformly at random and
let Y = YG(φ) be the number of monochromatic edges. For G ∈ Gn,p, the variance of Y
is typically of order n2 (as copies of K1,2 no longer contribute anything), and so (3) is
no longer satisfied. In fact, the distribution of Y is typically not Gaussian (a Gaussian
distribution requires the graph to have very few copies of C4: see [2] for a detailed
analysis). Note that the colour classes in a random colouring do not have fixed size, so
we are in a random size model. However, while we do not pursue this further here, our
methods should be applicable with fixed sizes of colour classes. For example, with c = 2
and colour classes of equal size, we would be considering a random bisection.

A broader class of examples is given by Ramsey graphs. A graph with n vertices is C-
Ramsey if it has no clique or independent set of size C log2 n. It follows from a result
of Erdős and Szemerédi [8] that, for large n, C-Ramsey graphs have densities bounded
away from 0 and 1; thus by (3), in the ‘random size’ model, e(S) satisfies a central limit
theorem. However, the local picture is more subtle. The first question here is whether
there are any induced subgraphs with the sizes we require. For random graphs, this was
shown by Calkin, Frieze and McKay [4], who proved that for p fixed, with high probability
a graph in Gn,p contains induced subgraphs of all sizes between 0 and e(G)−cn3/2/

√
log n.

1In our case, where the size of S is fixed, (3) does not apply, as the Xi are not independent (and, in
any case, the first expression in (3) does not tend to 0, as the variance is much smaller, having order n2).
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For Ramsey graphs this is much harder: Erdős and McKay (see [7]) conjectured that there
are induced subgraphs of all sizes up to cn2. After a long line of subsequent work, a much
stronger statement was proved by Kwan, Sah, Sauermann and Sawhney [10]: for every
ε, C > 0, every C-Ramsey graph with sufficiently many vertices has induced subgraphs
of all sizes up to (1 − ε)e(G). But what about the distribution of random subgraphs?
Kwan, Sah, Sauermann and Sawhney showed further that, for any C > 0, and r = r(n)
bounded away from 0 and 1, in the random size model we have

P[e(S) = x] ≤ A/σ, (4)

while for all x within a bounded number of standard deviations of Ee(S),

P[e(S) = x] ≥ a/σ,

where a and A are positive constants. However, as noted in [10], a local limit need not
hold in this setting.

Finally, we note that it would be interesting to prove analogous results for sparse graphs,
and for the distribution of other subgraphs (for example, the number of triangles in a
random induced subgraph).

2 The central limit theorem
The proof of our main central limit theorem is given in two parts. The bulk of the work
occurs in the first, where we derive an initial central limit theorem using Stein’s method.
In the second part, we reformulate this statement to obtain Theorem 1.

It will be helpful to fix some notation that we will use throughout the section. We will
be working with a random graph G = Gn,M with vertex set V = V (G). For a set S ⊆ V
of size k, we write S := V \S and k := n−k. We also write e(S) for the number of edges
in the induced subgraph G[S]. For a vertex x ∈ V , we will write dS(x) for the number of
edges between x and S. We also write d(G) for the average degree of G.

2.1 Stein’s method

We will be using Stein’s method of exchangeable pairs where we modify S to a new set S ′
by removing a random element of S and adding a random element of S. Unfortunately,
the expected change e(S ′) − e(S) depends not just on e(S) but also on the number of
edges between S and S, or equivalently, given that e(G) is fixed, on e(S). Thus it will be
necessary to track both e(S) and e(S). For this we will need a version of Stein’s method
that can be applied to the 2-dimensional vector (e(S), e(S)).

We will use the following d-dimensional version of Stein’s method which occurs as a special
case of a result of Reinert and Röllin [11, Corollary 3.1]. A pair of random variables
(W ,W ′) is called exchangeable if (W ,W ′) and (W ′,W ) have the same distribution.

Theorem 3. Suppose that (W ,W ′) is an exchangeable pair of Rd-valued random column
vectors W = (W1, . . . ,Wd)

T and W ′ = (W ′
1, . . . ,W

′
d)
T such that

E[W ] = 0 and E[WW T ] = Σ, (5)

4



where Σ is a symmetric positive definite d× d real matrix. Suppose further that

E
[
W ′ −W |W

]
= −ΛW (6)

for an invertible d×d real matrix Λ. For i = 1, . . . , d, let λ(i) =
∑d

m=1 |(Σ−1/2Λ−1Σ1/2)m,i|,

A =
∑
i,j

λ(i)
(

VarE
[∑
k,`

Σ
−1/2
ik Σ

−1/2
j` (W ′

k −Wk)(W
′
` −W`)

∣∣∣W ])1/2

,

B =
∑
i,j,k

λ(i) E
∣∣∣∑
r,s,t

Σ
−1/2
ir Σ

−1/2
js Σ

−1/2
kt (W ′

r −Wr)(W
′
s −Ws)(W

′
t −Wt)

∣∣∣, and

T = 1
4d

(
A
2

+

√√
dB + A2

4

)2

.

Then, with Z ′ ∼ N(0, 1) a standard normal random variable, we have∣∣P(W1 ≤
√

Σ11z)− P(Z ′ ≤ z)
∣∣ ≤ γ2

(
− A

2
log T + B

2
√
T

+ 2
√
dT
)
,

where γ = γ(d) is a function of d only.

Proof. To deduce this from [11, Corollary 3.1], and following the notation used there, we
take the test function

h(x) := 1(−∞,
√

Σ11z]×Rd−1(x),

which is the indicator function of a convex set in Rd. As discussed in [11] (see also [3]),
this h satisfies the criteria for non-smooth test functions with constant a ≤ 2

√
d. Also,

we take R = 0 and hence C ′ = 0, D′ = A/2. Letting Z = (Z1, Z2) be a standard bivariate
and Z ′ a standard univariate normal random variable, the supremum in [11, Corollary
3.1] is an upper bound for the expression

E
[
h(W )− h(Σ1/2Z)

]
= P

(
W1 ≤

√
Σ11z

)
− P

(
Z ′ ≤ z

)
,

as (Σ1/2Z)1 ∼
√

Σ11Z
′.

In our case, we will apply Theorem 3 with d = 2, and W being a normalised version of
(e(S), e(S)). Note that ES(e(S)) = KM/N and ES(e(S)) = KM/N , where K =

(
k
2

)
and

the expectation is over the choice of S. We define two random variables W and W by

W :=
e(S)−KM/N

n
, W :=

e(S)−KM/N

n
,

so that E[W ] = E[W ] = 0. Now pick a uniformly chosen vertex x of S and an independent
uniformly chosen vertex x of S. Swap the vertices x and x to produce two new subsets
S ′ := S \ {x} ∪ {x} and S ′ := S \ {x} ∪ {x} (see Fig. 1) and define two more random
variables W ′ and W ′ analogously using the subsets S ′ and S ′. We note that the random
variables (W,W ) and (W ′,W ′) are exchangeable as S ′ is uniformly distributed over k-sets.
Write W for the column vector (W,W )T and similarly for W ′.

In light of Theorem 3, the bulk of the work in this section consists of verifying condi-
tions (5) and (6), which we do in Lemma 5 and Lemma 4 respectively. We will then also
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Figure 1: Vertex interchange in G.

show that A and B are O(n−1/2+ε), from which a bound of O(n−1/4+ε) will follow. While
some of these lemmas are specialised to the random graph setting in which we will apply
them, the first few hold in greater generality.

We begin by verifying (6). Given S, we perform a random exchange of vertices to ob-
tain S ′. The expectation E[e(S ′)− e(S) | S] is then a linear function of e(S) and e(S, S)
which, given that e(S) + e(S) + e(S, S) = M , is also a linear function of e(S) and e(S).

Lemma 4. For any graph G and k, k > 0 we have

E
[
W ′ −W |W

]
= −ΛW , where Λ =

1

kk

(
n+ k − 1 k − 1
k − 1 n+ k − 1

)
.

Proof. We fix S and take expectations over the choice of (x, x). Note that

e(S ′)− e(S) = dS(x)− dS(x)− 1xx, (7)

where dS(y) is the number of edges from y to S and 1xy represents an indicator function
of the event that xy ∈ E(G). Now fixing G and S and taking expectations over (x, x) we
have

E
[
e(S ′)− e(S) | S

]
= ExdS(x)− ExdS(x)− Ex,x1xx
= e(S,S)

k
− 2e(S)

k
− e(S,S)

kk

= 1
kk

(
(k − 1)e(S, S)− 2ke(S)

)
= 1

kk

(
(k − 1)M − (k − 1 + 2k)e(S)− (k − 1)e(S)

)
= 1

kk

(
(k − 1)M − (n− 1 + k)KM/N − (k − 1)KM/N

)
− 1

kk

(
(n− 1 + k)nW + (k − 1)nW

)
= − 1

kk

(
(n− 1 + k)nW + (k − 1)nW

)
,

where we have used that k + k = n and E[e(S ′) − e(S)] = E[W ] = E[W ] = 0, so that
the constant term must vanish. Hence (as W is S-measurable and the expectation only
depends on W )

E
[
W ′ −W |W

]
= −n−1+k

kk
W − k−1

kk
W.

By symmetry, E[W ′ −W |W ] = −n−1+k
kk

W − k−1
kk
W and the result follows.

We note for future reference that

Λ−1 =
kk

2n(n− 1)

(
n+ k − 1 1− k

1− k n+ k − 1

)
(8)
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and the entries of Λ−1 are all O(n).

We now turn to verifying (5). We have already noted that EW = 0, and must check that
W has a positive definite covariance matrix Σ.

Let P be the number of copies of the path on three vertices in G, so that

P =
∑

v∈V (G)

(
d(v)

2

)
.

Recall that d(G) = 2M/n is the average degree of G and let V be n times the variance
of the degrees of G, so that

V =
∑

v∈V (G)

d(v)2 − nd(G)2.

We note that
2Pn = V n+ 4M2 − 2Mn. (9)

Lemma 5. For any graph G and k, k ≥ 2, we have E[WW T ] = Σ, where

Σ :=
2KK

n2N2(n− 2)(n− 3)

(
M(N −M) + k−2

k−1
NV M(N −M)−NV

M(N −M)−NV M(N −M) + k−2
k−1

NV

)
.

In particular, Σ is symmetric and positive definite if and only if V > 0.

Proof. We first note that

E
[
W 2
]

=
1

n2
Var(e(S)) =

1

n2

∑
e,f∈E(G)

(P(e, f ⊆ S)− P(e ⊆ S)P(f ⊆ S)) ,

where the sum is over ordered pairs (e, f) of edges of G. We can classify these pairs
according to the size of e ∩ f . Namely, there are M pairs where e = f , 2P pairs where
|e ∩ f | = 1 and M2 −M − 2P pairs where e ∩ f = ∅. From this we deduce that

E
[
W 2
]

=
1

n2

(
(k)2

(n)2

M +
(k)3

(n)3

2P +
(k)4

(n)4

(M2 −M − 2P )− (k)2
2

(n)2
2

M2

)
,

where (x)r = x(x−1) . . . (x−r+1) denotes the falling factorial. Note that k, k ≥ 2 implies
n ≥ 4, so (n)4 > 0. Using (9) to rewrite 2P in terms of M , n and V and determining the
coefficients of the terms containing M , M2 and V , respectively, gives

E
[
W 2
]

=
2kK

n2N(n)4

(
M(N −M)(k − 1) + (k − 2)NV

)
,

as well as the symmetric expression

E
[
W 2
]

=
2kK

n2N(n)4

(
M(N −M)(k − 1) + (k − 2)NV

)
.
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A similar calculation also gives

E
[
WW

]
=

1

n2

∑
e,f∈E(G)

(
P(e ⊆ S, f ⊆ S)− P(e ⊆ S)P(f ⊆ S)

)
=

1

n2

(
(k)2(k)2

(n)4

(M2 −M − 2P )− (k)2(k)2

(n)2
2

M2

)
=

4KK

n2N(n)4

(
M(N −M)−NV

)
.

The expression for Σ then follows from these expressions. We note that for any vector
v = (α, β)T , vTΣv is the variance of the random variable αW + βW . Thus if Σ is not
positive definite, then there must be a non-trivial linear relationship αe(S) + βe(S) = c
for all choices of S. Assume first that α 6= −β. Then by interchanging x ∈ S with x ∈ S
we deduce from (7) that

α
(
dS(x)− dS(x)− 1xx

)
+ β

(
dS(x)− dS(x)− 1xx

)
= 0.

Thus αdS(x) − βdS(x) is a constant (= αdS(x) − βdS(x)) for all x ∈ S \ N(x), and a
different constant (= αdS(x)− βdS(x) + (α+ β)) for all x ∈ S ∩N(x). As this holds for
all choices of x ∈ S we deduce that S ∩N(x) is independent of x ∈ S. But by varying S
(and assuming k, k ≥ 2) we deduce that N(x)\{x, y} = N(y)\{x, y} for any two vertices
x, y ∈ V (G). This is a contradiction unless G is either the empty graph or the complete
graph. On the other hand, vTΣv = 0 for v = (1,−1)T implies that d(x) = dS(x) + dS(x)
is constant for all x ∈ S which, as this holds for all S and k ≥ 2, immediately implies that
G is a regular graph. Thus in all cases G is regular, which implies V = 0. Conversely, if
V = 0 then Σ is clearly singular.

In the case that V = 0, so G is regular, W = W and Lemma 5 reduces to the statement
that E[W 2] = 2KK

n2N2(n−2)(n−3)
M(N −M).

We now move on to bounds for the terms A and B appearing in Theorem 3. We start
with the following lemma which implies a suitable bound on B.

Lemma 6. Suppose that, for a constant ε > 0, G satisfies

1

n

∑
v∈V (G)

|d(v)− d(G)|3 = O(n3/2+ε). (10)

Then E
[
|W ′ −W |i|W ′ −W |3−i

]
= O(n−3/2+ε) for i = 0, . . . , 3.

Remark 7. Indeed, for any ε > 0, condition (10) holds w.v.h.p. in Gn,p and hence also in
Gn,M because, for a fixed vertex v, w.v.h.p. we have |d(v) − d(G)| ≤ n1/2+ε/3, and thus
by a union bound this holds w.v.h.p. for all vertices.

Proof. It is enough that the third moments E[|e(S ′) − e(S)|3] and E[|e(S ′) − e(S)|3] are
both O(n3/2+ε) as W ′ − W = (e(S ′) − e(S))/n, W ′ − W = (e(S ′) − e(S))/n, and in
general E|XY 2| ≤ (E|X3|)1/3(E|Y 3|)2/3 and E|X2Y | ≤ (E|X3|)2/3(E|Y 3|)1/3 by Hölder’s
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inequality. We shall only show that E[|e(S ′) − e(S)|3] = O(n3/2+ε) as the result for
E[|e(S ′)− e(S)|3] follows by symmetry.

Using (7), that E[(|X| + |Y |)3] = O(E|X|3 + E|Y |3) for random variables X, Y , and
d(G) ≤ n− 1, we get

E
[
|e(S ′)− e(S)|3

]
= E

[
|dS(x)− dS(x)− 1xx|3

]
= O

(
E
[
|dS(x)− k

n−1
d(G)|3

]
+ E

[
|dS(x)− k−1

n−1
d(G)|3

]
+ 1
)
.

Thus we need to show that E[|dS(x)− k
n−1

d(G)|3] and E[|dS(x)− k−1
n−1

d(G)|3] are O(n3/2+ε).
Fixing x and taking S to be a random k-subset of V (G) \ {x} gives

E
[
|dS(x)− k

n−1
d(G)|3 | x

]
= O

(
E
[
|X − E[X]|3

]
+
∣∣E[X]− k

n−1
d(G)

∣∣3),
where X is a hypergeometric random variable obtained by selecting k items from a set
V (G) \ {x} of size n − 1 and counting the number of these which occur in a given set
N(x) of size d(x). We note that E[|X − EX|3] = O(n3/2) and EX = k

n−1
d(x). Then

randomising over x, and using k ≤ n and (10), we see that

E
[
|dS(x)− k

n−1
d(G)|3

]
= 1

n

∑
x

E
[
|dS(x)− k

n−1
d(G)|3 | x

]
= O

(
n3/2 + 1

n

∑
x

|d(x)− d(G)|3
)

= O
(
n3/2+ε

)
.

The proof is completed by an analogous argument for E[|dS(x)− k−1
n−1

d(G)|3].

The last missing ingredient for our application of Theorem 3 is a suitable bound on the A
appearing there, which will be shown in Lemma 10 below. First, we need a concentration
estimate for the variance (and covariance) of various degrees in G.

Lemma 8. Let p = p(n) ∈ [δ, 1− δ] and fix a set S of size k. Let x be a random element
of S and x a random element of S as before. Then, for any ε > 0, w.v.h.p. in Gn,p we
have ∣∣VarxdS(x)− p(1− p)k

∣∣ = O(n1/2+ε), (11)∣∣VarxdS(x)− p(1− p)k
∣∣ = O(n1/2+ε), (12)

and

Covx
(
dS(x), dS(x)

)
= Ex

[
dS(x)dS(x)

]
− Ex

[
dS(x)

]
Ex
[
dS(x)

]
= O(n1/2+ε). (13)

Proof. In the following sums, the indices v, w, y, z run over vertices in S, and the indices
v, w, y, z run over vertices in S. We use primes on sums to indicate that summation is
over tuples of distinct elements only. Let 1vw be the indicator variable that the edge vw
is present in Gn,p as before; in particular we have 1vv = 0 for any vertex v. We may then

9



expand

V1 := k2 · VarxdS(x) = k
∑
v

dS(v)2 −
∑
v,w

dS(v)dS(w)

= k
∑
v,y,z

1vy1vz −
∑
v,w,y,z

1vy1wz

= (k − 2)
∑′

v,y

1vy + (k − 4)
∑′

v,y,z

1vy1vz −
∑′

v,w,y,z

1vy1wz.

Similarly,

V2 := k2 · VarxdS(x) = k
∑
v

dS(v)2 −
∑
v,w

dS(v)dS(w)

= k
∑
v,y,z

1vy1vz −
∑
v,w,y,z

1vy1wz

= (k − 1)
∑
v

∑
y

1vy + (k − 1)
∑
v

∑′

y,z

1vy1vz −
∑′

v,w

∑
y,z

1vy1wz,

and

V3 := k2 · Covx(dS(x), dS(x)) = k
∑
v

dS(v)dS(v)−
∑
v,w

dS(v)dS(w)

= k
∑
v,y,y

1vy1v y −
∑
v,w,y,y

1vy1w y

= (k − 2)
∑′

v,y

∑
y

1vy1v y −
∑′

v,w,y

∑
y

1vy1w y.

This allows us to compute

EG[V1] = (k − 2) · (k)2 p+ (k − 4) · (k)3 p
2 − 1 · (k)4 p

2 = (k)3 p(1− p),
EG[V2] = (k − 1) · kkp+ (k − 1) · k(k)2 p

2 − 1 · (k)2k
2p2 = (k)2kp(1− p),

EG[V3] = (k − 2) · (k)2kp
2 − 1 · (k)3kp

2 = 0.

Now for the concentration inequalities, enumerate the edges of Kn as e1, . . . , e(n
2)

and let
Fs be the σ-algebra generated by 1e1 , . . . ,1es . For i = 1, 2, 3, write

X(i)
s = E[Vi | Fs]

to denote the standard edge exposure martingale for Vi. We show that for i = 1, 2, 3,
w.v.h.p. |X(i)

s −X(i)
s−1| = O(n3/2+ε) for all s. Suppose we expose the edge es = ab at step s.

If we write V1 = cab1ab + c, where cab and c do not depend on 1ab, then the coefficient cab
is given by

cab = (k − 2) · 2 + (k − 4) · 2
∑
y 6=a,b

(1ay + 1by)− 4
∑′

y,z 6=a,b

1yz

= 2kdS(a) + 2kdS(b)− 4
∑
y

dS(y) +O(n).

10



In the last step, to obtain a simpler expression, we added some terms of order O(n) that
do depend on 1ab, but that does not change the fact that cab does not. We now get∣∣X(1)

s −X
(1)
s−1

∣∣ =
(
1ab − p

)
E[cab | Fs]

= 2
(
1ab − p

)(
kE[dS(a) | Fs] + kE[dS(b) | Fs]− 2

∑
y

E[dS(y) | Fs]
)

+O(n).

The coefficient of 1ab in V2 is 0 if a and b are both in S, or both in S. Otherwise we may
assume a ∈ S, b ∈ S, and then the coefficient is

cab = (k − 1) + (k − 1) · 2
∑
y 6=a

1by − 1 · 2
∑

y 6=a,y 6=b

1yy = 2kdS(b)− 2
∑
y

dS(y) +O(n),

yielding ∣∣X(2)
s −X

(2)
s−1

∣∣ = 2
(
1ab − p

)(
k E[dS(b) | Fs]−

∑
y

E[dS(y) | Fs]
)

+O(n).

The coefficient of 1ab in V3 is also 0 if a and b are both in S. When a, b ∈ S, the coefficient
is

cab = (k − 2)
∑
y

(1ay + 1by)− 2
∑
y 6=a,b

∑
y

1yy = kdS(a) + kdS(b)− 2
∑
y

dS(y) +O(n),

which gives∣∣X(3)
s −X

(3)
s−1

∣∣ =
(
1ab − p

)(
k E[dS(a) + dS(b) | Fs]− 2

∑
y

E[dS(y) | Fs]
)

+O(n).

When a ∈ S, b ∈ S, we have

cab = (k − 2)
∑
z

1bz −
∑′

w,z 6=b

1w z = kdS(b)−
∑
w

dS(w) +O(n),

and hence∣∣X(3)
s −X

(3)
s−1

∣∣ =
(
1ab − p

)(
k E[dS(b) | Fs]−

∑
w

E[dS(w) | Fs]
)

+O(n).

Applying the Chernoff bound to the exposed edges, we deduce that for a fixed s and
v ∈ V (G), w.v.h.p., E[dS(v) | Fs] = pk + O(n1/2+ε/2). Hence, by a union bound, we
have that w.v.h.p. this holds for all v and all s. Similarly, we can show that E[dS(v) |
Fs] = pk + O(n1/2+ε/2) for all v and s. This can now be applied to all the expressions
derived above to see that, for i = 1, 2, 3, we have w.v.h.p. |X(i)

s −X(i)
s−1| = O(n3/2+ε/2) for

all s. The Azuma–Hoeffding inequality (Lemma 22) with t = n5/2+ε, cs = O(n3/2+ε/2)
and hence σ2 = O(n5+ε) now gives the desired bound

PG
(
|Vi − E[Vi]| > t

)
≤ exp(−nΩ(1)) + 2 exp

(
− t2/2σ2

)
= exp

(
− nΩ(1)

)
for i = 1, 2, 3. The result follows as k, k = Θ(n).
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Remark 9. The proof of the first part of Lemma 8 (that is, equation (11)), does not
require that k ≥ δn and hence the result also holds for S = V (G). This gives precisely
that V = p(1− p)n2 +O(n3/2+ε), which we will use in the following subsection.

Lemma 10. In G = Gn,M , for i = 0, 1, 2 and all ε > 0, w.v.h.p. we have

Var
(
E[(W ′ −W )i(W ′ −W )2−i |W ]

)
= O(n−3+ε).

Proof. Let 0 < ε′ < ε/2. We work in Gn,p with p = M/
(
n
2

)
and start with a fixed set S.

We then have

Ex,x
[
(e(S ′)− e(S))2

]
= Ex,x

[
(dS(x)− dS(x)− 1xx)

2
]

= Ex,x
[
(dS(x)− dS(x))2

]
+ Ex,x

[
(1 + 2dS(x)− 2dS(x))1xx

]
= VarxdS(x) + VarxdS(x) +

(
ExdS(x)− ExdS(x)

)2

+ Ex,x
[
(1 + 2dS(x)− 2dS(x))1xx

]
,

where we have used the independence of x and x.

By Lemma 8, w.v.h.p. in G = Gn,p, VarxdS(x) and VarxdS(x) are both p(1 − p)k +
O(n1/2+ε′). We also have w.v.h.p. that e(S, S ′) − pkk and e(S) − p

(
k
2

)
are O(n1+ε′) and

thus

ExdS(x)− ExdS(x) = e(S,S)

k
− 2e(S)

k
= pk − p(k − 1) +O(nε

′
) = O(nε

′
).

Finally, w.v.h.p. for all y ∈ S and y ∈ S, we have dS(y), dS(y) = pk +O(n1/2+ε′). Thus

Ex,x
[
(1 + 2dS(x)− 2dS(x))1xx

]
= O(n1/2+ε′).

Putting all of this together, we see that for fixed S w.v.h.p. in G we have∣∣Ex,x[(e(S ′)− e(S))2
]
− 2p(1− p)k

∣∣ ≤ 1
2
n1/2+ε/2. (14)

With S no longer fixed and denoting by X the number of S failing (14), we have E[X] ≤
exp(−2nη)

(
n
k

)
for some constant η > 0 and hence Markov gives

PG
(
X > exp(−nη)

(
n
k

))
≤ E[X]

exp(−nη)
(
n
k

) ≤ exp(−nη),

so w.v.h.p. inG there is at most an exp(−nη) proportion of choices of S not satisfying (14).

This property holds w.v.h.p. in Gn,p and thus in Gn,M and we now fix G with this
property. We want to condition on W and let η′ < η. Say that w is typical if PS(W =
w) ≥ exp(−nη′). For a typical w, since |(e(S ′)− e(S))2| is bounded by n4, we have∣∣E[(e(S ′)− e(S))2 |W = w

]
− 2p(1− p)k

∣∣ ≤ exp(−nη + nη
′
)n4 + 1

2
n1/2+ε/2 ≤ n1/2+ε/2.

On the other hand, there are at most
(
n
2

)2 ≤ n4 possible values of (e(S), e(S)) and hence
at most n4 possible values of W . Thus there are at most n4 exp(−nη′)

(
n
k

)
choices of S

where W takes a non-typical value, yielding that

PS
(
|E
[
(e(S ′)− e(S))2 |W

]
− 2p(1− p)k

∣∣ > n1/2+ε/2
)
≤ n4 exp(−nη′).
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Additionally, using that 0 ≤ E[(e(S ′)− e(S))2 |W ] ≤ n4, we get

Var
(
E
[
(e(S ′)− e(S))2 |W

])
≤ n12 exp(−nη′) + n1+ε = O(n1+ε).

Now noting that W ′ −W = (e(S ′)− e(S))/n, we obtain that w.v.h.p. in Gn,M we have

Var
(
E
[
(W ′ −W )2 |W

])
= n−4Var

(
E
[
(e(S ′)− e(S))2 | S

])
= O(n−3+ε).

By symmetry, we also have Var(E[(W ′ − W )2 | W ]) = O(n−3+ε). The proof for
Var(E[(W ′ −W )(W ′ −W ) |W ]) is similar. Indeed, for fixed S we can write

Ex,x
[
(e(S ′)− e(S))(e(S ′)− e(S))

]
= Ex,x

[
(dS(x)− dS(x)− 1xx)(dS(x)− dS(x)− 1xx)

]
= −Covx

(
dS(x), dS(x)

)
− Covx

(
dS(x), dS(x)

)
+
(
Ex[dS(x)]− Ex[dS(x)]

)(
Ex[dS(x)]− Ex[dS(x)]

)
+ Ex,x

[
1xx(1− dS(x) + dS(x)− dS(x) + dS(x))

]
.

Once again applying Lemma 8, we know that w.v.h.p. the covariances Covx(dS(x), dS(x))
and Covx(dS(x), dS(x)) are O(n1/2+ε′) in Gn,p. Further, w.v.h.p. e(S, S ′) − pkk, e(S) −
pk2/2 and e(S, S)− pk2/2 are O(n1+ε′) and so(

Ex[dS(x)]− Ex[dS(x)]
)(
Ex[dS(x)]− Ex[dS(x)]

)
=
(
e(S, S)/k − 2e(S)/k

)(
2e(S)/k − e(S, S)/k

)
= O(nε

′
)O(nε

′
) = O(n2ε′).

Finally, as above w.v.h.p. we have Ex,x[1xx(1−dS(x)+dS(x)−dS(x)+dS(x))] = O(n1/2+ε′).
Putting everything together, we obtain Ex,x[(e(S ′) − e(S))(e(S ′) − e(S))] = O(n1/2+ε′).
Arguing as above, we can then deduce that w.v.h.p. in Gn,M we have

Var
(
E
[
(W ′ −W )(W ′ −W ) |W

])
= n−4Var

(
E
[
(e(S ′)− e(S))(e(S ′)− e(S)) |W

])
= O(n−3+ε)

as desired.

Lemma 11. For any ε > 0, w.v.h.p. in Gn,M , for any z,∣∣PS(W ≤
√

Σ11z)− PS(Z ′ ≤ z)
∣∣ = O(n−1/4+ε),

where Z ′ ∼ N(0, 1) is a standard normal random variable,

Σ11 = Var(W ) =
2KK

n2N2(n− 2)(n− 3)

(
M(N −M) + k−2

k−1
NV

)
and V =

∑n
i=1 d(v)2 − nd(G)2.

Proof. We apply Theorem 3 to our (W ,W ′). Lemma 4 shows that (6) holds for the
Λ given there and Lemma 5 shows that (5) holds with the Σ given there. We note
that under the conditions of the theorem, the entries of both Σ1/2 and Σ−1/2 are O(1).
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Indeed, we have V = p(1 − p)n2 + O(n3/2+ε) where p = M/N by Remark 9, and hence
NV = (2 + o(1))M(N −M). Thus

Σ = Θ(1) ·
(

1 + 2κ+ o(1) −1 + o(1)
−1 + o(1) 1 + 2κ−1 + o(1)

)
where κ = k/k = Θ(1). The entries of Λ−1 are O(n) by (8), and hence the terms λ(i)

of Theorem 3 are also O(n). Since the entries of Σ−1/2 are O(1), Lemma 6 gives B =
O(n−1/2+ε) and Lemma 10 gives A = O(n−1/2+ε). This then implies that T = O(n−1/2+ε)
and B/

√
T = O(B/

√
B) = O(n−1/4+ε). Hence our application of Theorem 3 yields, for

any z, ∣∣PS(W ≤
√

Σ11z)− PS(Z ′ ≤ z)
∣∣ = O(n−1/4+ε),

as desired.

2.2 Proof of Theorem 1

We will now show that the output from Stein’s method, namely Lemma 11, can be
reformulated into the statement of Theorem 1. First, note that the V and by extension
the Σ11 appearing in Theorem 1 depend on the graph G = Gn,M . To get around this
dependency, we can use the fact that V is well-concentrated in Gn,M which was essentially
established in Remark 9. The following calculation is the source of the definition λ =
(n2−k2)k2

2n4 · M(N−M)
N2 that we made in (1).

Corollary 12. For any ε > 0, w.v.h.p. we have Σ11 = λ(1 +O(n−1/2+ε)).

Proof. By Lemma 8 (or specifically Remark 9) we may assume V = p(1−p)n2+O(n3/2+ε)
where p = M/N is bounded away from 0 and 1. Now as k, k = Θ(n) and k = n− k,

Σ11 = 2KK
n2N2(n−2)(n−3)

(
M(N −M) + k−2

k−1
NV

)
= k2k2

2n4 p(1− p)
(
1 + 2k

k
+O(n−1/2+ε)

)
= k2

2n4p(1− p)k(k + 2k)
(
1 +O(n−1/2+ε)

)
= k2

2n4 · M(N−M)
N2 · (n2 − k2)

(
1 +O(n−1/2+ε)

)
= λ

(
1 +O(n−1/2+ε)

)
.

To obtain our modified statement in Theorem 1, in addition to getting rid of dependency
on the graph, we also transfer to an expression given in terms of the edge count e(S)
without normalisation.

Proof of Theorem 1. It is enough to show that the left hand side of (2) is O(n−1/4+ε).
As before, let Z ′ be a standard normal random variable. Using the shorthand ρ(x) :=
(x−KM/N)/

√
Σ11n and c :=

√
Σ11/λ, we may write∣∣PS(e(S) ≤ z)− PS(Z ≤ z)
∣∣ =

∣∣PS(W ≤
√

Σ11ρ(z))− PS(Z ′ ≤
√

Σ11/λρ(z))
∣∣,

and this expression can be bounded by∣∣PS(W ≤
√

Σ11ρ(z))− PS(Z ′ ≤ ρ(z))
∣∣+
∣∣PS(Z ′ ≤

√
Σ11/λρ(z))− PS(Z ′ ≤ ρ(z))

∣∣.
14



The first of these summands is with very high probability O(n−1/4+ε) by Lemma 11. As
for the second summand, we may assume ρ(z) = O(log n) as otherwise P(Z ′ ≤ ρ(z)) and
P(Z ′ ≤ cρ(z)) are both within O(n−1) of 0 or 1, depending on the sign on ρ(z). Since the
probability density function of Z ′ is bounded by 1 and c = 1+O(n−1/2+ε) by Corollary 12,
we obtain∣∣P(Z ′ ≤ ρ(z))− P(Z ′ ≤ cρ(z))

∣∣ ≤ |cρ(z)− ρ(z)| = O(|c− 1| log n) = O(n−1/2+2ε),

completing the proof.

3 The local limit theorem
Recall that S is a random subset of the vertex set of G = Gn,M of size k, where
M/N, k/n ∈ [δ, 1 − δ] with N =

(
n
2

)
. We also define λ = (n2−k2)k2

2n4 · M(N−M)
N2 and note

that λ = Θ(1). We now derive a local limit theorem for the empirical distribution of the
number e(S) of edges induced by S, where the distribution is over choices of k-set S with
G fixed, restated below.

Theorem 2. Assume that for some fixed δ > 0, M/N, k/n ∈ [δ, 1 − δ]. Then for any
ε > 0 and w.v.h.p. in G = Gn,M we have that for all integers z

n
∣∣PS(e(S) = z)− ϕ(z)

∣∣ ≤ n−1/14+ε,

where ϕ is the density function of a normal random variable Z ∼ N(KM/N, λn2).

The conclusion of this theorem and further ones later take the form that, for all values
z ∈ {0, . . . ,

(
n
2

)
} (or all intervals of values of z), certain events involving P(e(S) = z) hold

with very high probability. We remark again that when we say an event holds w.v.h.p.
for any z, this implies that w.v.h.p. the event holds for all z at the same time by a simple
union bound argument. We will thus pay no particular attention to the order of “w.v.h.p.”
and “for all z”.

The proof of Theorem 2 starts from the central limit theorem (Theorem 1), and from
there narrows down to point probabilities via a smoothing argument. For a convenient
starting point, we reformulate the central limit theorem to deal with probabilities of e(S)
being in an interval [z0, z1].

Corollary 13. For any ε > 0, w.v.h.p. in G = Gn,M we have for any z0, z1 that∣∣PS(e(S) ∈ [z0, z1])− PS(Z ∈ [z0, z1])
∣∣ ≤ n−1/4+ε,

where Z ∼ N(KM/N, λn2).

Proof. This follows from Theorem 1 together with the fact that PS(e(S) ∈ [z0, z1]) =
P(e(S) ≤ z1)− P(e(S) < z0) = P(e(S) ≤ z1)− P(e(S) ≤ z′0), where z′0 < z0 is sufficiently
close to z0.

We also record a (weaker) asymptotic upper bound on these probabilities of intervals,
which will come in handy in the smoothing procedure that is central in the argument to
come.
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Corollary 14. For p = p(n) ∈ [δ, 1− δ] and ε > 0, there is a constant C > 0 such that
w.v.h.p. in Gn,p, for any z and any r with r ≥ n3/4+ε,

PS
(
e(S) ∈ [z, z + r]

)
≤ Cr/n.

Proof. With Z as before, Corollary 13 gives that for a fixed M = M(n) w.v.h.p. in Gn,M ,
we have P(e(S) ∈ [z, z + r]) ≤ P(Z ∈ [z, z + r]) + n−1/4+ε. Thus, as the pdf of Z is
bounded by 1/(n

√
2πλ) (see Lemma 25),

P
(
e(S) ∈ [z, z + r]

)
≤ r

n
√

2πλ
+ n−1/4+ε ≤ Cr/n

for a suitable constant C and provided r ≥ n3/4+ε. Since this holds in Gn,M for any
M with the same constant C, revealing the number of edges in Gn,p, yields the same
assertion in Gn,p, noting that the probability that M/N /∈ [δ/2, 1− δ/2] is o(1/n).

In addition to the preceding corollaries, the other main ingredients needed for our smooth-
ing method are certain concentration results which we prove in Section 3.1. The smooth-
ing procedure itself is then described and established in Section 3.2, and we apply it to
prove Theorem 2 in Section 3.3. While the target local limit theorem is for Gn,M , it is
convenient to work for the most part in Gn,p for some p = p(n) ∈ [δ, 1 − δ]. We only
return to Gn,M for the final proof, at which point we transfer results between models as
needed.

3.1 Concentration of e(S)− e(S ′) in Gn,p

With the justification at the end of the preceding section, we now work in Gn,p for some
p = p(n) ∈ [δ, 1− δ] and assume V (Gn,p) = [n].

To analyse our random model, we view our random set S as being constructed by taking
a union S = S ′∪T of a random (k− t)-set S ′ ⊆ [n] and a random t-set T ⊆ [n]\S ′, where
t = t(n) will be of order 1 � t � n. We will condition on S ′ and compare probabilities
involving e(S) − e(S ′) to a better-behaved binomial random variable Y . Henceforth let
Y ∼ Bin((k − t)t +

(
t
2

)
, p) and note that for fixed S = S ′ ∪ T , in Gn,p, e(S) − e(S ′) is

distributed like Y .

The next two lemmas show that in Gn,p, for any interval A of appropriate length and
for almost all S ′, PT (e(S) − e(S ′) ∈ A) is concentrated around its mean P(Y ∈ A). We
first do this in Lemma 15 with S ′ fixed and T chosen from a family of disjoint sets in
[n] \ S ′. In this setting, the relevant edge sets are independent allowing us to use simple
concentration techniques. The more general case is then contained in Lemma 16.

Lemma 15 (T from disjoint family). Assume p, k/n ∈ [δ, 1−δ]. Let β, ε > 0 be constants
and let a, t ∈ N be such that t ≤ k/2 and

a ≤ t3/2n2β−1/2. (15)

Let S ′ ⊆ [n] be fixed with |S ′| = k − t. Define m = bn−k+t
t
c and let T = {Ti}i∈[m] be a

family of pairwise disjoint t-sets in [n]\S ′. Let T be a uniformly chosen random element
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of T and A = [z, z + a) an interval. If n is sufficiently large, then with probability at
least 1− e−nε in Gn,p we have∣∣PT (e(S ′ ∪ T )− e(S ′) ∈ A

)
− P(Y ∈ A)

∣∣ ≤ ∆A,

where

∆A =

{
e−n

ε
/m, if P(Y ∈ A) ≤ e−n

ε
/m;

nβ+ε/m, otherwise.
(16)

Proof. In this proof, it will be easier to work with counts of sets rather than probabilities.
To that end, let NA be the number of sets T ∈ T such that e(S ′ ∪ T )− e(S ′) ∈ A. Then
we have µA = EG[NA] = mP(Y ∈ A), and hence

PG
(
|PT
(
e(S ′ ∪ T )− e(S ′) ∈ A

)
− P(Y ∈ A)| > ∆A

)
= PG

(
|NA − µA| > m∆A

)
.

We proceed by working with the expression on the right hand side. If P(Y ∈ A) ≤ e−n
ε
/m,

then µA ≤ e−n
ε , so Markov’s inequality gives

PG(|NA − µA| > e−n
ε

) ≤ PG(NA ≥ 1) ≤ EG(NA) ≤ e−n
ε

.

We now turn to the general case. Clearly we may assume δ ≤ 1
2
, so that by our assump-

tions on p and k and using that t ≤ k/2 and k ≥ δn we have

Var(Y ) = p(1− p)
(
(k − t)t+

(
t
2

))
≥ δ(1− δ) · kt

2
≥ 1

4
δ2nt. (17)

Then, by Lemma 23,

p′ := P(Y ∈ A) ≤
√

π

8Var(Y )
· a ≤ 2a

δ
√
nt

and we have NA ∼ Bin(m, p′). Hence, by our assumption (15),

µA = mp′ ≤ n

t
· 2a

δ
√
nt
≤ 2δ−1n2β.

It then follows from Bernstein’s inequality (Theorem 21) that, for large enough n,

PG
(
|NA − µA| > nβ+ε

)
≤ 2 exp

(
−n2β+2ε

2(µA + nβ+ε/3)

)
≤ e−n

ε

.

We now show that the assertion of Lemma 15 still holds for almost all S ′ when we take
a fully random T ⊆ [n] \S ′. This is a straightforward application of Markov’s inequality.

Lemma 16 (Concentration). Assume p, k, β, ε, a and t are as in Lemma 15. For a
fixed (k − t)-set S ′ let T be a random t-set in [n] \ S ′. Then w.v.h.p. in Gn,p, for any
interval A as above, at most an e−nε/4 proportion of the (k − t)-sets S ′ fail to satisfy∣∣PT (e(S ′, T ) + e(T ) ∈ A)− P(Y ∈ A)

∣∣ ≤ ∆A + e−n
ε/2. (18)
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Proof. We begin with a fixed set S ′. Picking a random T is equivalent to choosing
uniformly a random (almost complete) partition of [n] \ S ′ into t-sets T = {Ti}i∈[m] and
a uniformly random T ∈ T . Say a family T is good if, when choosing T u.a.r. from T ,
we have |PT

(
e(S ′, T ) + e(T ) ∈ A

)
− P(Y ∈ A)| ≤ ∆A, otherwise we say T is bad.

When choosing a random T , we have EG[PT (T is bad)] < e−n
ε by Lemma 15. Applying

Markov’s inequality then gives

PG
(
PT (T is bad) ≥ e−n

ε/2
)
≤ EG[PT (T is bad)]/e−n

ε/2 ≤ e−n
ε/2.

Thus, when choosing T and T ∈ T as described above, with probability at least 1−e−nε/2

in G we have∣∣PT (e(S ′, T ) + e(T ) ∈ A)− P(Y ∈ A)
∣∣ ≤ PT (T is good)∆A + PT (T is bad)

≤ ∆A + e−n
ε/2.

Writing Ne for the number of S ′ that violate (18), this gives EG[Ne] ≤ e−n
ε/2
(
n
k−t

)
. By a

second application of Markov’s inequality, we now have

PG
(
Ne > e−n

ε/4
(
n
k−t

))
≤ e−n

ε/4

as desired.

3.2 Smoothing

For a (fixed) random graph G, the only properties that we will now need to analyse the
distribution of e(S) are the bounds from the CLT reformulation in Corollary 14 and the
concentration property given in Lemma 16. We see directly from these two statements
that w.v.h.p. Gn,p (with p ∈ [δ, 1− δ]) satisfies both of these. The goal of this subsection
is to show that for G with these properties the probability that e(S) = z, or the weight
of z, is evenly distributed for points z within intervals of a suitable length in the following
sense.

Lemma 17 (Smoothing Lemma). Fix β ∈ (0, 1
10

) and ε ∈ (0, 1−10β
4

). Then there exists
an integer a ∈ [n1−5β/2−ε, n1−5β/2] such that w.v.h.p. in Gn,p, for all z, we have∣∣PS(e(S) = z

)
− a−1PS

(
e(S) ∈ [z, z + a)

)∣∣ ≤ n−1−β+2ε.

To see how this fits into our main outline, note that the central limit theorem gives us the
measure of any interval with error O(n−1/4+ε). If we then work on an interval of length
about n1−5β/2, the smoothing argument spreads out this error to O(n−5/4+5β/2+ε) at each
point and introduces an additional O(n−1−β+2ε) error. There is also an additional small
error from the variation of the Gaussian, and altogether this leads to the claimed local
limit theorem when β is chosen appropriately.

Lemma 17 will be established using an iterative procedure to gradually prove smoothing
statements for intervals of decreasing length (descending to intervals of length 1). In each
step, we consider any interval A of length r from the previous iteration, and show that for
any two subintervals A1 and A2 of A with the same length a � r, their weights cannot
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differ too much from each other. This is the content of Lemma 19. Combining all these
smoothing statements, we obtain that the probabilities at two single points in any interval
of length given by the first iteration step do not differ too much, giving Lemma 17. The
condition that Lemma 19 imposes on intervals of length r to get an iteration started is
rather weak – we ask that weights of those intervals are at most O(r/n). As we will see in
Corollary 20, this condition follows directly from the assertion of the previous application
of Lemma 19; at the first iteration, it follows from the CLT in the form of Corollary 14.

We shall use an iterative sequence for the above procedure. Each step requires a suitable
choice of parameters a and r as above, as well as t from Section 3.1. The conditions of
Lemma 19 impose the following constraints. For a given constant β ∈ (0, 1

10
), let us say

that the triple (a, r, t) of integers is valid (for β) provided that

(i) a ≤ r,

(ii) a = ct3/2n2β−1/2 for some 1
2
≤ c ≤ 1, and

(iii) r ≤ n−β
√
nt.

Remark 18. In Lemmas 15 and 16 we already required the c ≤ 1 condition in (ii) explicitly
while the requirement that t ≤ k/2 follows for large n from the c ≥ 1

2
part of (ii) (as

(i)–(iii) imply ct ≤ n1−3β while k ≥ δn). We also note for later that if r3n−2+5β ≤ a ≤ r
then one can set t = d(a2n1−4β)1/3e to satisfy (i)–(iii) when n is large.

Lemma 19 (Difference Lemma). Let β ∈ (0, 1
10

), ε > 0 and let (a, r, t) be valid for β.
Let S ′ and S be uniformly and independently chosen random subsets of [n] of sizes k− t
and k respectively. Suppose that there is a constant C such that w.v.h.p. in Gn,p we have

PS′
(
e(S ′) ∈ [z, z + r)

)
≤ Cr

n
(19)

for all z. Then w.v.h.p. in Gn,p we have∣∣PS(e(S) ∈ [z1, z1 + a)
)
− PS

(
e(S) ∈ [z2, z2 + a)

)∣∣ ≤ an−1−β+ε (20)

whenever |z1 − z2| ≤ r.

Proof. We can assume that n is large, so that (a, r, t) being valid for β implies t ≤ k/2.
To rewrite the quantity we wish to bound, we couple our choices of S and S ′: generate a
random set S in parts by taking a random set S ′ of size k′ := k−t as well as a random set
T ⊆ [n]\S ′ of size t, and then defining S := S ′∪T (as in Section 3.1). Let A1 := [z1, z1+a)
and A2 := [z2, z2 + a) and note that |z1 − z2| ≤ r by assumption. We call S ′ good if (18)
holds for both A1 and A2, otherwise S ′ will be called bad. If we condition on S ′ and S ′
is good, then∣∣P(e(S) ∈ A1 | S ′)−P(e(S) ∈ A2 | S ′)

∣∣
≤
∣∣PT (e(S)− e(S ′) ∈ A1 − e(S ′)

)
− PY

(
Y ∈ A1 − e(S ′)

)∣∣
+
∣∣PT (e(S)− e(S ′) ∈ A2 − e(S ′)

)
− PY

(
Y ∈ A2 − e(S ′)

)∣∣
+
∣∣PY (Y ∈ A1 − e(S ′)

)
− PY

(
Y ∈ A2 − e(S ′)

)
|

≤ ∆A1−e(S′) + ∆A2−e(S′) + 2e−n
ε/2 + PY (e(S ′)),
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where Y ∼ Bin(t(k − t) +
(
t
2

)
, p) and

PY (e) :=
∣∣P(Y ∈ A1 − e

)
− P

(
Y ∈ A2 − e

)∣∣.
The conclusion of Lemma 16 means that w.v.h.p. in Gn,p, PS′(S ′ is bad) ≤ 2e−n

ε/4, so∣∣P(e(S) ∈ A1)− P(e(S) ∈ A2)
∣∣

≤ P(S ′ is bad) + ES′
[
∆A1−e(S′) + ∆A2−e(S′) + 2e−n

ε/2 + PY (e(S ′))
]

≤ 4e−n
ε/4 + ES′

[
∆A1−e(S′) + ∆A2−e(S′) + PY (e(S ′))

]
≤ 4e−n

ε/4 +
∑

0≤e≤(k′
2 )

P(e(S ′) = e)
(
∆A1−e + ∆A2−e + PY (e)

)
. (21)

Let I be the set of e such that there is a z ∈ A1 ∪ A2 with

|z − e− E[Y ]| ≤
√
kt nε. (22)

When e /∈ I, we have exponential bounds for all terms of (21): using Theorem 21 we
have for i = 1, 2 and sufficiently large n

P
(
Y ∈ Ai − e

)
≤ P

(
|Y − E[Y ]| >

√
kt nε

)
≤ 2 exp

(
− ktn2ε

2
((

(k − t)t+
(
t
2

))
p(1− p) +

√
kt nε/3

))
≤ 2 exp

(
− ktn2ε

kt+
√
kt nε

)
≤ exp(−nε)/m,

where m = bn−k+t
t
c as in Lemma 15. Thus we are in the first case of (16), and so

∆A1−e,∆A2−e = exp(−nε)/m, and also PY (e) ≤ exp(−nε)/m. Hence

4e−n
ε/4 +

∑
e/∈I

P(e(S ′) = e)
(
∆A1−e + ∆A2−e + PY (e)

)
≤ 4e−n

ε/4 + 3e−n
ε

/m ≤ 5e−n
ε/4.

We now turn to the contribution from the e ∈ I. For these e, in (16) we have ∆Ai−e ≤
nβ+ε/m. In addition, Lemma 23 gives a bound on PY (e), so that by (17) and the fact
that m ≥ (n− k)/t ≥ δn/t we have

∆A1−e + ∆A2−e + PY (e) ≤ 2nβ+ε/m+
πa|z2 − z1|
4Var(Y )

≤ 2δ−1nβ+ε−1t+
πar

δ2nt

≤ a√
nt

(
4δ−1n−β+ε + πδ−2n−β

)
≤ a√

nt
· 5δ−1n−β+ε,

where we have used conditions (ii) and (iii) and assumed n sufficiently large.

To obtain a bound on the total weight of all e ∈ I, we first observe that, for such e,
the condition in (22) is in fact satisfied by one of z1, z1 + a, z2 or z2 + a. Indeed, when
e + E[Y ] /∈ A1 ∪ A2, one of z1, z1 + a, z2, z2 + a is at least as close to e + E[Y ] as any
element of A1 ∪ A2. Else, if e + E[Y ] is an element of, say, A1, the validity of (a, r, t)
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(conditions (i) and (iii)) implies that a ≤ r ≤
√
nt ≤

√
kt nε, so it follows that any

z ∈ A1, and in particular z1, satisfies (22). We thus get

PS′(e(S ′) ∈ I) ≤
∑

z∈{z1,z1+a,z2,z2+a}

PS′
(
|z − e(S ′)− E[Y ]| ≤

√
kt nε

)
≤ 8C(2

√
kt nε + 1)/n = O(

√
nt · nε−1).

For the last inequality, observe that (19) implies that for all r′ ≥ r, P(e(S ′) ⊆ [z, z+r′)) ≤
2Cr′/n and that this can be applied as r ≤

√
kt nε.

Putting all of this together and using that (a, r, t) is valid (conditions (ii) and (iii)) in the
penultimate step, we obtain

|P(e(S) ∈ A1)− P(e(S) ∈ A2)| ≤ 5e−n
ε/4 +

∑
e∈I

P(e(S ′) = e)
(
∆A1−e + ∆A2−e + PY (e)

)
= 5e−n

ε/4 +O(
√
nt · nε−1) · a√

nt
· 5δ−1n−β+ε

= O(an−β−1+2ε).

As this holds for any ε > 0, the result follows for sufficiently large n on replacing ε by
ε/3, say.

We now observe that the conclusion of Lemma 19 yields (19) for the smaller interval of
size a, which will allow us to kick off the next iteration step.

Corollary 20. Under the notation and assumptions of Lemma 19, there is a constant
C ′ > 0 such that w.v.h.p. in Gn,p we also have P

(
e(S) ∈ [z, z + a)

)
≤ C′a

n
for all z.

Proof. We look at [z, z+a) for any fixed z. Consider the interval [z, z+r), and let I be a
maximal collection of disjoint intervals of length a in [z, z+r), so that |I| = br/ac ≥ r/2a.
W.v.h.p., for each A ∈ I, we have by Lemma 19 that |P(e(S) ∈ [z, z + a)) − P(e(S) ∈
A)| ≤ a/n (as without loss of generality ε < β). Thus this assertion and P(e(S ′) ∈
[z, z+ r)) ≤ Cr

n
hold at the same time w.v.h.p. and they imply P(e(S) ∈ [z, z+ a)) ≤ C′a

n

for C ′ = 2C + 1. Indeed, supposing otherwise gives

P
(
e(S) ∈ [z, z + r)

)
≥
∑
A∈I

P(e(S) ∈ A) >
(
C′a
n
− a

n

)
· r

2a
= Cr

n
,

which contradicts our assumption.

We are now ready to prove the main smoothing lemma.

Proof of Lemma 17. Set a0 = 1 and inductively define for j ≥ 0, tj = d(a2
jn

1−4β)1/3e
and aj+1 = b(ajn2−5β)1/3c. It can be easily verified that for all j, (aj, aj+1, tj) is valid
for β. Indeed, aj will be (just less than) n(1−5β/2)(1−3−j), so aj ≤ aj+1. Also n−β

√
ntj ≥

(ajn
2−5β)1/3 ≥ aj+1, and aj ≤ t

3/2
j n2β−1/2 = (1 + o(1))aj. Also, there exists some j0,

depending only on ε, such that for sufficiently large n, aj0 ∈ [n1−5β/2−ε, n1−5β/2]. This
will be our a.
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Now let Tj =
∑j−1

i=0 ti and note that as j0 is a constant and tj ≤ dn1−3βe, we have that
for sufficiently large n that Tj0+1 ≤ k/2. We now prove by reverse induction on j that
there is a constant Cj such that for any k′ ∈ [k − Tj, k], if we choose a set S of size k′
uniformly at random, then w.v.h.p. in Gn,p we have for all z,

PS
(
e(S) ∈ [z, z + aj)

)
≤ Cjaj/n (23)

and (for j < j0)∣∣a−1
j PS

(
e(S) ∈ [z, z + aj)

)
− a−1

j+1PS
(
e(S) ∈ [z, z + aj+1)

)∣∣ ≤ n−1−β+ε. (24)

Indeed (23) holds for j = j0 by Theorem 1 provided aj0 ≥ n3/4+ε′ for some ε′ > 0, and this
holds as 1− 5β/2− ε > 3/4. Then for j = j0− 1, . . . , 0 in turn, if S is a uniformly chosen
set of size k′ ∈ [k − Tj, k] and S ′ is a uniformly chosen set of size k′ − tj ∈ [k − Tj+1, k],
then (23) applied with S replaced with S ′ and j replaced with j + 1 implies (24) by
Lemma 19. Corollary 20 then implies (23) for S and j.

Hence we have for all z, and S uniformly random of size k,∣∣P(e(S) = z
)
− a−1

j0
P
(
e(S) ∈ [z, z + aj0)

)∣∣ ≤ j0n
−1−β+ε ≤ n−1−β+2ε.

3.3 Proof of Theorem 2

Combining the control we have from Lemma 17, which relates single-point weights to
weights of long intervals, with Corollary 13 which gives us the weight of long intervals,
we can now obtain the single-point weights up to a small error term as desired.

Proof of Theorem 2. Lemma 17 states that w.v.h.p. Gn,p satisfies∣∣P(e(S) = z
)
− a−1P

(
e(S) ∈ [z, z + a)

)∣∣ ≤ n−1−β+ε,

for all z, where a is some integer satisfying

n1−5β/2−ε ≤ a ≤ n1−5β/2.

Setting p = M/N , there is a polynomial probability (on the order of 1/n) that e(Gn,p) =
M . In that case we have (Gn,p | e(Gn,p) = M) ∼ Gn,M , so the conclusion of Lemma 17
transfers to Gn,M again with very small failure probability. Using this in the first step
and Corollary 13 in the second, and with Z and φ as in the theorem statement, we obtain

P
(
e(S) = z

)
= a−1P

(
e(S) ∈ [z, z + a)

)
+O(n−1−β+ε)

= a−1P
(
Z ∈ [z, z + a)

)
+O(a−1n−1/4+ε + n−1−β+ε)

= a−1

∫ z+a

z

ϕ(t) dt+O(a−1n−1/4+ε + n−1−β+ε)

= ϕ(z) +O(a/n2 + a−1n−1/4+ε + n−1−β+ε)

= ϕ(z) +O(n−1−5β/2 + n−5/4+5β/2+2ε + n−1−β+ε),

where the penultimate step follows from Lemma 25 and the fact that Var(Z) = Θ(n2).
To optimise the exponent, we take β = 1/14, giving

P(e(S) = z) = ϕ(z) +O(n−1−1/14+2ε).
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A Technical tools
In this section, we record several technical results that will be used in proofs of our main
theorems. While none of them are new, we provide proofs for completeness in cases where
a convenient reference is lacking.

We start with two concentration inequalities, namely Bernstein’s inequality and a version
of the Azuma–Hoeffding inequality with a relaxed difference bound condition.
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Theorem 21 (Bernstein [1]). Let X1, . . . , Xn be independent random variables taking
values in [0, 1] and let X :=

∑n
i=1 Xi and σ2 := Var(X) =

∑n
i=1 Var(Xi). Then for any

t ≥ 0 we have

P
(
|X − E[X]| > t

)
≤ 2 exp

(
− t2

2(σ2 + t/3)

)
.

Lemma 22 (Azuma–Hoeffding, see e.g. [13], Proposition 34). Let X = X(Z1, . . . , Zn) be
a random variable depending on independent variables Z1, . . . , Zn and suppose c1, . . . , cn >
0 are such that

P
(
∃i :

∣∣E[X | Z1, . . . Zi]− E[X | Z1, . . . Zi−1]
∣∣ > ci

)
≤ ε.

Then
P
(
|X − E[X]| ≥ t

)
≤ ε+ 2 exp

(
− t2/2σ2

)
,

where σ2 :=
∑n

i=1 c
2
i .

The following is more general that we need as we will only be applying it in the case when
X is a Binomial random variable. Nevertheless, we state it here in greater generality as
the proof is no harder.

Lemma 23. Suppose X =
∑n

i=1Xi where X1, . . . , Xn are independent Bernoulli random
variables. Then, for any m,m′ ∈ Z,

P(X = m) ≤
√

π

8Var(X)
and

∣∣P(X = m′)− P(X = m)
∣∣ ≤ π

4Var(X)
|m′ −m|.

Proof. For p ∈ [0, 1] and θ ∈ [−π, π] we have the inequality∣∣(1− p) + peiθ
∣∣2 = (1− p)2 + p2 + 2p(1− p) cos θ = 1− 4p(1− p) sin2 θ

2
≤ e−4p(1−p)θ2/π2

,

where we used | sinφ| ≥ 2
π
|φ| for |φ| ≤ π

2
and 1− x ≤ e−x for all x ∈ R. Now, as the Xi

are independent,

P(X = m) = E[1{X=m}] = E
1

2π

∫ π

−π
eiθ(X−m) dθ =

1

2π

∫ π

−π
e−imθ

∏
j

EeiθXj dθ.

Hence, writing pj := P(Xj = 1) and σ2 := Var(X) =
∑
pj(1− pj),

P(X = m) =
1

2π

∫ π

−π
e−imθ

∏
j

(
(1− pj) + pje

iθ
)
dθ ≤ 1

2π

∫ π

−π

∏
j

e−2pj(1−pj)θ2/π2

dθ

≤ 1

2π

∫ ∞
−∞

e−2σ2θ2/π2

dθ =
1

2π
·
√

π

2σ2/π2
=

√
π

8σ2
.

For the second inequality, we have

P(X = m′)− P(X = m) =
1

2π

∫ π

−π
(e−im

′θ − e−imθ)
∏
j

EeiθXj dθ.
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Thus, as |e−im′θ − e−imθ| ≤ |(m′ −m)θ|,

|P(X = m′)− P(X = m)| ≤ |m
′ −m|
2π

∫ π

−π
|θ|
∏
j

e−2pj(1−pj)θ2/π2

dθ

≤ |m
′ −m|
π

∫ ∞
0

θe−2σ2θ2/π2

dθ

=
|m′ −m|

π
· π

2

4σ2
=

π

4σ2
|m′ −m|,

as desired.

Remark 24. The constants in Lemma 23 are not best possible, however it can be seen by
taking approximations to suitable Poisson distributions that we can’t replace them with
the corresponding constants for the normal distribution given by the following.

Lemma 25. If ϕ is a density function of a normal random variable with mean µ and
variance σ2 then, for all x, y ∈ R we have

ϕ(x) ≤ 1

σ
√

2π
and |ϕ(x)− ϕ(y)| ≤ |x− y|

σ2
√

2πe
.

Proof. The first statement is immediate as ϕ(x) = e−(x−µ)2/2σ2
/(σ
√

2π). For the latter,
again note that the maximum of x 7→ |xe−x2/2| is e−1/2 and occurs at x = ±1 and hence

|ϕ′(x)| =
∣∣∣∣− 1

σ2
√

2π

x− µ
σ

exp
(
−
(x− µ

σ

)2

/2
)∣∣∣∣ ≤ 1

σ2
√

2πe
,

with the maximum occurring at (x − µ)/σ = ±1. The statement then follows from the
mean value theorem.
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