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Abstract

Given two weighted k-uniform hypergraphs G, H of order n, how
much (or little) can we make them overlap by placing them on the
same vertex set? If we place them at random, how concentrated is the
distribution of the intersection? The aim of this paper is to investigate
these questions.

1 Introduction

The discrepancy of a set of points in a subset of Euclidean space measures
how uniformly the points are spread through the set. For instance, the
discrepancy of a set of n points in a square of area n can be defined as
the maximum difference between the area of a subsquare and the number
of points from the set that it contains. Discrepancy theory in the geometric
setting has been studied since the work of Weyl [37] on sequences, and is
of interest in areas including number theory and combinatorics, as well as
having applications in computational geometry and numerical integration
(see for instance the books by Beck and Chen [6], Kuipers and Niederreiter
[28] and Drmota and Tichy [16]).

In the discrete context, a similar notion of discrepancy for hypergraphs
was introduced by Erdős and Spencer [20], and measures the extent to which
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the edges of a hypergraph are uniformly distributed (inside the complete
graph).1

Erdős and Spencer showed that the edges of a k-uniform hypergraph
can not be distributed too uniformly: for every k-uniform hypergraph on n
vertices, there is a subset S in which the number of edges differs from 1

2

(|S|
k

)
by at least ckn

(k+1)/2. Random hypergraphs show that his bound is optimal
up to a constant factor. In the case of graphs (i.e. k = 2), Erdős, Goldberg,
Pach and Spencer [19] later extended this to graphs of any density p, where
the measure of discrepancy is the maximum difference between the number of
edges in a subset S and the expected p

(|S|
2

)
. More general results, including

an extension of the Erdős-Spencer result to arbitrary densities when k ≥ 3,
were proved in [10].

The aim of this paper is to study the discrepancy of pairs of hypergraphs.
The discrepancy of a pair hypergraphs, introduced in [11], measures the ex-
tent to which the edges of the two hypergraphs are uniformly and indepen-
dently distributed. Given k-uniform hypergraphs G and H with n vertices
and densities p, q, the discrepancy of the pair G, H is the maximum size,
over all bijections between their vertex sets, of the difference between their
intersection and pq

(
n
k

)
(the expected intersection under a random mapping).

For instance, G and H have discrepancy 0 if their intersection has the same
size for any placement of both hypergraphs onto the same vertex set; on the
other hand, if G and H are isomorphic to the same incomplete graph then
their discrepancy will be large, as any isomorphism between them will give
a much larger than average intersection.

In light of the results of Erdős and Spencer [20], it is natural to expect
that every pair of (unweighted) k-uniform hypergraphs of moderate density
should have large discrepancy (of order at least n(k+1)/2), and we conjectured
in [11] that this should be the case. For k = 2, this conjecture was proved
in [11], but for k = 3 we will show here that there is a counterexample (see
section 1.2); for k ≥ 4, the conjecture is still open.

In this paper, we will mainly be interested in the discrepancy of pairs
of weighted hypergraphs. It turns out that, for weighted hypergraphs the
picture is dramatically different from the unweighted case:

• For every k ≥ 1, there is a set of k nontrivial weighted k-uniform
hypergraphs such that every pair has discrepancy 0.

1There are a number of other standard ways to measure discrepancy for discrete struc-
tures: see Beck and Sós [7], Chazelle [13] and Matoušek [30].
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On the other hand, if we take one additional hypergraph, there must be a
pair with large discrepancy:

• For every k ≥ 1, and every set of k + 1 nontrivial normalised weighted
hypergraphs, there is some pair that has discrepancy at least ckn

(k+1)/2.

As we shall see in Section 1.2, both results are special cases of much more
general results (Theorem 16 and Theorem 3, respectively) on the discrepancy
of pairs of weighted hypergraphs. We will also be interested in the size
of the intersection when two (weighted) k-uniform hypergraphs are placed
at random onto the same vertex set. For sequences (k = 1) and graphs
(k = 2), the distribution of this intersection has been extensively studied in
the statistical literature, and central limit theorems have been proved under
various conditions. Here, we work with general k, but prove only a lower
bound (Theorem 4) on the concentration of the distribution.

The rest of the paper is organized as follows: after giving some back-
ground in Section 1.1, we discuss the discrepancy of pairs of weighted hyper-
graphs and present our results in Section 1.2. We give notation and some
useful tools in Section 2, and define the W -vector in Section 3. We study the
effects of a single transposition in Section 4; we prove Theorems 3 and 4 in
Section 5; and Theorem 16 is proved in Section 6. We conclude in Section 7
with some comments and open problems.

We work throughout the paper with weighted hypergraphs. A weighted
k-uniform hypergraph with vertex set V is a function w : V (k) → R, i.e. a
weighting on the k-sets in V . An unweighted k-uniform hypergraph is a
subset of V (k), and can be identified with the weighted hypergraph given by
the indicator function for its edges. The density of w is d(w) = w(V )/

(
n
k

)
,

where w(V ) =
∑

e∈V (k) w(e). We shall assume that all hypergraphs have n
vertices unless otherwise stated (and, in particular, that |V | = n).

1.1 Discrepancy of a single hypergraph

In this section we give some background on the discrepancy of a single hy-
pergraph.

Let G be an unweighted k-uniform hypergraph with weight function w.
If S ⊂ V is chosen uniformly at random from all sets of some fixed size, we
have

Ew(S) = d(w)

(
|S|
k

)
. (1)
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It therefore makes sense to define the discrepancy of G by

disc(G) = max
S⊂V

∣∣∣∣w(S)− d(w)

(
|S|
k

)∣∣∣∣ . (2)

The discrepancy measure how far w(S) can deviate from (1), but does not
indicate whether the number of edges is greater or less than we expect. We
therefore define the positive discrepancy disc+(G) by

disc+(G) = max
S⊂V

(
w(S)− d(w)

(
|S|
k

))
.

and the negative discrepancy disc−(G) by

disc−(G) = max
S⊂V

(
d(w)

(
|S|
k

)
− w(S)

)
.

Clearly disc(G) = max{disc+(G), disc−(G)}, and it follows from (1) that
both positive and negative discrepancy are nonnegative. (We note that
notions of signed discrepancy have been considered in other contexts: see
Erdős, Faudree, Rousseau and Schelp [18], Krivelevich [27] and Keevash and
Sudakov [25].)

The discrepancy of graphs and hypergraphs was introduced by Erdős and
Spencer [20], who showed that every (unweighted) k-uniform hypergraph G
of order n and density 1/2 has

disc(G) ≥ ckn
(k+1)/2. (3)

For k = 2 (i.e. for graphs), Erdős, Goldberg, Pach and Spencer [19] extended
(3) to arbitrary density, showing that if G has order n and density p, where
p ∈ (2/(n− 1), 1− 2/(n− 1)), then

disc(G) ≥ c
√
p(1− p)n3/2. (4)

By considering random graphs in G(n, 1/2). it can be seen that the dis-
crepancy of a graph on n vertices can be as small as O(n3/2); thus (3) is
optimal up to the constant. However, the one-sided discrepancies can be
smaller: Kn/2,n/2 has positive discrepancy O(n), while its complement 2Kn/2

has negative discrepancy O(n); on the other hand, both graphs have discrep-
ancy Ω(n2) in the other direction. Bollobás and Scott [10] showed that this

4



tradeoff is unavoidable: for every graph G of order n, with p
(
n
2

)
edges, where

p(1− p) ≥ 1/n, we have

disc+(G)disc−(G) ≥ cp(1− p)n3. (5)

Note that (4) follows immediately. A similar result to (5) also holds for k-
uniform hypergraphs [10]: for every hypergraph H of order n and density p,
where p(1− p) ≥ 1/n,

disc+(H)disc−(H) ≥ ckp(1− p)nk+1. (6)

It follows immediately that disc(H) ≥ c′k
√
p(1− p)n(k+1)/2, which extends

(3) to general densities.

1.2 Results

We now turn to the discrepancy of pairs of hypergraphs. Given two weighted
hypergraphs w, u on V , the intersection of w and u is naturally defined as
〈w, u〉, where 〈·, ·〉 is the standard inner product on V (k). There is also
a natural action of the symmetric group S(V ) on the space of weighted
hypergraphs, given by wπ(e) = w(π−1e) (see Section 2 for notation).

If we permute w uniformly at random, the expected intersection with u
is

Eπ〈wπ, u〉 = d(w)d(u)

(
n

k

)
. (7)

This leads us to define the positive discrepancy of the pair w,u by

disc+(w, u) = max
π
〈wπ, u〉 − d(w)d(u)

(
n

k

)
(8)

and the negative discrepancy by

disc−(w, u) = d(w)d(u)

(
n

k

)
−min

π
〈wπ, u〉. (9)

Note that both are nonnegative, by (7). The discrepancy disc(w, u) is then
defined as

disc(w, u) = max{disc+(w, u), disc−(w, u)} = max
π
|〈wπ, u〉 − d(w)d(u)

(
n

k

)
|.
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The discrepancy of a pair of hypergraphs was introduced in [11], and
is a natural extension of the notion of discrepancy for a single hypergraph.
Analogously with (4), it was shown in [11] that, for every pair of graphs G,
H, of order n and densities p, q ∈ (16/n, 1− 16/n),

disc(G,H) ≥ c(p, q)n3/2, (10)

where c(p, q) = p2(1− p)2q2(1− q)2/1010.
As with the discrepancy of a single graph, the one-sided discrepancies of

pairs of graphs can be quite small. For instance, consider G = Kn/2,n/2 and
H = 2Kn/2: this pair has positive discrepancy O(n), which is minimal up
to a constant factor for dense graphs (although the negative discrepancy is
Ω(n2), which is maximal up to a constant factor). However, it was shown in
[11] that there is a bound on the product of the two discrepancies: for every
pair of graphs G, H, of order n and densities p, q ∈ (16/n, 1− 16/n),

disc+(G,H)disc−(G,H) ≥ c(p, q)2n3. (11)

Thus if either positive or negative discrepancy is small, the other must be
large. The bound (11) is sharp up to the constant, as can be seen from
Kn/2,/n/2 and 2Kn/2 or by taking G = 2Kn/2 and letting H be a random
graph with fixed density. Note also that (5) is a special case of (11), as we
can take H = Kn/2 ∪ (n/2)K1 (which corresponds to restricting S to have
size n/2 in (2)). The bound (10) also follows as an immediate corollary.

It seems natural to expect that bounds similar to (10) and (11) should
hold for k-uniform hypergraphs: by analogy with the situation for a single
hypergraph, we should expect a lower bound of form cnk+1 on the product
of positive and negative discrepancies, which would in turn yield a bound
of form cn(k+1)/2 on disc(G,H) (as in (3) and (6) above). Such a bound
was conjectured in [11], but we were surprised to find the following simple
counterexample for 3-uniform hypergraphs. Let V be a set of n vertices, and
let V = A ∪ B be a partition. We let G be the 3-uniform hypergraph on V
with all triples that meet both A and B, and H be a Steiner triple system.
Then disc(G,H) = 0. (This is easily shown: in any placement of H, there
must be exactly |A||B|/2 edges of H that meet both A and B, as each such
edge contains exactly two elements from {ab : a ∈ A, b ∈ B}.) But now
we can obtain an example in which both hypergraphs have density bounded
away from 0 and 1 by taking H to be the union of a suitable number of
edge-disjoint disjoint Steiner triple systems (see Doyen [15] or Teirlinck [35]
for constructions).
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For weighted hypergraphs, the situation is even more dramatic: we will
show that there is a nontrivial set of k weighted k-uniform hypergraphs for
which every pair has discrepancy 0. Note that if w is a constant function,
then trivially disc(w, u) = 0 for every u. Indeed, if we add a constant function
to w it does not affect the discrepancy (that is, disc(w+λ1, u) = disc(w, u)).
So, to avoid triviality, we will restrict ourselves to hypergraphs w such that
w(V ) = 0. We then have the following result.

Theorem 1. Let k ≥ 2. For every n ≥ 2k there are weighted hypergraphs
w1, . . . , wk with vertex set [n] such that w([n]) = 0 and ||wi||1 =

(
n
k

)
for every

i and, for 0 ≤ i < j ≤ k, we have

disc(wi, wj) = 0.

Theorem 1 is a special case of a much stronger result below (Theorem
16), which gives a description of all pairs of weighted hypergraphs with dis-
crepancy 0, and allows us to characterize collections of weighted hypergraphs
satisfying Theorem 1.

If we have k + 1 weighted hypergraphs, however, the picture is very dif-
ferent: we do get a version of (11) for at least one pair, and attain the bound
conjectured in [11].

Theorem 2. For every k ≥ 1 there are constants c, c′ > 0 such that the
following holds. Let n ≥ 2k, and suppose that w1, . . . , wk+1 are weighted k-
uniform hypergraphs on [n] such that wi([n]) = 0 and ||wi||1 =

(
n
k

)
for every

i. Then there are distinct i and j such that

disc+(wi, wj)disc−(wi, wj) ≥ cnk+1.

In particular, there are i < j such that,

disc(wi, wj) ≥ c′n(k+1)/2.

We will further prove (Theorem 15) that every family F of weighted k-
uniform hypergraphs w with w(V ) = 0 can be partitioned into k families of
hypergraphs with pairwise large discrepancy.

Theorems 2 and 15 both follow from a much stronger quantitative result
(Theorem 3), which will allow us to prove a lower bound on the discrepancy
of a pair of weighted hypergraphs. In order to state this result, we need
to introduce the W -vector of a weighted hypergraph (the formal definition
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will require a little work, so we defer it to Section 3). For every weighted
k-uniform hypergraph w, we will define a sequence of k + 1 nonnegative
weights W0, . . . ,Wk, giving us the W -vector W = (W0, . . . ,Wk). We shall
take W0 = |w(V )/

(
n
k

)
| to be the modulus of the average edge weight, and

define the remaining Wi later. As we shall see in Lemma 9, it turns out that
the W -vector preserves the weight of w, in that there are constants c, c′ such
that

c||w||1/nk ≤
k∑
i=0

Wi ≤ c′||w||1/nk. (12)

In particular, if ||wi||1 =
(
n
k

)
then some component of the W -vector is

bounded away from 0. If w is nontrivial and normalised (so w(V ) = 0
and ||w||1 =

(
n
k

)
) then one of W1, . . . ,Wk is bounded away from 0.

We can now state a quantitative version of Theorem 2.

Theorem 3. For every k ≥ 1 there are c, c′ > 0 such that the following holds.
For every n ≥ k and every pair of weighted hypergraphs w, u : [n](k) → R, we
have

disc+(w, u)disc−(w, u) ≥ cn2k+1

k∑
i=1

n−iW 2
i U

2
i ,

where (W0, . . . ,Wk) and (U0, . . . , Uk) are the W -vectors of w and u respec-
tively. In particular,

disc(w, u) ≥ c′nk+1/2

k∑
i=1

n−i/2WiUi.

Theorem 3 bounds the discrepancy of a pair w, u of weighted k-uniform
hypergraphs in terms of the dot product of their W -vectors. As noted above,
a hypergraph with w([n]) = 0 and ||w|1 =

(
n
k

)
must have one of W1, . . . ,Wk

bounded away from 0. Theorem 2 therefore follows immediately from Theo-
rem 3.

In addition to bounding the discrepancy, we will also prove a result on
the expectation of the intersection |〈wπ, u〉| of two weighted k-uniform hy-
pergraphs, when π is chosen uniformly at random.

For k = 1 (i.e. sequences), the distribution of 〈wπ, u〉 has been extensively
studied. Wald and Wolfowitz [36] proved a central limit theorem for 〈wπ, u〉
(under suitable conditions), and subsequent generalizations were given by
Noether [33], Hoeffding [22], Dwass [17] and many other authors. For k = 2
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(i.e. graphs), random intersections 〈wπ, u〉 arise naturally in a number of sta-
tistical applications (for instance, Barbour and Chen [4] mention applications
in geography and epidemiology: see Moran [31], Geary [21], Knox [26], Man-
tel [29] and Hubert [23]). The distribution of 〈wπ, u〉 has been considered by
many authors starting with Daniels [14], and including Barton and David [5],
Abe [1], Barbour and Eagleson [2, 3] and Barbour and Chen [4], and there
are sophisticated central limit theorems.

In this paper, we consider general k, but do not determine the limiting
distribution of |〈wπ, u〉|. However, we give a weak bound on the concentration
of the distribution of |〈wπ, u〉|, by bounding the expected value of |〈wπ, u〉|.

Theorem 4. For every k ≥ 1 there is c > 0 such that, for every n > 2k and
every pair of weighted hypergraphs w, u : [n](k) → R,

Eπ|〈wπ, u〉| ≥ cnk
k∑
i=0

n−i/2WiUi, (13)

where (W0, . . . ,Wk) and (U0, . . . , Uk) are the W -vectors of w and u respec-
tively.

2 Notation and tools

We use standard notation: V (k) denotes the collection of k-sets in V ; we shall
often refer to these as edges. We write [n] = {1, . . . , n}. For any function f ,
we write f+(x) = max{f(x), 0} and f−(x) = max{−f(x), 0}.

A weighted k-uniform hypergraph with vertex set V is simply a function
w : V (k) → R. For S ⊂ V , we define w(S) =

∑
e∈S(k) w(e). Given weighted

k-uniform hypergraphs w, u on vertex set V , we define a standard norm and
inner product: ||w||1 =

∑
e∈V (k) |w(e)| and 〈w, u〉 =

∑
e∈V (k) w(e)u(e). The

density of w is d(w) = w(V )/
(|V |
k

)
. We also define the constant function 1

by 1(e) = 1 for every edge e. We will feel free to move without comment
between an unweighted hypergraphH, and the corresponding weight function
w = wH defined by w(e) = 1(e∈E(H)).

We write Sym(V ) for the group of all permutations of V . There is a
natural action of Sym(V ) on weighted hypergraphs. Given a function f :
V (k) → R and a permutation π of V , we define the function fπ by fπ(e) =
f(π−1(e)). Thus for permutations π, ρ, we have fπρ = (fρ)π, as fπρ(e) =
f((πρ)−1e) = f(ρ−1π−1e) = fρ(π

−1e) = (fρ)π(e).
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We say that weighted k-uniform hypergraphs w on vertex set V and u
on vertex set U are isomorphic if there is a bijection f : V → U such that
u(f(e)) = w(e) for every edge e ∈ V (k). Clearly w and wπ are isomorphic for
any π ∈ Sym(V ).

For weighted hypergraphs w, u, the positive discrepancy disc+(w, u) and
negative discrepancy disc−(w, u) are defined as in (8) and (9); we then set
disc(w, u) = max(disc+(w, u), disc−(w, u)).

Throughout the paper we will take expectations over randomly chosen
vertices or edges. Unless otherwise specified, this will always be with respect
to the uniform distribution. We will also adopt the convention that E′ and

∑′
denote expectation and sum over distinct choices of argument: for instance if
we are choosing random vertices from V , then Ex,y denotes the expectation
over the |V |2 possible choices of an ordered pair (x, y), while E′x,y denotes
the expectation over the |V |(|V | − 1) possible ordered pairs (x, y) such that
x 6= y, with respect to the uniform distribution in both cases. Finally, if
we take expectations with respect to a permutation π, then unless stated
otherwise this will always be taken to be chosen uniformly at random from
the symmetric group Sym(V ) on V .

It will be useful to note a few elementary facts.

Lemma 5. Let k ≥ 1 be fixed. There is a constant ck > 0 such that every
polynomial f(x) =

∑k
i=0 aix

i with maxi |ai| = 1 satisfies∫ 1

0

|f(x)|dx ≥ ck. (14)

In particular, this implies

sup
x∈[0,1]

|f(x)| ≥ ck. (15)

Proof. The proof is straightforward. For a = (a0, . . . , ak) ∈ [−1, 1]k+1 \
(−1, 1)k+1, let F (a) =

∫ 1

0
|
∑k

i=0 aix
i|dx. Then F is continuous and strictly

positive, and so we are done by compactness.

The following simple bound is proved in [10].

Lemma 6. Let a = (ai)
n
i=1 be a sequence of real numbers and I ⊂ {1, . . . , n}

a subset chosen uniformly at random. Then

E|
∑
i∈I

ai| ≥
||a||1√

8n
.
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It will also be useful to note the following elementary fact.

Proposition 7. If X is a random variable with EX = 0, and c ∈ R, then
E|X + c| ≥ max{E|X|/2, |c|}.

Proof. We may assume c > 0. We have EX+ = EX− = E|X|/2. But
E|X + c| ≥ E[(X + c)1(X≥0)] ≥ E[X1(X≥0)] = EX+ = E|X|/2. Also, E|X +
c| ≥ E(X + c) = EX + c = c.

3 The W -vector

Given a weighted hypergraph w : V (k) → R, where V is a set of size n ≥
2k ≥ 0, we define in this section a corresponding W -vector (W0, . . . ,Wk),
where each Wi is a nonnegative real. It will be helpful to give two different
descriptions of the W -vector.

We start by defining

W0 = |d(w)| = |w(V )|/
(
n

k

)
=

(
n

k

)−1
|
∑
e∈V (k)

w(e)| = |Eew(e)|, (16)

where we write Ee for the expectation over an edge e chosen uniformly at
random over all

(
n
k

)
possibilities. Clearly W0 = 0 if and only if w(V ) = 0.

For i ≥ 1, we define Wi recursively. For each {x, y} ∈ V (2), the difference
weighting wxy is defined on sets e ∈ (V \ {x, y})(k−1) by

wxy(e) = w(e ∪ {x})− w(e ∪ {y}).

Note that wxy = −wyx. For any choice of distinct x and y, the difference
weighting wxy has a W -vector (W xy

0 , . . . ,W xy
k−1). We can therefore define, for

1 ≤ i ≤ k,

Wi =
1

n(n− 1)

∑
x,y

′
W xy
i−1 = E′x,yW

xy
i−1, (17)

where, as usual, we write E′ and
∑′ for the expectation and sum over dis-

tinct indices. Note that the W -vector is well-defined, as the W -vector for
a weighting of k-sets is given in terms of the W -vectors for weightings of
various collections of (k − 1)-sets.

For example, in the trivial case k = 0, a weighting is just a constant w,
and the W -vector is (W0), where W0 = |w|. For k = 1, we have a weight
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function w : V → R. If |V | = n, we have W0 = |
∑

v∈V w(v)|/n. Now for
distinct x, y ∈ V , wxy is a weighting on the (k− 1)-sets, which in this case is
just a weight (on the empty set) given by

wxy(∅) = w({x} ∪ ∅)− w({y} ∪ ∅) = w(x)− w(y),

so wxy has W -vector (W xy
0 ) given by W xy

0 = W yx
0 = |w(x)− w(y)|. We then

have

W1 =
1

n(n− 1)

∑
x,y

′
W xy

0 = E′x,y|w(x)− w(y)|. (18)

Defining the W -vector by (16) and (17) will be helpful in some of the
proofs below. However, we now give a second approach that allows us to
write the W -vector in a form that is frequently more convenient.

We begin by choosing an arbitrary sequence x1, y1, . . . , xk, yk of 2k dis-
tinct vertices in V . For i = 0, . . . , k, we define Yi = {y1, . . . , yi} and
si = (x1, y1, . . . , xi, yi). We say that a set A ∈ V (k) is compatible with si
if |A ∩ {xj, yj}| = 1 for j = 1, . . . , i. We define weighted k-uniform hyper-
graphs φi and φ∗i on V by

φi(A) = φi(x1, y1, . . . , xi, yi;A) =

{
(−1)|A∩Yi| A compatible with si

0 otherwise.
(19)

and

φ∗i = φi
/(n− 2i

k − i

)
. (20)

Note that we have normalized so that ||φ∗i ||1 = Θ(1).
The definitions of φi and φ∗i depend on the sequence of vertices we pick

for x1, y1, . . . , xi, yi. However, different choices give isomorphic weightings,
and in practice we will always symmetrize over permutations of the vertices,
as in (21) below, so our results do not depend on our particular choices.

Lemma 8. Let n ≥ 2k ≥ 1, and suppose that w is a weighted k-uniform
hypergraph on vertex set V , where |V | = n. Let φi and φ∗i be defined as in
(19) and (20). Then

Wi = Eπ|〈wπ, φ∗i 〉|. (21)
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Proof. For i = 0, we have

W0 =

(
n

k

)−1
|
∑
e∈V (k)

w(e)|

=

(
n

k

)−1
|〈w,1〉|

= Eπ
(
n

k

)−1
|〈wπ,1〉|

= Eπ|〈wπ, φ∗0〉|,

as φ0 = 1, φ∗0 = φ0/
(
n
k

)
and 〈wπ,1〉 = 〈w,1〉 for every π.

We now proceed by induction on i. For i ≥ 1, we have Wi = E′x,yW
xy
i−1.

Choose a sequence x1, y1, . . . , xk, yk of distinct vertices, and let U = V \
{x1, y1}. We define φi, φ

∗
i on V as in (19) and (20), and let ψi, ψ

∗
i be the

corresponding functions for U with respect to the sequence x2, y2, . . . , xk, yk.
Thus, for i = 1, . . . , k, we set ti−1 = (x2, y2, . . . , xi, yi), and define ψi−1 :
U (k−1) → R by

ψi−1(A) =

{
(−1)|A∩{y2,...,yi}| A compatible with ti−1

0 otherwise.
(22)

and

ψ∗i−1 = ψi−1/

(
(n− 2)− 2(i− 1)

(k − 1)− (i− 1)

)
= ψi−1/

(
n− 2i

k − i

)
. (23)

Note that for A ∈ U (k−1), it follows from (19) and (22) that

ψi−1(A) = φi(A ∪ {x1}) = −φi(A ∪ {y1});

so by (20) and (23) that we have

ψ∗i−1(A) = φ∗i (A ∪ {x1}) = −φ∗i (A ∪ {y1}). (24)

It follows by induction from (21) that, writing (W x1y1
0 , . . . ,W x1y1

k−1 ) for the
W -vector of wx1y1 , for i = 1, . . . , k,

W x1y1
i−1 = Eπ∗∈Sym(U)|〈(wx1y1)π∗ , ψ∗i−1〉|. (25)
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We identify π∗ ∈ Sym(U) with the corresponding π ∈ Sym(V ) that fixes
x1, y1 and otherwise acts as π∗. Then (wπ)x1y1 = (wx1y1)π∗ , and so, by (24),

〈(wx1y1)π∗ , ψ∗i−1〉 =
∑

e∈U(k−1)

(wπ)x1y1(e)ψ∗i−1(e)

=
∑

e∈U(k−1)

(wπ(e ∪ {x1})− wπ(e ∪ {y1}))ψ∗i−1(e)

=
∑

e∈U(k−1)

(wπ(e ∪ {x1})φ∗i (e ∪ {x1}) + wπ(e ∪ {y1})φ∗i (e ∪ {y1}))

=
∑
f∈V (k)

wπ(f)φ∗i (f)

= 〈wπ, φ∗i 〉, (26)

since we have φ∗i (f) = φi(f) = 0 unless f is compatible with the sequence of
vertices (x1, y1, . . . , xi, yi).

Since i ≥ 1, we have

Wi = E′x,yW
xy
i−1 = EπW π(x1)π(y1)

i−1 ,

since (π(x1), π(y1)) is uniformly distributed over distinct vertices x, y. Now
for an edge e ∈ (V \ {π(x), π(y)})(k−1),

wπ(x1)π(y1)(e) = w(e ∪ {π(x1)})− w(e ∪ {π(y1)})
= wπ(π−1(e) ∪ {x1})− wπ(π−1(e) ∪ {y1})
= (wπ)x1y1(π−1(e)).

It follows that wπ(x1)π(y1) and (wπ)x1y1 are isomorphic and so have the same
W -vector ((W x1y1

π )0, . . . , (W
x1y1
π )k−1). Using (25) and (26), we get

(W x1y1
π )i−1 = Eρ∗∈Sym(U)|〈((wπ)x1y1)ρ∗ , ψ

∗
i−1〉| = Eρ∗∈Sym(U)|〈(wπ)ρ, φ

∗
i 〉|,

where once again we use the convention that each ρ∗ ∈ Sym(U) is identified
with the ρ ∈ Sym(V ) that fixes x1 and y1 and otherwise acts as ρ∗. Thus

Wi = EπW π(x1)π(y1)
i−1

= Eπ(W x1y1
π )i−1

= Eπ,ρ∗ |〈(wπ)ρ, φ
∗
i 〉|

= Eπ,ρ∗ |〈wρπ, φ∗i 〉|
= Eπ|〈wπ, φ∗i 〉|,

as ρπ is uniformly distributed over Sym(V ). This gives (21).
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We remark that (21) is reminiscent of taking a Fourier transform.
In order to show that our theorems do not give trivial bounds, we need

to know that the l1 norm of a weighting is preserved up to a constant factor
by its W -vector. This is the substance of the next result.

Lemma 9. For every k ≥ 0 there are constants c, c′ > 0 such that the
following holds. For every n ≥ 2k, and every weighted k-uniform hypergraph
w on [n],

cn−k||w||1 ≤
k∑
i=0

Wi ≤ c′n−k||w||1, (27)

where (W0, . . . ,Wk) is the W -vector of w.

We first note the following.

Proposition 10. For every k ≥ 1 there is c > 0 such the following holds.
For every n > k, and every weighted k-uniform hypergraph w with vertex set
[n] such that w([n]) = 0,

EA,x,y|w(A ∪ {x})− w(A ∪ {y})| ≥ ckn
−k||w||1,

where the expectation is taken over (k−1)-sets A and distinct vertices x, y 6∈
A chosen uniformly at random.

Proof. Since we can rescale, it is enough to show that for every weighting w
on [n](k) with ||w||1 =

(
n
k

)
and w([n]) = 0 we have

EA,x,y|w(A ∪ {x})− w(A ∪ {y})| ≥ 1/4k. (28)

Note that Ee[w(e)+] = Ee[w(e)−] and Ee|w(e)| = Ee[w(e)+ + w(e)−] = 1, so
Ee[w(e)+] = Ee[w(e)−] = 1/2.

Suppose that w is nonnegative on p
(
n
k

)
edges and negative on (1− p)

(
n
k

)
edges. We may assume p ≤ 1/2 or work with −w. Pick with replacement
random edges e and f and let e1 · · · ei be a random shortest path between
them (so e1 = e, ei = f and each step replaces one element of the edge). If
e, f are distinct, we set A = e1 ∩ e2, and let x, y be the remaining vertices of
e1, e2 respectively; otherwise, we choose A, x, y uniformly at random. Then
(A, x, y) is uniformly distributed, and

EA,x,y|w(A ∪ {x})− w(A ∪ {y})| ≥ Ee,f |w(e2)− w(e1)|
≥ Ee,f |w(e)− w(f)|/k. (29)
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With probability 1 − p we have w(f) ≤ 0. Conditioning on this event,
Ee,f [|w(e) − w(f)| | w(f) ≤ 0] ≥ Ee,f [w(e)+ | w(f) ≤ 0] = Ee[w(e)+] = 1/2.
We conclude that (without conditioning) E[|w(e)−w(f)|] ≥ (1−p) · (1/2) ≥
1/4, and (28) then follows from (29).

Proof of Lemma 9. Let us write w = w0 + w1 where w0 is constant and∑
ew1(e) = 0.
Clearly ||w||1 ≤ ||w0||1 + ||w1||1; we also have ||φi||1 = 2i

(
n−2i
k−i

)
, since

there are exactly 2i
(
n−2i
k−i

)
edges compatible with the sequence x1, y1, . . . , xi, yi.

Thus ||φ∗i ||1 = 2i. So, by Lemma 8, we have

Wi = Eπ|〈wπ, φ∗i 〉|

= Eπ|
∑
e

wπ(e)φ∗i (e)|

≤
∑
e

Eπ|wπ(e)φ∗i (e)|

=
∑
e

|φ∗i (e)| · Eπ|wπ(e)|

=
∑
e

|φ∗i (e)| · ||w||1/
(
n

k

)
= 2i||w||1/

(
n

k

)
.

Summing over i gives the upper bound in (27).
For the lower bound, note first that, by linearity and Proposition 10, for

k ≥ 1,

E′x,y||wxy||1 = E′x,y
∑

A∈(V \{x,y})k−1

|w(A ∪ {x})− w(A ∪ {y})|

=

(
n− 2

k − 1

)
E′x,y,A|w(A ∪ {x})− w(A ∪ {y})|

≥ ck

(
n− 2

k − 1

)
n−k||w1||1

≥ c′k||w1||1/n, (30)

where ck and c′k are constants depending only on k.
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For k = 0, we have W0 = ||w||1, giving (27) as required. We now argue
by induction on k: we will use c, c′, etc, for constants that depend only on
k. For k ≥ 1 and distinct x, y ∈ V , we have by induction

W xy
0 + · · ·+W xy

k−1 ≥ c||wxy||1/nk−1.

Since w0 is a constant function, we also have W0 = ||w0||1/
(
n
k

)
≥ ||w0||1/nk.

It follows by (30) that

W0 + · · ·+Wk = W0 + E′x,y(W
xy
0 + · · ·+W xy

k−1)

≥ c′(||w0||1/nk + E′x,y||wxy||1/nk−1)
≥ c′′(||w0||1/nk + ||w1||1/nk)
≥ c′′′||w||1/nk.

4 Bounding in terms of transpositions

In order to prove Theorems 3 and 4, we will need bounds both on disc(w, u)
and on Eπ|〈wπ, u〉|. These will be driven by two results bounding these
quantities from below in terms of the effects of single transpositions.

Let us fix the ground set V and pick distinct vertices x, y ∈ V . Let τ be
the transposition (xy). Let w and u be two weightings of V (k), and choose
uniformly at random two permutations π, σ. We define γ(w, u) by

γ(w, u) = Eπ,σ|〈wπ, uσ〉 − 〈wτπuσ〉|. (31)

Thus γ(w, u) measures the typical effect on the inner product of exchanging
x and y in one copy of V . Note that γ(w, u) does not depend on our choice
of x and y, since the expectation is taken over random permutations of the
ground set for both w and u.

Our bounds will depend on the following two lemmas.

Lemma 11. For every k ≥ 1 there is c > 0 such that the following holds.
For every n ≥ k and every pair w, u of functions from [n](k) to R, we have

disc+(w, u)disc−(w, u) ≥ c2γ(w, u)2n2. (32)

17



Lemma 12. For every k ≥ 1 there is c > 0 such that the following holds.
For every n ≥ k and every pair w, u of functions from [n](k) to R

Eπ|〈wπ, u〉| ≥ cγ(w, u)
√
n.

We start by setting up a framework for the proofs of Lemma 11 and
Lemma 12.

Let w, u be two weightings of [n](k). Let I be an index set, and suppose
we have transpositions

τ i = (xiyi), i ∈ I (33)

such that the pairs {xi, yi}i∈I are disjoint. For J ⊂ I, we define τJ to be the
product of the transpositions {τ j : j ∈ J} (note that the τ j commute, and
τJ = (τJ)−1). We will want to consider the difference |〈wτJ , u〉 − 〈w, u〉| for
various sets J . For i ∈ I, we define

δ(i) = 〈w, u〉 − 〈wτ i , u〉.

For J ⊂ I, we define

δ(J) =
∑
i∈J

δ(i)

and
∆(J) =

∑
i∈J

|δ(i)|. (34)

If we want to specify w, u explicitly, we will write ∆w,u instead of ∆, and so
on. However, we drop indices when they are not necessary.

For a set e ∈ V (k), let

tr(e) = {i ∈ I : |e ∩ {xi, yi}| = 1}.

Note that i ∈ tr(e) if and only if τ i(e) 6= e, and tr(τJ(e)) = tr(e) for any J .
We decompose 〈w, u〉 − 〈wτJ , u〉 as follows.

Proposition 13. Let n ≥ k ≥ 1, let w, u be weightings on [n](k), and let I
be an index set for transpositions τ i as in (33). For every J ⊂ I, we have

〈w, u〉 − 〈wτJ , u〉 =
1

2

∑
e∈[n](k)

(w(e)− w(τJe))(u(e)− u(τJe)).

In particular, if τ = (xy),

〈w, u〉 − 〈wτ , u〉 = 〈wxy, uxy〉. (35)
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Proof. Note that, for any permutation π and any w : V (k) → R, we have∑
e∈[n](k) f(e) =

∑
e∈[n](k) f(πe). So

〈w, u〉 − 〈wτJ , u〉 =
∑
e

(w(e)u(e)− wτJ (e)u(e))

=
1

2

∑
e

(w(e)u(e)− wτJ (e)u(e))

+
1

2

∑
e

(w(τJe)u(τJe)− wτJ (τJe)u(τJe))

=
1

2

∑
e

(w(e)u(e)− w(τJe)u(e))

+
1

2

∑
e

(w(τJe)u(τJe)− w(e)u(τJe))

=
1

2

∑
e

(w(e)− w(τJe))(u(e)− u(τJe)),

where all sums are over [n](k).
To prove (35), note that w(e) − w(τe) = 0 unless |e ∩ {x, y}| = 1. So,

writing W = [n] \ {x, y},

1

2

∑
e∈[n](k)

(w(e)− w(τe))(u(e)− u(τe))

=
1

2

∑
f∈W (k−1),v∈{x,y}

(w(f ∪ {v})− w(f ∪ {τv}))(u(f ∪ {v})− u(f ∪ {τv}))

=
∑

f∈W (k−1)

(w(f ∪ {x})− w(f ∪ {y}))(u(f ∪ {x})− u(f ∪ {y}))

=
∑

f∈W (k−1)

wxy(f)uxy(f)

= 〈wxy, uxy〉.

We also consider the expected effect of a randomly chosen set of trans-
positions.
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Lemma 14. Let n ≥ k ≥ 1, let w, u be weightings on [n](k), and let I be
an index set for transpositions τ i as in (33). Let I be fixed, and let J be a
random subset of I, where each i ∈ I is taken independently with probability
p. Then E(〈w, u〉 − 〈wτJ , u〉) can be written as a polynomial in p of the form

δ(I)p+
k∑
i=2

Aip
i, (36)

for some real numbers A2, . . . , Ak.

Proof. For e ∈ [n](k), let

µJ(e) = (w(e)− w(τJe))(u(e)− u(τJe)).

By Proposition 13 we have

〈w, u〉 − 〈wτJ , u〉 =
1

2

∑
e

µJ(e). (37)

For a given edge e, the value of µJ(e) depends only on J ∩ tr(e), so

µJ(e) = µJ∩tr(e)(e).

Now, for A ⊂ tr(e), we have P[J ∩ tr(e) = A] = p|A|(1− p)|tr(e)|−|A|, so

EµJ(e) =
∑

A⊂tr(e)

p|A|(1− p)|tr(e)|−|A|µA(e).

Hence, by (37), E(〈w, u〉− 〈wτJ , u〉) is a polynomial in p with degree at most
k. Since µ∅(e) = 0, the constant term is 0.

Now consider the behaviour of 〈w, u〉− 〈wτJ , u〉 as p→ 0. For each i ∈ J
we have P(J = i) = p+O(p2). As P(|J | > 1) = O(p2), it follows that

E(〈w, u〉 − 〈wτJ , u〉) = p
∑
i

δ(i) +O(p2),

and so the coefficient of p is
∑

i∈I δ(i) = δ(I).

We now prove the two lemmas stated at the beginning of the section.
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Proof of Lemma 11. Adding a constant to w or u does not affect disc+(w, u),
disc−(w, u) or γ(w, u), so we may assume that w([n]) = u([n]) = 0. Note
first that Eπ〈wπ, u〉 = 0 and so Eπ[〈wπ, u〉+] = Eπ[〈wπ, u〉−] = Eπ|〈wπ, u〉|/2.

For fixed n, we can argue as follows. From (31) we have

γ(w, u) = Eπ,σ|〈wπ, uσ〉 − 〈wτπ, uσ〉|
≤ Eπ,σ(|〈wπ, uσ〉|+ |〈wτπ, uσ〉|)
= 2Eπ|〈wπ, u〉|,

and so we have

min{disc+(w, u), disc−(w, u)} ≥ min{Eπ[〈wπ, u〉+],Eπ[〈wπ, u〉−]}

≥ 1

2
Eπ|〈wπ, u〉| ≥ γ(w, u)/4.

It follows that (32) holds for any fixed constant n (and appropriate c > 0),
and so we may assume that n > 100k.

Let K ≥ 2 be a fixed constant (which we will specify later), and suppose,
without loss of generality, that disc+(w, u) ≤ disc−(w, u). If disc+(w, u) ≥
γ(w, u)n/10K, we are done (with c = 1/10K), so we may assume that

disc+(w, u) =
γ(w, u)n

10α
(38)

for some α ≥ K. We shall show that, for some (small) constant c > 0, we
have

disc−(w, u) ≥ cγ(w, u)αn.

Let t = bn/2c and let x1, . . . , xt, y1, . . . , yt be a sequence of distinct ver-
tices of V . For I = {1, . . . , t} and each i ∈ I, let τ i = (xiyi). Let π and σ
be chosen independently and uniformly at random from Sn. Then (31) and
linearity of expectation imply that

E∆wπ ,uσ(I) = tγ(w, u).

Let I+ = {i : δwπ ,uσ(i) > 0} and I− = {i : δwπ ,uσ(i) ≤ 0}, so δwπ ,uσ(I) =
δwπ ,uσ(I+) + δwπ ,uσ(I−) = ∆wπ ,uσ(I+)−∆wπ ,uσ(I−). Since Eδwπ ,uσ(I) = 0 we
have

E∆wπ ,uσ(I+) = E∆wπ ,uσ(I−) =
t

2
γ(w, u).

21



We also have E〈wπ, uσ〉 = 0, and so

Eπ,σ[α〈wπ, uσ〉+ ∆(I+)] =
t

2
γ(w, u).

We can therefore choose π, σ such that α〈wπ, uσ〉+∆wπ ,uσ(I+) ≥ tγ(w, u)/2.
Replacing w and u by wπ, uσ, we may therefore assume that

α〈w, u〉+ ∆w,u(I
+) ≥ t

2
γ(w, u). (39)

Note that this replacement does not change the value of disc+ or of disc−.
Now consider the effects of applying τJ , where J ⊂ I+ is a random subset

of I+ where each i ∈ I+ is present independently with probability p. Lemma
14 tells us that

E[〈wτJ , u〉 − 〈w, u〉] = pδ(I+) +
k∑
i=2

Aip
i (40)

for some A2, . . . , Ak. It follows from (39), by considering the case p = 1/α,
that we have

E〈wτJ , u〉 = 〈w, u〉+ E[〈wτJ , u〉 − 〈w, u〉]

= 〈w, u〉+ ∆(I+)/α +
k∑
i=2

Ai/α
i

≥ t

2α
γ(w, u) +

k∑
i=2

Ai/α
i. (41)

Now (38) implies that 〈wτJ , u〉 ≤ γ(w, u)n/10α for any choice of J , so (41)
implies that

k∑
i=2

Ai/α
i ≤ γ(w, u)n/10α− tγ(w, u)/2α

< −γ(w, u)n/10α.

Since α ≥ 2, we must have |Ai| ≥ αγ(w, u)n/20 for some i ≥ 2.
It follows by (15) that for some p ∈ [0, 1] and some ck > 0 that depends

only on k, we have

|pδ(I+) +
k∑
i=2

Aip
i| ≥ 2ckαγ(w, u)n. (42)
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But now, choosing p such that (42) holds, we have by (40)

E|〈w, u〉 − 〈wτJ , u〉| ≥ 2ckαγ(w, u)n (43)

and, since (38) holds, if we have chosen K > 1/
√
ck, we must have, by (38)

and (43),

Emin(〈w, u〉, 〈wτJ , u〉) = E[max(〈w, u〉, 〈wτJ , u〉)− |〈w, u〉 − 〈wτJ , u〉|]

≤ γ(w, u)n

10α
− 2ckαγ(w, u)n

= γ(w, u)nα · [1/10α2 − 2ck]

≤ −ckαγ(w, u)n.

In particular, there is some J such that

〈wτJ , u〉 ≤ −ckαγ(w, u)n

and so disc−(w, u) ≥ ckαγ(w, u)n, as claimed.

Proof of Lemma 12. We would like to argue as in the proof of Lemma 11.
However, there is an important difference: in the previous proof we could
replace w and u by our choice of wπ and uσ, and then choose an advantageous
set of transpositions to apply; now we must select our permutations π, σ and
transpositions so that the resulting permutations are uniformly distributed.

Consider first a specific choice of π and σ, and let t, I and the transpo-
sitions τ i be defined as in the proof of Lemma 11. Recall that the set I and
the transpositions τ i are fixed with respect to the ground set. However, δ(I)
might be close to 0, which is not helpful if we want to use (36). We therefore
generate random sets J0 and J1 of transpositions in two steps as follows:

1. Let J0 be a random subset of I, chosen uniformly at random from all
2|I| subsets.

2. Let p ∈ [0, 1] be chosen uniformly at random, and let J1 ⊂ J0 be a ran-
dom subset, where each i ∈ J0 is taken independently with probability
p.

Consider first J0. It follows from Lemma 6 that

EJ0 |δ(J0)| ≥
∆(I)√

8|I|
. (44)
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Now if we condition on J0 and p, then by Lemma 14 we have

EJ1 [〈w, u〉 − 〈wτJ1 , u〉 | J0, p] = δ(J0)p+
k∑
i=2

Aip
i,

for some A2, . . . , Ak that depend on J0. It then follows from Lemma 5 and
the tower law for expectation that there is a constant ck > 0 such that, if we
condition just on J0, we have

Ep,J1 [|〈w, u〉 − 〈wτJ1 , u〉| | J0] = Ep[|δ(J0)p+
k∑
i=2

Aip
i|] ≥ ck|δ(J0)|.

But now by (44) and (again) the tower law for expectation it follows that

EJ0,p,J1 [|〈w, u〉 − 〈wτJ1 , u〉|] ≥
ck∆(I)√

8|I|
.

This bound holds for any fixed placement of w and u. However, with a
uniformly random choice of permutations π and σ, giving weightings wπ and
wσ, we have (by definition from (31) and (34))

Eπ,σ∆wπ ,uσ(I) = tγ(w, u).

Thus there is a constant c = c(k) > 0 such that

Eπ,σ,J0,p,J1 [|〈wπ, uσ〉 − 〈wτJ1π, uσ〉|] ≥
cktγ(w, u)√

8t
≥ 2cγ(w, u)

√
n.

By the triangle inequality, we have

2cγ(w, u)
√
n ≤ Eπ,σ,J0,p,J1 [|〈wπ, uσ〉|+ |〈wπτJ , uσ〉|]

= 2Eπ,σ|〈wπ, uσ〉|
= 2Eπ|〈wπ, u〉|,

which implies our result.

5 Proof of Theorems 3 and 4

We are now ready to prove our main quantitative results. We begin by
proving Theorem 4; Theorem 3 will then follow easily. At the end of the
section, we will deduce another result on partitioning families of hypergraphs
with large pairwise discrepancy.
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Proof of Theorem 4. As usual, we write w = w0 + w1 and u = u0 + u1,
where u0, w0 are constant functions and u1, w1 sum to 0. Since 〈(w0)π, u0〉 =
〈w0, u0〉 = 〈w0, u〉 and 〈(w1)π, u0〉 = 〈w0, (u1)π〉 = 0 for any π, it follows from
Lemma 12 and Proposition 7 that, for some c′ = c′(k) > 0,

Eπ|〈wπ, u〉| = Eπ|〈w0, u0〉+ 〈(w1)π, u1〉|

≥ max{|〈w0, u0〉|,
1

2
Eπ|〈(w1)π, u1〉|}

≥ 2c′max{nkU0W0, γ(w1, u1)
√
n}

≥ c′nkU0W0 + c′γ(w1, u1)
√
n.

It is therefore enough to prove that, for some fixed c = c(k) > 0,

γ(w1, u1) ≥ cnk−1/2
k∑
i=1

n−i/2WiUi. (45)

Note that γ(w1, u1) = γ(w, u), since u0 and w0 are invariant under permuta-
tions.

We know from (35) that, with τ = (xy),

γ(w, u) = Eπ,σ|〈wπ, uσ〉 − 〈wτπ, uσ〉|
= Eπ,σ|〈(wπ)xy, (uσ)xy〉|.

For k = 1, (wπ)xy and (uσ)xy are nullary functions with absolute values
|wπ(x)− wπ(y)| and |uσ(x)− uσ(y)|. It follows from (18) that

γ(w, u) = Eπ,σ|(wπ(x)− wπ(y))(uσ(x)− uσ(y))|
= Eπ|wπ(x)− wπ(y)| · Eσ|uσ(x)− uσ(y)|
= E′a,b|w(a)− w(b)| · E′a,b|u(a)− u(b)|
= W1U1,

as required.
For k ≥ 2, we prove Theorem 4 by induction. Consider

Eπ,σ|〈(wπ)xy, (uσ)xy〉|.

For fixed x, y we shall (as usual) write Eρ∗ for the expectation over permu-
tations ρ∗ of [n] \ x, y; we will identify each such permutation ρ∗ with the
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corresponding permutation ρ of [n] that fixes x and y and otherwise acts as
ρ∗. Note that if π ∈ Sym(V ) and ρ∗ ∈ Sym(V \ {x, y}) are both uniformly
distributed, then so is ρπ. So

Eπ,σ|〈(wπ)xy, (uσ)xy〉| = Eπ,ρ∗,σ|〈(wρπ)xy, (uσ)xy〉|
Consider first the case when σ is the identity. We know by induction that

Eρ∗ |〈(wxy)ρ∗ , uxy〉| ≥ ck−1

k−1∑
i=0

W xy
i Uxy

i nk−1−i/2,

where (W xy
0 , . . . ,W xy

k−1) and (Uxy
0 , . . . , Uxy

k−1) are the W -vectors of wxy and
uxy respectively. Now note that if ρ fixes x and y then (wxy)ρ∗ = (wρ)

xy. It
follows that

Eπ|〈wπ, u〉 − 〈wτπ, u〉| = EπEρ∗|〈wρπ, u〉 − 〈wτρπ, u〉|
= EπEρ∗|〈(wρπ)xy, uxy〉|
= EπEρ∗|〈(wπ)xyρ∗ , u

xy〉|

≥ ck−1Eπ
k−1∑
i=0

(W xy
π )iU

xy
i nk−1−i/2, (46)

where we have used (35), and the fact that π, σπ, σ∗π are all uniformly
distributed over Sym(V ). But wxyπ is isomorphic to wπ

−1(x)π−1(y), and so
(W xy

π )i = (W π−1(x)π−1(y))i. It follows that

Eπ(W xy
π )i = E′v,w(W vw)i = Wi+1 (47)

and so, by (46),

Eπ|〈wπ, u〉 − 〈wτπ, u〉| ≥ ck−1

k−1∑
i=0

Wi+1U
xy
i nk−1−i/2

= ck−1

k∑
i=1

WiU
xy
i−1n

k−1/2−i/2.

But now, applying the same argument to uσ over random σ gives

Eπ,σ|〈wπ, uσ〉 − 〈wτπ, uσ〉| ≥ Eσck−1
k∑
i=1

Wi(U
xy
σ )i−1n

k−1/2−i/2

≥ c′k−1

k∑
i=1

WiUin
k−1/2−i/2,
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where we have used (47) with u instead of w in the final line. This proves
inequality (45), and therefore (13).

Proof of Theorem 3. This now follows easily from Lemma 11 and (45), as we
have

disc+(w, u)disc−(w, u) ≥ c2γ(w, u)2n2

≥ c′n2k+1(
k∑
i=1

n−i/2WiUi)
2

≥ c′n2k+1

k∑
i=1

n−iW 2
i U

2
i ,

since all terms in the sum are nonnegative.

Theorems 3 and 4 also allow us to prove the following result.

Theorem 15. For every k ≥ 1 there are constants c1, c2 > 0 such that
the following holds. For every n ≥ 2k, and every family F of k-uniform
hypergraphs with vertex set [n] such that w([n]) = 0 for all w ∈ F , there is a
partition F = F1 ∪ · · · ∪ Fk such that, for every 1 ≤ i ≤ k and all distinct
pairs w, u ∈ Fi, we have

disc(w, u) ≥ c1||w||1||u||1/ni/2−1/2+k,

and,
Eπ|〈wπ, u〉| ≥ c2||w||1||u||1/ni/2+k.

Proof. Suppose w ∈ F has W -vector (W0, . . . ,Wk). Since w(V ) = 0 we have
W0 = 0, and so by Lemma 9 there is i ≥ 1 with Wi ≥ ||w||1/nk: we choose
such an i and place w in Fi. Now for w, u ∈ Fi, with W -vectors (W0, . . . ,Wk)
and (U0, . . . , Uk), we have by Theorem 3

disc+(w, u)disc−(w, u) ≥ cn2k+1−iW 2
i U

2
i ≥ c′n1−i||w||21||u||21/n2k.

The first bound now follows, and the second follows similarly by applying
Theorem 4.
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6 Orthogonal sets of weightings

Consider integers n, k with n ≥ 2k ≥ 1 and a set V = {v1, . . . , vn}. Let us
choose a sequence s = (x1, y1, . . . , xk, yk) of distinct elements of V and define
the weightings φi on V (k) as in (19).

We also define the subspace Vi of RV (k)
to be the linear span

Vi = 〈(φi)π : π ∈ Sym(V )〉.

Note that Vi is independent of our choice of s.

Theorem 16. (a) For i ≥ 1, disc(w, φi) = 0 if and only if w ∈ V ⊥i .

(b) If u ∈ Vi and w ∈ Vj, where i 6= j, then disc(u,w) = 0.

(c) RV (k)
is the direct sum V0 ⊕ · · · ⊕ Vk.

(d) Suppose that u = u0 + · · · + uk, with ui ∈ Vi for each i, and let
(U0, . . . , Uk) be the W -vector of u. For i = 0, . . . , k, we have Ui = 0 if
and only if ui = 0.

(e) If w1, . . . , wt are nonzero and satisfy disc(wi, wj) = 0 for all i 6= j then
there is a partition [k] = I1 ∪ · · · ∪ It such that we have

wi ∈ V0 ⊕
⊕
h∈Ii

Vh

for each i.

Proof. (a) Note first that φi(V ) = 0, so φ has density d(φi) = 0. But then

disc(u, φi) = 0 ⇐⇒ ∀π, 〈uπ, φi〉 = 0

⇐⇒ ∀π, 〈u, (φi)π〉 = 0

⇐⇒ ∀ sequences (λπ), 〈u,
∑
π

λπ(φi)π〉 = 0

⇐⇒ u ∈ V ⊥i .

(b) We may assume that i, j 6= 0 or else the result is trivial. We may
therefore assume d(w) = d(u) = 0. It is then sufficient to show that, for any
choice of permutations π and ρ, we have 〈(φi)π, (φj)ρ〉 = 0. So, let us choose
π and ρ, and set ψi = (φi)π and ψj = (φj)ρ.
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For 1 ≤ s ≤ i, we let (as, bs) = (π−1(xs), π
−1(ys)), and, for 1 ≤ t ≤ j, we

let (ct, dt) = (ρ−1(xt), ρ
−1(yt)). Then we have

ψi(e) =

{
0 if |e ∩ {as, bs}| 6= 1 for some 1 ≤ s ≤ i

(−1)|A∩{b1,...,bi}| otherwise,
(48)

and

ψj(e) =

{
0 if |e ∩ {ct, dt}| 6= 1 for some 1 ≤ t ≤ j

(−1)|A∩{d1,...,dj}| otherwise.
(49)

Now consider the multigraph G with vertex set V and edge set given
by a1b1, . . . , aibi, c1d1, . . . , cjdj. As E(G) is the union of two matchings, it
contains no odd cycles and so is the vertex-disjoint union of paths and even
cycles (possibly including double edges). Even cycles and paths with an
even number of edges meet {a1b1, . . . , aibi} and {c1d1, . . . , cjdj} in the same
number of edges, so (as i 6= j) there must be a path P = x1 · · · x2t with an
odd number of edges. Let X = V (P ). If e ∈ V (k) is such that ψi(e) and
ψj(e) are both nonzero, it follows from (48) and (49) that either e ∩ X =
{x1, x3, . . . , x2t−1} or e∩X = {x2, x4, . . . , x2t}, as each edge of P must contain
exactly one vertex of e. Furthermore, as P has 2t − 1 edges, if we write
e′ = e4X then

ψi(e
′)ψj(e

′) = (−1)2t−1ψi(e)ψj(e) = −ψi(e)ψj(e).

It follows that ψi(e)ψj(e)+ψi(e
′)ψj(e

′) = 0. But now, pairing off such edges,
we see that

∑
e ψi(e)ψj(e) = 0 and so

〈ψi, ψj〉 = 0 (50)

as required. Note also that (50) holds if i = 0 or j = 0.
(c) It follows from (50) and linearity that there is no linear dependence

among sets of vectors chosen from distinct Vi and thus that V0 + · · ·+ Vk is
a direct sum. Now suppose that u ∈ (V0 ⊕ · · · ⊕ Vk)⊥. For i = 0, . . . , k, and
any π, we have 〈u, (φi)π〉 = 0. It follows that disc(u, φi) = 0 for every i, and
so, by Lemma 8, u has W-vector (0, . . . , 0). But by Lemma 9, this implies

that u = 0. It follows that V0 ⊕ · · · ⊕ Vk = RV (k)
.

(d) For j 6= i, we have Vj ⊆ V ⊥i and so 〈(ui)π, φj〉 = 0 for every π. Thus,
for any j,

Uj = Eπ|〈(
∑
i

ui)π, φj〉| = Eπ|〈(uj)π, φj〉|. (51)
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Now let (U j
0 , . . . , U

j
k) be the W -vector of the weighted hypergraph uj, so (51)

implies Uj = U j
j . Clearly U j

i = 0 if i 6= j. By Lemma 9 we have U j
j 6= 0 if

and only if uj 6= 0.
(e) It is enough to prove this for two k-uniform weighted hypergraphs

u,w, say with W -vectors (U0, . . . , Uk) and (W0, . . . ,Wk). By (c), we can
write u = u0 + · · ·+ uk and w = w0 + · · ·+ wk, where ui, wi ∈ Vi for each i.
By (d) we have Ui > 0 whenever ui is nonzero, and Wi > 0 whenever wi is
nonzero. Since disc(u,w) = 0, it follows from Theorem 3 that UiWi = 0 for
every i ≥ 1 and so we deduce that ui and wi cannot both be nonzero. The
result follows.

Note in particular, that part (e) proves Theorem 1. Indeed it has the
following stronger corollary.

Corollary 17. Suppose that u1, . . . , uk are weighted k-uniform hypergraphs
on vertex set V such that ui(V ) = 0 for all i, and disc(ui, uj) = 0 for all
1 ≤ i < j ≤ k. Then there is a relabelling such that wi ∈ Vi for i = 1, . . . , k.

7 Further questions

In this paper, we have proved some results on the discrepancy of pairs of
weighted k-uniform hypergraphs. However, many interesting questions re-
main.

• What can we say about discrepancy of directed graphs, or more gen-
erally of directed k-uniform hypergraphs (in which edges are ordered
k-tuples of distinct vertices)? More simply, what about oriented graphs,
or tournaments? What can be said about functions from X × Y to R,
where we are allowed to permute both X and Y ?

• It is interesting to note what Theorem 3 says about the expected dis-
crepancy of pairs of random hypergraphs. Let us fix p ∈ (0, 1) and
let w be a random k-uniform hypergraph with vertex set [n], where
each edge is present independently with probability p. For i ≤ k, con-
sider a sequence x1, y1, . . . , xi, yi of 2i distinct vertices. It follows from
(19) that φi is nonzero on Θ(nk−i) k-sets, while φi([n]) = 0. Thus
〈φi, w〉 is the difference of two binomial random variables with (the
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same) distribution with parameters Θ(nk−i) and p. It follows that
E|〈φi, w〉| = Θ(

√
p(1− p)n(k−i)/2) and so

EWi = Θ(
√
p(1− p)n(k−i)/2/nk−i) = Θ(

√
p(1− p)n−(k−i)/2).

If w and u are random graphs with densities p, q respectively, it then
follows from Theorem 3 that Edisc(w, u) ≥

√
p(1− p)q(1− q)n(k+1)/2,

where the main contribution comes from the final components Wk, Uk
of the W -vectors of w, u.

The problem of determining the expected value of disc(w, u) for pairs of
random hypergraphs was raised (for graphs) in [11]. It has since been
shown in Bollobás and Scott [12] and Ma, Naves and Sudakov [24] that
in fact it is possible to improve on the bound above by a

√
log n factor.

For further related work, see [9].

• What about the sharpness of everything? For instance, when are the
bounds in Theorem 2 and Theorem 3 sharp to within a constant factor?
Can better bounds be proved?

• The results in this paper are concerned with weighted k-uniform hy-
pergraphs, but what happens if we restrict ourselves to the unweighted
case? We can always generate a pair of k-uniform hypergraphs with
discrepancy 0 by letting G be the hypergraph with all edges containing
a fixed vertex, and letting H be any regular k-uniform hypergraph, but
what if we want G and H to have density bounded away from 0 and
1? For k = 2, the lower bound (11) (from [11]) shows that the discrep-
ancy must be large; but for k = 3, as noted in the introduction, there
is a pair of dense unweighted hypergraphs with discrepancy 0. What
happens for k ≥ 4? Could a version of Conjecture 10 from [11] hold
in this case? In the opposite direction, it would be very interesting
to characterize zero discrepancy pairs of unweighted hypergraphs. In
light of Theorem 3, one line of attack would be to consider which com-
ponents of the W -vector can be 0 for an unweighted hypergaph. More
generally, which subsets of components can support the W -vector of
an unweighted k-uniform hypergraph? And is there a set of three un-
weighted hypergraphs that pairwise have discrepancy 0?

• Can we say anything about the distribution of 〈wπ, u〉 for k ≥ 3? It
seems natural to hope for some form of Central Limit Theorem, as in
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the cases k = 1, 2. Perhaps less ambitiously: we have a lower bound
on E|〈wπ, u〉|, but what about an upper bound? Maybe it is possible
to determine this expectation up to a Θ(1) factor.

• To what extent do the results above extend to the continuous setting,
when we have measurable functions from [0, 1]k to R?

• We have worked with real weights in this paper. What happens if we
work with complex functions (with the usual inner product 〈u, v〉 =∑

e u(e)w(e))?

• It would be interesting to consider different group actions. As a starting
point, what happens if we take the action of the cyclic group on itself,
or of Zn2 on itself? In the case of the cyclic group, it would be natural to
work with complex weights, as the Fourier basis gives a set of pairwise
orthogonal weightings.
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[18] P. Erdős, R. Faudree, C. Rousseau and R. Schelp, A local density con-
dition for triangles, Discrete Math. 127 (1994), 153–161

33
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