
Graphs of large chromatic number

Alex Scott**

Abstract

The chromatic number has been a fundamental topic of study in
graph theory for more than 150 years. Graph colouring has a deep
combinatorial theory and, as with many NP-hard problems, is of in-
terest in both mathematics and computer science. An important chal-
lenge is to understand graphs with very large chromatic number. The
chromatic number tells us something global about the structure of a
graph: if G has small chromatic number then it can be partitioned
into a few very simple pieces. But what if G has large chromatic num-
ber? Is there anything that we can say about its local structure? In
particular, are there particular substructures that it must contain? In
this paper, we will discuss recent progress and open problems in this
area.

1 Introduction

The chromatic number has been a fundamental topic of study in graph the-
ory for more than 150 years. For example, the famous Four Colour Con-
jecture, which states that every graph that can be embedded in the plane
has chromatic number at most 4, was first raised in the 1850s by Francis
Guthrie (a student of Augustus de Morgan), and was finally proved in the
1970s by Appel and Haken [4], in one of the first computer-assisted proofs.
Attempts to solve the conjecture led to Birkhoff’s [9] development in 1912
of the chromatic polynomial, which counts the number of k-colourings of a
graph G. The chromatic polynomial was generalized by Tutte [85] to what is
now known as the Tutte polynomial, which is closely connected to the Ising
model and Potts model in statistical physics (see Fortuin and Kasteleyn [43],
Sokal [83]), the random cluster model in probability (see Grimmett [44]) and
the Jones polynomial in knot theory (see Jones [51]).
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However, many fundamental questions about graph coloring remain. A
particular challenge is to understand graphs with very large chromatic num-
ber. The chromatic number says something about the global structure of a
graph: if G has small chromatic number then it can be partitioned into a
few very simple pieces. But what if G has large chromatic number? Is there
anything that we can say about its local structure? In particular, are there
particular substructures that it must contain?

We will need a few definitions. LetG be a graph with vertex set V = V (G)
and edge set E = E(G) (all graphs in this paper are finite). A complete
graph is a graph in which every pair of vertices is joined. A stable set (or
independent set) in G is a set S ⊆ V such that no two vertices of S are
adjacent in G. The clique number ω(G) of G is the maximum number of
vertices in a complete subgraph of G; and the stability number α(G) is the
largest number of vertices in a stable set in G. A k-colouring of a graph is
function from its vertices to {1, . . . , k} so that adjacent vertices have different
colours. The chromatic number χ(G) of G is the smallest integer k such that
G has a k-colouring.

Graphs with chromatic number at most 2 are easily characterized: they
are the graphs that do not contain an odd cycle. But for k ≥ 3, there does
not appear to be any simple structural characterization even of the mini-
mal graphs with chromatic number more than k (see [10]). The algorithmic
problem of k-colourability is well-known to be NP-complete for k ≥ 3, and
was one of Karp’s celebrated list [54] of 21 NP-complete problems; indeed,
for ε > 0, it is NP-hard even to approximate the chromatic number within
a factor n1−ε, where n is the number of vertices. As with many NP-hard
problems, graph colouring has a correspondingly deep combinatorial theory,
and it has been the focus of extensive study in both mathematics and com-
puter science, and understanding the connections between graph structure
and chromatic number has been one of the fundamental goals of structural
graph theory in the last thirty years.

Let us clarify the notion of substructure. A graph H is a subgraph of a
graph G if V (H) ⊆ V (G) and E(H) ⊆ E(G). Thus H is obtained from G
by deleting vertices and edges. We say that H is an induced subgraph of G
if V (H) ⊂ V (G), and E(H) consists of the edges of G that are contained in
V (H) (and then H is the subgraph of G induced by V (H)). For example,
every graph is a subgraph of some complete graph; but if G is a complete
graph then all of its induced subgraphs are complete graphs. In this paper
we will be concerned primarily with induced subgraphs. We say that a graph
G is H-free if G does not contain an induced subgraph that is isomorphic to
H (more informally, if G does not contain an induced copy of H).

So, what can we say about the induced subgraphs of a graph with large
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chromatic number? One possibility is that G might itself be complete, in
which case it only contains complete graphs as induced subgraphs. But
what if G doesn’t contain a large complete subgraph: are there particular
structures that have to appear as induced subgraphs? In this paper we will
be interested in statements of the form:

Every graph with sufficiently large chromatic number contains
either a complete subgraph on k vertices or an induced ***.

Equivalently, we will often say:

If G contains neither a complete subgraph on k vertices nor an
induced *** then it has bounded chromatic number.

The question is: what can we put in place of the asterisks?
The rest of this paper is organized as follows. In section 2 we look at

whether graphs with large chromatic number need to contain large complete
subgraphs (they don’t). In the next few sections, we investigate the relation-
ship between chromatic number and clique number: after discussing perfect
graphs in section 3, we introduce χ-bounded classes in section 4 and look
at the effects of forbidding a single induced subgraph. In section 5 we look
at induced cycles in graphs of large chromatic number, and then section 6
considers more complex induced subgraphs. Section 7 discusses the Erdős-
Hajnal Conjecture, and section 8 looks at its connection with polynomially
χ-bounded classes. Finally, in section 9, we compare the effects of excluding
induced subgraphs with the effects of excluding graph minors.

2 Girth and chromatic number

Suppose that a graph G has huge chromatic number. Are there induced
subgraphs that it must contain? Perhaps the first question of this type to
ask is: does every graph of large chromatic number contain a large complete
subgraph? This question was answered in the negative in the 1940s by Tutte
(writing as Blanche Descartes [33, 34]), who showed that there are triangle-
free graphs with arbitrarily large chromatic number. Many constructions are
now known. For example, there is a simple construction of Mycielski from the
1950s [66]: given a graph G with vertices {v1, . . . , vk} we define a new graph
M(G) with vertices {x1, . . . , xk, y1, . . . , yk, z}; for each edge vivj of G, the
graph M(G) has edges xixj, yixj and xiyj (but not yiyj), and z is adjacent to
all the yi. It is straightforward to check that χ(M(G)) = χ(G) + 1, and if G
is triangle-free then so is M(G). Thus starting with G1 = K1 and inductively
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defining Gi+1 = M(Gi), we obtain a sequence of triangle-free graphs Gi with
χ(Gi) = i for each i.

So graphs of large chromatic number need not have large complete sub-
graphs. But perhaps they must have short cycles? Or can they instead be
‘locally tree-like’? It turns out that the latter is the case. A cycle of length
k ≥ 3 is a graph with vertices x1, . . . , xk and edges xixi+1for each i (where
indices are taken modulo k). The girth of a graph is the smallest k such
that G contains a cycle of length k as a subgraph. In one of the earliest
applications of probability in graph theory, Erdős [35] showed that there are
graphs with arbitrarily large girth and chromatic number. Indeed, consider
a random graph on n vertices in which every edge is present with probability
(log n)/n. A simple first moment argument shows that, with positive prob-
ability, only o(n) vertices are contained in short cycles, while any stable set
has size at most o(n) (so the chromatic number is large, as a colouring is
a partition into stable sets). Deleting all vertices in short cycles gives the
desired graph.

Constructing explicit examples of graphs with large girth and chromatic
number is rather harder. There is a pretty example of a graph with large
chromatic number and no short odd cycles: the Kneser graph K(n, k) has as
its vertex set all k-sets contained in {1, . . . , n}, with A and B adjacent if and
only if they are disjoint [57]. It is easy to check that if n = 2k+ t then there
are no odd cycles of length less than about n/t. It is rather harder to show
that Kneser graphs can have large chromatic number: in fact, it turns out
that for k > n/2, the Kneser graph K(n, k) has chromatic number exactly
n − 2k + 2. This was proved in a celebrated paper of Lovász [63], which
developed the connection between chromatic number and the topology of
the neighbourhood complex of a graph; shortly afterwards, Bárány [6] found
a second beautiful (and surprisingly simple) topological proof.

There are now a number of explicit constructions of graphs with large
chromatic number and no short cycles. These include a construction of
Lovász [62]; the Ramanujan graphs of Lubotzky, Phillips and Sarnak [64];
a construction of Nešestřil and Rödl [67] using the ‘amalgamation method’;
and an ingenious recent construction of Alon, Kostochka, Reiniger, West and
Zhu [2] based on careful augmentation of trees.

Even here, though, there are basic questions that remain. For example,
the following question of Erdős and Hajnal [36] concerning (not necessarily
induced) subgraphs has been open for fifty years.

Conjecture 2.1. For every pair of positive integers k, t, every graph of suf-
ficiently large chromatic number contains a subgraph with chromatic number
more than t and girth more than k.
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The best current result is due to Rödl [72], who proved the conjecture for
k = 3.

3 Perfect graphs

Recall that the clique number ω(G) of a graph G is the maximum number of
vertices in a complete subgraph in G. Every graph has chromatic number at
least as large as its clique number, as the vertices in any clique must all have
different colours in a proper colouring. But when is the chromatic number
larger than the clique number?

Here are two examples where this happens:

� Let C be an cycle of odd length. Then χ(C) = 3 and (unless C is a
triangle) ω(C) = 2.

� Let C be the complement of a cycle of odd length. Then it can be
checked that (unless C is a triangle) χ(C) > ω(C).

Let us say that an induced subgraph of a graph G is an hole (in G) if
it is a cycle of length at least four, and an antihole if it is the complement
of a cycle of length at least four (or equivalently, if it corresponds to a hole
in the complement of G). A hole or antihole is odd if it has an odd number
of vertices. In the 1960s, Claude Berge [7] conjectured that the minimal
graphs with chromatic number larger than clique number are precisely the
odd holes and odd antiholes. This became known as the Strong Perfect
Graph Conjecture, and was a central problem in structural graph theory for
many years.

The conjecture was finally resolved by Chudnovsky, Robertson, Seymour
and Thomas in 2006 [19]:

Theorem 3.1. If the chromatic number of G is larger than its clique number,
then G contains an odd hole or an odd antihole.

The proof of the Strong Perfect Graph Theorem is a tour de force of
structural techniques. The details are rather complicated, but the strategy
of the proof is to show that if G has no odd holes and no odd antiholes, then
either it belongs to one of a small number of well-understood ‘basic classes’
of graphs, or it has a ‘nice’ decomposition into smaller graphs.

This type of approach is frequently used in structural graph theory and
has been remarkably successful in understanding a wide variety of graph
classes, but it is only effective when the classes being examined have some
sort of nice structure. In the rest of this paper, we will mostly be interested in
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larger classes, where it is unlikely that there are nice decomposition results,
and so very different techniques need to be used.

4 χ-bounded classes and the Gyárfás-Sumner

conjecture

The Strong Perfect Graph Theorem characterizes when the chromatic num-
ber χ(G) is larger than the clique number ω(G), but what induced subgraphs
can we get when the chromatic number is much larger than the clique num-
ber? In the 1980s, András Gyárfás wrote an influential paper, Problems from
the world surrounding perfect graphs, in which he initiated the systematic in-
vestigation of this question, using the language of χ-bounded classes. Gyárfás
laid out a research programme for the study of χ-bounded classes and made
a sequence of important conjectures, many of which have been resolved only
in the last few years.

We will always be concerned with hereditary classes, namely those that
are closed under taking induced subgraphs.

Definition 4.1. A hereditary class G of graphs is χ-bounded if there is a
function f : N→ N such that χ(G) ≤ f(ω(G)) for every G ∈ G (see [46, 79]).

The class of all graphs is not χ-bounded, as there are triangle-free graphs
with arbitrarily large chromatic number (so we cannot even define f(3)). So
any χ-bounded class must exclude at least one induced subgraph. In this
section, we look at the question: when is it enough to forbid a single induced
subgraph H?

Let us fix a graph H. If H contains a cycle C then the class of H-free
graphs is not χ-bounded: we know from the section 2 that there are graphs
with arbitrarily large girth and chromatic number (if their girth is more than
than the length of C, they do not contain a copy of H). So the interesting
case is when H is acyclic, i.e. a forest. This is the subject of the well-known
Gyárfás-Sumner Conjecture [45, 84]:

Conjecture 4.2. For every forest H the class of H-free graphs is χ-bounded.

The Gyárfás-Sumner Conjecture can equivalently be stated as follows:

Conjecture 4.3. For every forest H and every k ≥ 1, every graph with
sufficiently large chromatic number contains either a complete graph on k
vertices or an induced copy of H.

6



The conjecture has proved extremely resistant. It is not hard to show
that it suffices to consider the case when H is a tree (for a forest F , the
class of F -free graphs is χ-bounded if and only if the class of H-free graph is
χ-bounded for every component H of F ). But the conjecture is only known
for a few quite special trees, for example:

� If H is a star, then it follows easily from Ramsey’s theorem.

� If H is a path then there is a simple and elegant argument due to
Gyárfás [45]. It is also known for the broom [45] and the double broom
[22].

� It’s true if H is a tree of radius 2: the triangle-free case was proved by
Gyárfás, Szemerédi and Tuza [48], and the general case by Kierstead
and Penrice [55].

� It is known for some special trees of radius three [56, 78].

In most cases, the proofs are quite intricate. However, the argument
when H is a path is simple and elegant, so let us sketch it. Suppose we are
looking for a path P with t vertices, and G is a graph with huge chromatic
number that does not contain an induced copy of P or a complete subgraph
on k vertices. By induction, we may assume that for every vertex v in G,
its neighbourhood N(v) has small chromatic number (as it does not contain
a complete subgraph on k − 1 vertices). We may also assume that G is
connected, by just considering the component with largest chromatic number.
Now choose any vertex x1. If we delete x1 and its neighbours from G, then
the remaining graph falls into components C1, . . . , Cr for some r, and as the
neighbourhood of x1 has small chromatic number and G has large chromatic
number, one of the these components (say C1) must also have large chromatic
number. Since G is connected, there must be some vertex x2 that is both
adjacent to x1 and has a neighbour in C1. We focus on x2 and C1 and repeat
the argument, deleting neighbours of x2 from C1, choosing a component C
of the remainder with large chromatic number, and choosing a vertex x3
that is adjacent to x2 and has neighbours in C. Continuing in this way, we
walk into the graph, always heading towards a region with large chromatic
number, and build an induced path along the way. This type of argument
crops up repeatedly, and has become known as the Gyárfás path argument.

Another (rather more complicated) technique is the method of templates.
Building on the work of Gyárfás, Szemerédi and Tuza [48], this was developed
by Kierstead and Penrice [55]. The idea is to look for complete multipar-
tite subgraphs with (large) constant size. Thus we look for a large complete
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bipartite graph, or a (slightly less) large complete tripartite graph, and so
on. The process terminates as we are assuming that there is no complete
graph on k vertices. A template T consists of one of these subgraphs, say K,
together with all the vertices that are moderately dense to K (in some ap-
propriate sense). We define a sequence T1, T2, . . . of templates by repeatedly
choosing one that is maximal (by some measure), deleting it from the graph,
and then looking at templates in the graph that remains. When we are fin-
ished, we are left with a graph containing no templates, and show that it has
small chromatic number. The key now is to show that edges between the
templates we removed are rather restricted: there is usually quite a complex
argument to partition and ‘clean up’ the templates into progressively more
simply structured pieces, until all the pieces have small chromatic number
(and so we are done, as we have partitioned the whole graph into a bounded
number of pieces with small chromatic number).

The method of templates has been a powerful approach for handling
small-radius trees, but at present there seem to be significant technical ob-
stacles to extending it to trees of radius more than 3. It is worth noting that
the base case (finding complete bipartite graphs) is not straightforward, but
can usually be handled with the following result (proved by Rödl but not
published):

Theorem 4.4. For every k and t, and every tree T , every graph with suffi-
ciently large chromatic number contains either Kk, Kt,t or T as an induced
subgraph.

Here Kk denotes the complete graph on k vertices, and Kt,t denotes the
complete bipartite graph with t vertices in each class. Kierstead and Pen-
rice [55] strengthened Theorem 4.4, showing that such graphs have bounded
degeneracy.1 See Theorem 8.5 below for a further strengthening.

Perhaps the most general result related to the Gyárfás-Sumner conjecture
concerns induced subdivisions of forests. We say that a graph F is a subdivsion
of a graph H (or is homeomorphic to H) if F can be obtained from H by
adding vertices along the edges, or equivalently by replacing some subset of
the edges by paths. For example, every cycle is a subdivision of a triangle.
The following weakening of the Gyárfás-Sumner conjecture was obtained in
[73].

Theorem 4.5. Let H be a forest. The class of graphs that do not contain
an induced copy of any subdivision of H is χ-bounded.

1The degeneracy of a graph G is the maximum integer r such that every subgraph of
G has a vertex with degree at most r. The chromatic number of a graph is at most one
more than its degeneracy.
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A special case of this implies the Gyárfás-Sumner conjecture when H is
a subdivision of a star (as any subdivision of H contains an induced copy of
H).

In fact, something slightly stronger than Theorem 4.5 was shown in [73]:

Theorem 4.6. For every forest H there is a finite list H1, . . . , Ht of subdivi-
sions of H such that the class of graphs that do not contain an induced copy
of any Hi is χ-bounded.

5 Holes in graphs of large chromatic number

What other structures must appear in graphs of large chromatic number? If
we do not forbid a forest, then the existence of graphs with large girth and
chromatic number implies that it is not enough to forbid a single induced
subgraph, or indeed any finite list of induced subgraphs. Perhaps the simplest
example of this is where we forbid a collection of induced holes (i.e. induced
cycles of length at least four). Gyárfás made several important conjectures
concerning holes, and we will focus on these in this section.

The Strong Perfect Graph Theorem tells us that the class of graphs with
no odd holes and no odd antiholes is χ-bounded, and furthermore with the
best possible function f(ω) = ω. Long before this theorem was proved,
Gyárfás conjectured that for χ-boundedness it would suffice to exclude only
odd holes.

Conjecture 5.1. The class of graphs with no odd holes is χ-bounded.

He also conjectured that it would be enough to exclude only long holes; and
more adventurously that it would be enough to exclude long odd holes:

Conjecture 5.2. For every integer t, the class of graphs with no holes of
length more than t is χ-bounded.

Conjecture 5.3. For every integer t, the class of graphs with no odd holes
of length more than t is χ-bounded.

For some time, there was no progress on these conjectures. As noted
earlier, the structural techniques used to prove the Strong Perfect Graph
theorem rely on the fact that perfect graphs have nice structural features, and
a minimum counterexample to the theorem can be decomposed in some nice
way. The larger classes considered by Gyárfás have much wilder structure,
and do not appear to be amenable to decomposition techniques. So a different
approach is required.
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For a long time, all three conjectures appeared intractable. However, the
three conjectures have now been proved: the first was proved in a paper with
Seymour [74], giving the following bound.

Theorem 5.4. For k ≥ 1, every graph with chromatic number at least 22k+2

contains either a complete subgraph on k vertices or an odd hole.

The doubly exponential bound is probably far from best possible. In-
deed, there is only one obstacle in the proof that causes the bound to jump
from single to doubly exponential, and it seems likely that this could be
circumvented with new ideas. One approach would be to prove the Hoàng-
McDiarmid conjecture [50], which says:

Conjecture 5.5. Let G be a graph with no odd hole and at least one edge.
Then the vertices of G can be partitioned into two sets such that every max-
imum clique in G intersects both sets.

Conjecture 5.5 would imply immediately that graphs without odd holes
satisfy χ(G) ≤ 2ω(G).

The class of graphs without odd holes has also been of significant algo-
rithmic interest. Following the proof of the Strong Perfect Graph Theorem,
Chudnovsky, Cornuéjols, Liu, Seymour and Vušković [18] showed that there
is a polynomial-time algorithm to recognize perfect graphs (i.e. graphs with
no odd hole and no odd antihole). However, it was only recently shown
that it was shown that there is a polynomial-time algorithm to test for the
presence of an odd hole [28]; indeed, the problem had been open since the
1980s (and there was reason to expect that the problem might be hard, as
Bienstock showed that testing for the presence of an odd hole containing a
specific vertex is NP-complete [8]). In subsequent work, it has been shown
that finding a shortest odd hole [24] and an odd hole of at least a fixed length
[25] can also be solved in polynomial time.

Conjectures 5.2 and 5.3 have also now been proved. The second conjecture
was proved in a paper with Chudnovsky and Seymour [21], and the third in
a paper with Chudnovsky, Seymour and Spirkl [26] (both with significantly
larger bounds). But this raises a natural further question: why ask only
for odd holes? In the light of the (then) Strong Perfect Graph Conjecture,
it was very natural for Gyárfás and others to think about holes of odd or
even parity. However, motivated by topological considerations, Kalai and
Meshulam [52, 53] also conjectured that the class of graphs with no triangle
and no hole of length divisible by 3 does not contain graphs of arbitrarily large
chromatic number. This was proved in a breakthrough paper of Bonamy,
Charbit and Thomassé [12].

10



It turns out that much stronger results hold. The current state of the art
is the following, which was proved in a paper with Seymour [76].

Theorem 5.6. For all integers k ≥ 0 and ` ≥ 1, the class of graphs with no
hole of length k modulo ` is χ-bounded.

As an application, this resolves two further conjectures of Kalai and
Meshulam, connecting the chromatic number of a graph with the homology
of its independence complex.

It seems likely that even stronger results are true. Indeed, perhaps we
can break away from parity conditions altogether and just use some sort of
density condition:

Conjecture 5.7. Let A ⊂ N be an infinite set with bounded gaps. Then the
class of graphs that do not contain a hole of any length in A is χ-bounded.

This has been proved in the special case of triangle-free graphs (in another
paper with Seymour [75]). The proof is long and complicated, and extending
it to the general case will require significant new ideas.

It would also be very interesting to answer the following question:

Conjecture 5.8. Is there a set A ⊂ N with upper density 0 such that the
class of graphs that do not contain any hole with length in A is χ-bounded?

What can be said about the techniques? Proving these results has re-
quired a substantially different toolbox from the decomposition techniques
used to study perfect graphs. The methods use a mixture of structural and
extremal techniques, and can perhaps be thought of as a ‘rougher structural’
approach.

A useful framework is provided by using the local chromatic number. For
an integer r ≥ 0 and a graph G, we define the r-local chromatic number
χ(r)(G) of G to be the maximum of χ(B) over all subgraphs B induced by r-
balls in G (using the shortest path metric). The relationship between χ(r)(G)
and χ(G) is interesting: roughly speaking, it is interesting to distinguish
between graphs in which some small ball has large chromatic number, and
graphs where the chromatic number is not visible locally (for instance, if the
graph is locally treelike) so that it is somehow ‘spread out’ in the graph.
More precisely, given any graph G with very large chromatic number, it is
possible to drop to an induced subgraph G′ with one of the two following
properties:

� G′ has large chromatic number and small r-local chromatic number;
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� G′ has large chromatic number, and every induced subgraph of G′ with
large chromatic number contains an r-ball with large chromatic num-
ber.

This framework was introduced in [73], and has been the starting point for
many subsequent proofs. The ‘local’ and ‘spread-out’ cases have very differ-
ent structural behaviours, and usually require very different methods.

6 Induced subdivisions and geometric con-

structions

So far, we have discussed forests and cycles. But it is natural to ask whether
we can ask for more complicated local structures. In 1997, it was conjectured
in [73] that if we allow subdivisions, then any structure can be found:

Conjecture 6.1. For every graph H, the class of graphs with no induced
subdivision of H is χ-bounded.

Equivalently, the conjecture claims that any graph with large chromatic
number contains either a large clique or an induced subdivision of H. When
H is a forest, this is true by Theorem 4.5 [73]; and when H is a cycle, this
follows from the truth of 5.2 [46, 21]. Motivated by Conjecture 6.1, Kühn
and Osthus [58] also proved the following beautiful result, showing that if
we forbid a complete bipartite graph then large minimum degree is already
enough.

Theorem 6.2. For every graph H and positive integer k, every graph with
sufficiently large minimum degree contains either a complete graph Kk, a
complete bipartite graph Kk,k or a subdivision of H as an induced subgraph .

As we will see below, Conjecture 6.1 ultimately turned out to be incor-
rect, but it remained open for more than fifteen years. Part of the difficulty
in finding a counterexample lies in the fact that we do not have many ways to
generate structured examples of graphs with large chromatic number. For,
example random graphs provide a simple way to create graphs with large
chromatic number; but typically they also have good expansion and connec-
tivity properties, and contain subdivisions of any fixed graph H. And while
there are many ways to construct examples of graphs with large chromatic
number and (for example) no triangles, it is similarly hard to constrain their
larger-scale structure.

One fruitful line of construction has come from considering geometric
graphs. It is not enough to consider graphs embeddable on a fixed surface,
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as these have bounded chromatic number (this can be deduced easily from
Euler’s formula, which implies that graphs embeddable on a fixed surface
have bounded degeneracy). But it is rather more interesting to consider
intersection graphs: these have vertex set consisting of a family C of sets,
with A,B ∈ C adjacent if A ∩B is nonempty.

An important example is given by the intersection graph of a collection
of axis-aligned boxes in Rd. When d = 1, we obtain the family of interval
graphs. These are well-known to be perfect [49]. When d = 2, we are con-
sidering intersections of rectangles in the plane: Asplund and Grünbaum [5]
showed that these satisfy χ(G) = O(ω(G)2) (recently improved to O(ω logω)
by Chalermsook and Walczak [15]). However in three dimensions, more hap-
pens: Burling constructed triangle-free intersection graphs of boxes in three
dimensions with arbitrarily large chromatic number ([14]; see also [69]). It
follows that intersection graphs of families of boxes in d-dimensions are χ-
bounded for d = 1, 2, but not for d ≥ 3.

A larger class of two-dimensional intersection graphs is provided by the
family of string graphs, namely intersection graphs of curves in the plane
(see, for example, [65]). Many special families of string graphs have been of
interest. For example, the intersection graphs of straight line segments in the
plane: Erdős asked in the 1970s whether this family is χ-bounded. It was
a surprise when, in 2014, Pawlik, Kozik, Krawczyk, Lasoń, Micek, Trotter
and Walczak [68] came up with a way to represent Burling’s graphs in two
dimensions. Their beautiful construction shows the following.

Theorem 6.3. There are triangle-free intersection graphs of line segments
in the plane that have arbitrarily large chromatic number.

As a corollary, Conjecture 6.1 does not hold (for example, for any graph H
that is obtained by subdividing every edge of a nonplanar graph). However it
remains an interesting problem to determine when the conjecture does hold.
Chalopin, Esperet, Li and Ossona de Mendez [16] analyzed the construction
from [68] in detail, further limiting the graphs that could satisfy Conjecture
6.1. In the case of string graphs, the problem was completely solved in [23],
which also proved the following result:

Theorem 6.4. Every string graph with large chromatic number contains a
2-ball with large chromatic number.

Perhaps this is a necessary feature in any family of counterexamples to
Conjecture 6.1? The following resuscitation of that conjecture is proposed in
[77]. Informally:
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Conjecture 6.5. For every graph H, every graph with large chromatic num-
ber contains either a 2-ball with large chromatic number or an induced sub-
division of H.

7 The Erdős-Hajnal Conjecture

In this section, we look at the largest complete subgraph or independent set
in a graph. Frank Ramsey [70] showed in 1930 that every infinite graph
contains an infinite complete subgraph or stable set. The finite version of
this result is the following:

Theorem 7.1. For every k ≥ 1 there is an integer R(k) such that every
graph with at least R(k) vertices contains a complete subgraph or stable set
of size k.

So ‘large’ graphs contain ‘large’ homogeneous structures. But how large
is large? Ramsey gave an explicit bound on R(k), but a nice quantitative
version of Ramsey’s Theorem was proved by Erdős and Szekeres [40] in the
1930s:

Theorem 7.2. Every graph with at least
(
s+t−2
s−1

)
vertices contains either a

complete subgraph of size s or a stable set of size t.

By taking s = t, it follows that every graph on n vertices contains a
complete subgraph or stable set of size at least c1 log n. On the other hand,
by considering random graphs, it is not hard to show that most graphs on n
vertices do not contain a complete subgraph or stable set of size more than
c2 log n.

How does the picture change if we know something about the local struc-
ture of a graph? Erdős and Hajnal speculated in the 1980s [37, 38] that
H-free graphs exhibit a very different behaviour:

Conjecture 7.3. For every graph H, there is a constant c = c(H) > 0 such
that the following holds: every H-free graph with n vertices has a complete
subgraph or stable set with at least nc vertices.

In other words, if we exclude any induced subgraph then the largest stable
set or complete subgraph that must occur jumps in size from logarithmic to
polynomial. The Erdős-Hajnal Conjecture has become one of the central
conjectures in graph theory.

Despite considerable work, Conjecture 7.3 is only known for a small family
of graphs. There are a few small examples: complete graphs (this follows
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from the quantitative form of Ramsey’s Theorem 7.2), the four-vertex path
P4 (P4-free graphs are perfect), and the bull (Chudnovsky and Safra [20]).
The class of graphs H for which the Erdős-Hajnal Conjecture holds also
satisfies two closure properties:

� It follows immediately from the statement of the conjecture that if it
holds for H then it also holds for H.

� Alon, Pach and Solymosi [3] proved that the class of graphs H for
which Erdős-Hajnal holds is closed under substitution (the operation
of substituting a graph F for a vertex x of H deletes x and replaces it
with a copy of F ; every new vertex is joined to every vertex that was
adjacent to x).

Recently, a new graph was added to the list [30]:

Theorem 7.4. The Erdős-Hajnal Conjecture holds when H is a cycle of
length 5.

This was of particular interest, as it had been highlighted as an important
case both by Erdős and Hajnal [38] and Gyárfás [47], and was part of the
original motivation for the conjecture. However, the conjecture remains open
even for the five vertex path and the best bound known for general graphs
is due to Erdős and Hajnal [38], who showed that the conjecture holds with
ec
√
logn in place of nc.
There has been substantial recent progress in looking at analogues of the

Erdős-Hajnal Conjecture with more than one excluded graph. A hereditary
class G of graphs has the Erdős-Hajnal property if there is c > 0 such that
every G ∈ G has a stable set or complete subgraph with at least |G|c vertices.
Thus the Erdős-Hajnal Conjecture says that the class of H-free graphs has
the Erdős-Hajnal property.

One approach to proving that graph classes satisfy the Erdős-Hajnal prop-
erty has been through looking at large bipartite structures. Disjoint sets A,
B of vertices in a graph G are complete if G contains all edges between A
and B and anticomplete if G contains no edges between A and B. There is
a substantial body of work on finding this type of structure in various graph
classes (see [39], [32] and the sequence of papers starting with [27]). It is par-
ticularly helpful when it is possible to find linear complete or anticomplete
pairs. A hereditary class G of graphs has the strong Erdős-Hajnal property
if there is δ > 0 such that every G ∈ G has disjoint sets A,B of at least δn
vertices such that the pair (A,B) is either complete or anticomplete.

The strong Erdős-Hajnal property is useful for the following reason:
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Lemma 7.5. The strong Erdős-Hajnal property implies the Erdős-Hajnal
property.

So when does the strong Erdős-Hajnal property hold for the class of
H-free graphs? By considering sparse random graphs (for instance with
p ∼ log n/n), it can be seen that H must be a forest; on the other hand
by considering complements of sparse random graphs, it follows that the
complement of H must also be a forest. But if both H and its complement
are forests, then H has at most four vertices, and the conjecture is already
known for these cases. So it seems that the strategy gives us nothing. But
here is an interesting result of Bousquet, Lagoutte and Thomassé [13]:

Theorem 7.6. For every positive integer t, the class of graphs G such that
neither G nor its complement contains a t-vertex path as an induced subgraph
satisfies the strong Erdős-Hajnal property.

Thus the strong Erdős-Hajnal property holds if we exclude two graphs:
one sparse (a path on t vertices) and one dense (the complement of a path
on t vertices). Theorem 7.6 was extended by Choromanski, Falik, Liebenau,
Patel and Pilipczuk [17], and then further by Liebenau, Pilipczuk, Seymour
and Spirkl [60]. An optimal result was given in [27]:

Theorem 7.7. Let T be a forest. Then the class of graphs G such that
neither G nor its complement contains an induced copy of T satisfies the
strong Erdős-Hajnal property.

Since we must exclude both a forest and the complement of a forest to
obtain the strong Erdős-Hajnal property, the result characterizes all heredi-
tary classes that are defined by a finite set of excluded subgraphs and satisfy
the strong Erdős-Hajnal property. (See [29] for an analogous result where
we forbid all induced subdivisions of a single graph H in both G and its
complement.)

We end the section by noting that there is a natural connection between
the Erdős-Hajnal Conjecture and problems about χ-boundedness such as
the Gyárfás-Sumner Conjecture: a graph with small chromatic number must
contain large stable sets (as a colouring is a partition into stable sets); and
the Erdős-Hajnal Conjecture tells us that H-free graphs have ‘large’ cliques
or stable sets. However, there is no immediate implication. For example,
the class of triangle-free graphs has the Erdős-Hajnal Property, but contains
graphs of arbitrarily large chromatic number. And Theorem 5.4 shows that
the class of graphs with no odd holes is χ-bounded, but the bounds do not
imply anything like polynomial behaviour of cliques or stable sets. However,
under some conditions it is possible to deduce the Erdős-Hajnal Property
from χ-boundedness: we will discuss this in the next section.
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8 Polynomial bounds and Esperet’s conjec-

ture

So far, we have discussed classes in which the chromatic number is bounded
as a function of the clique number, without considering what type of function
provides the bound. In most of the results we have mentioned, the proofs give
multiply exponential functions, either because there are repeated applications
of Ramsey-type results, or because there is some blowup at the inductive
step. In this section, we will be concerned with polynomially χ-bounded
clases, namely classes G for which there is a polynomial function f such
that χ(G) ≤ f(cl(G)) for every G ∈ G. Polynomially χ-bounded classes
are of particularly interest, because of their connection to the Erdős-Hajnal
Conjecture: it follows immediately that any polynomially χ-bounded class
has the Erdős-Hajnal property.

Esperet [41] made the remarkable (and provocative) conjecture that all
χ-bounded classes are polynomially χ-bounded:

Conjecture 8.1. If a hereditary class G is χ-bounded then it is polynomially
χ-bounded.

If Esperet’s conjecture is true, then the Gyárfás-Sumner could be strength-
ened to the following:

Conjecture 8.2. For every forest H, the class of H-free graphs is polyno-
mially χ-bounded.

Since the Gyárfás-Sumner Conjecture is only known for some small fami-
lies of trees, the polynomial Gyárfás-Sumner Conjecture looks very challeng-
ing (and may well turn out to be incorrect). However there has been some
progress, and it is known for a few very small trees [81]:

Theorem 8.3. The polynomial Gyárfás-Sumner Conjecture holds for every
tree of diameter at most 3.

Paths form a particularly interesting case. Let Pk be the path on k
vertices. Graphs that are P3-free or P4-free are well known to be perfect, so
the polynomial Gyárfás-Sumner Conjecture follows immediately. However,
in general, the best bounds are exponential, even when excluding paths. The
current borderline case is the five vertex path, where until recently the best
bound was exponential [42]. This was improved in [82]:

Theorem 8.4. Every graph with chromatic number at least klog2 k contains
either a clique on k vertices or an induced path on five vertices.
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This is just slightly superpolynomial, but it is not yet small enough to
prove the Erdős-Hajnal Conjecture for P5.

Polynomial bounds are also known when a tree and a complete bipartite
graph are excluded. The following result [80] strengthens Theorem 4.4 and
answers a question of Bonamy, Bousquet, Pilipczuk, Rzazewski, Thomassé
and Walczak [11]:

Theorem 8.5. For every tree T there is a polynomial p(t) such that, for
every t ≥ 1, every graph with minimum degree at least p(t) contains either
an induced copy of T or a (not necessarily induced) copy of Kt,t.

It seems likely that even more could hold. Indeed, Paul Seymour and I
conjecture the following strengthening of Theorem 6.2:

Conjecture 8.6. For every graph H there is a polynomial p(t) such that, for
every t ≥ 1, every graph with minimum degree at least p(t) contains either
an induced subdivision of H or a (not necessarily induced) copy of Kt,t.

9 Graph minors and induced subgraphs

Throughout this paper, we have been looking at the large-scale structural
consequences of forbidding one or more induced subgraphs. In this final
section, we compare this with the effects of excluding graph minors. A graph
H is a minor of a graph G if H can be obtained from G by contracting
edges and deleting edges and vertices (a contraction of an edge xy replaces
the vertices x and y by a single vertex z adjacent to all other vertices that
were previously adjacent to x or to y; for simplicity, we will ignore loops and
parallel edges). A class G of graphs is minor-closed if, whenever G ∈ G then
all its minors are in G.

Minor-closed classes arise in many contexts: for example, the class of all
graphs embeddable on a fixed surface is minor-closed. For the plane, Wagner
[86] proved the following result (which also follows from work of Kuratowski
[59]):

Theorem 9.1. A graph is planar if and only if it does not contain a minor
of K5 or K3,3.

The theory of graph minors was developed in a major series of papers by
Robertson and Seymour. A celebrated result in this theory is the following
[71]:

Theorem 9.2. Let G1, G2, . . . be an infinite sequence of graphs. Then there
are i < j such that Gi is a minor of Gj.
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In other words, finite graphs are well-quasi-ordered under the excluded
minor relation. A corollary of this is a vast extension of Theorem 9.1: for
any class G of graphs that is closed under minors, there is a finite set M
of graphs such that a graph G is in G if and only if it does not contain any
graph in M as a minor. In other words, any minor-closed class has a finite
set of minimal excluded minors.

A central result in the theory of graph minors is the Graph Minor Struc-
ture Theorem, which states (very roughly) that for every fixed graph H, any
H-minor-free graph can be obtained by gluing together (in a treelike way)
a sequence of graphs that can (almost) be embedded in surfaces of bounded
genus. This is not a structural description, but can be thought of as an ap-
proximate structure theorem: the class G of H-minor-free graphs is contained
in a class G ′ in which the graphs can all be built in a certain way, and which
does not contain graphs that are much more ‘complex’ than H.

So can anything similar be said for induced subgraphs? The class of finite
graphs is not well-quasi-ordered by the induced subgraph relation: consider,
for example, the class of cycles. So no theorem directly analogous to Theorem
9.2 can hold (see, for example, [61] for further discussion). On the positive
side, there are good structural descriptions of H-free graphs for some very
small H, although precise structural descriptions look intractable for larger
H. For arbitrary H, it is known that every H-free graph can be partitioned
into a bounded number of pieces that are either dense or sparse [31]; and
there is a great deal known about the structure of typical H-free graphs (see,
for instance, [1]). But what is really missing is an analogue for induced
subgraphs of the Graph Minor Structure Theorem.

At the moment, it is not yet clear what such a theorem would say: what
would the ‘basic’ graph classes be? How would they be glued together?
And would the theory describe the whole graph, or just some suitably well-
structured “core”? But such a theorem could draw together a large body
of work, and would have widespread applications. An essential part of this
theory will be understanding the relationship between chromatic number and
induced subgraphs; the size of cliques and indepedendent sets will also be
crucial. The Gyárfás-Sumner Conjecture and the Erdős-Hajnal Conjecture
are major challenges in our understanding of induced subgraphs, and resolv-
ing either of them would be a substantial milestone in the development of a
more general theory.

Acknowledgements We thank Paul Seymour, for helpful comments and
discussion.
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[35] P. Erdős, Graph theory and probability, Canad. J. Math. 11 (1959),
34–38.
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[37] P. Erdős and A. Hajnal, On spanned subgraphs of graphs, Contributions
to Graph Theory and its Applications (Internat. Colloq., Oberhof, 1977)
(German), 80–96, Tech. Hochschule Ilmenau, Ilmenau, 1977.
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[59] K. Kuratowski, Sur le probléme des courbes gauches en topologie, Fund.
Math. bf 15 (1930), 271–283.

[60] A. Liebenau, M. Pilipczuk, P. Seymour and S. Spirkl, Caterpillars in
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[86] K. Wagner, Über eine Eigenschaft der ebenen Komplexe, Math. Ann.
114 (1937), 570–590.

26


