ALTERNATING KNOT DIAGRAMS, EULER CIRCUITS AND THE INTERLACE POLYNOMIAL

P. N. BALISTER, B. BOLLOBÁS, O. M. RIORDAN AND A. D. SCOTT

Abstract

We show that two classical theorems in graph theory and a simple result concerning the interlace polynomial imply that if K is a reduced alternating link diagram with $n \geq 2$ crossings then the determinant of K is at least n. This gives a particularly simple proof of the fact that reduced alternating links are nontrivial.

Tait's conjectures concerning alternating knot diagrams remained open for over 100 years, and were proved only a few years ago by Kauffman [7], Murasugi [9] and Thistlethwaite [11] with the aid of the Jones polynomial. The weak form of one of these conjectures, namely that every knot having a reduced alternating diagram with at least one crossing is nontrivial, was first proved by Bankwitz [5] in 1930; more recently, Menasco and Thistlethwaite [8] and Andersson [2] published simpler proofs. Our aim in this note is to point out that this result on alternating knots is closely related to two fundamental theorems in graph theory and a simple extremal property of the recently introduced interlace polynomial. This relationship gives a very simple combinatorial proof of the assertion that if K is a reduced alternating link diagram with $n \geq 2$ crossings then the determinant det K of K is at least n. Since the determinant is an ambient isotopy invariant of link diagrams, this gives a particularly simple proof of the fact that alternating links are nontrivial.

Let us start by recalling some basic definitions and results concerning directed multigraphs, or digraphs as we shall call them. Let G be a digraph with vertex set $\left\{v_{1}, \ldots, v_{n}\right\}$, with $a_{i j}$ edges from v_{i} to v_{j}. The outdegree of a vertex v_{i} is $d^{+}\left(v_{i}\right)=\sum_{j=1}^{n} a_{i j}$, and the indegree of v_{i} is $d^{-}\left(v_{i}\right)=\sum_{j=1}^{n} a_{j i}$. The adjacency matrix of G is $A=A(G)=\left(a_{i j}\right)$, and its (combinatorial) Laplacian is the matrix $L=L(G)=\left(\ell_{i j}\right)=D-A$, where $D=\left(d_{i j}\right)$ is the diagonal matrix with $d_{i i}=$ $d^{+}\left(v_{i}\right)$. We shall write $\ell_{i}(G)$ for the first cofactor of $L(G)$ belonging to $\ell_{i i}$.

A spanning tree T of G is oriented towards v_{i} if for every edge $\overrightarrow{v_{j} v_{k}} \in E(T)$, the vertex v_{k} is on the (unique) path in T from v_{j} to v_{i}. We shall write $t_{i}(G)$ for the number of spanning trees of G oriented towards v_{i}. In this notation, the classical matrix-tree theorem for digraphs (see, e.g., [6, p. 58, Theorem 14]) states that

$$
\begin{equation*}
t_{i}(G)=\ell_{i}(G) \tag{1}
\end{equation*}
$$

The digraph G is Eulerian if it has an (oriented) Euler circuit, i.e., if it is connected and $d^{+}\left(v_{i}\right)=d^{-}\left(v_{i}\right)$ for every i. Let $s(G)$ be the number of Euler circuits of G. Then the BEST theorem of de Bruijn, van Aardenne-Ehrenfest, Smith and Tutte (see [1], and also [6, p. 19, Theorem 13]) states that

$$
\begin{equation*}
s(G)=t_{i}(G) \prod_{j=1}^{n}\left(d^{+}\left(v_{j}\right)-1\right)! \tag{2}
\end{equation*}
$$

In particular, if G is a 2-in 2-out digraph, i.e., $d^{+}\left(v_{i}\right)=d^{-}\left(v_{i}\right)=2$ for every i, then equations (1) and (2) imply that

$$
\begin{equation*}
s(G)=t_{i}(G)=\ell_{i}(G) \tag{3}
\end{equation*}
$$

for every i.
For an Euler circuit C of G, two vertices v_{i} and v_{j} are interlaced in C if they appear on C in the order $\ldots v_{i} \ldots v_{j} \ldots v_{i} \ldots v_{j} \ldots$ Read and Rosenstiehl [10] defined the interlace graph $H=H(C)$ of C as the graph with vertex set $V(G)=$ $\left\{v_{1}, \ldots, v_{n}\right\}$ and edge set

$$
\left\{v_{i} v_{j}: v_{i} \text { and } v_{j} \text { are interlaced in } C\right\}
$$

The graph H is also said to be an interlace graph of the digraph G. Recently, Arratia, Bollobás and Sorkin [3] defined a one-variable polynomial $q_{H}(x)$ of undirected graphs H, the interlace polynomial, such that if H is an interlace graph of G then $q_{H}(1)=s(G)$. One of the many properties of the interlace polynomial $q_{H}(x)$ proved in [4] is that if H has $n \geq 2$ vertices, none of which is isolated, then $q_{H}(1) \geq n$, with equality iff either $n=4$ and H consists of two independent edges, or $n \geq 2$ and H is a star. First we shall give an immediate consequence of this simple result.

Recall that a vertex v of a graph G is an articulation vertex if G is the union of two nontrivial graphs with only the vertex v in common. In particular, a vertex incident with a loop is an articulation vertex.

Theorem 1. Let G be a connected 2-in 2-out digraph with $n \geq 2$ vertices, whose underlying multigraph has no articulation vertices. Then $s(G) \geq n$, with equality if and only if either $n=4$ and G is the digraph shown in Fig. 1(a), or $n \geq 2$ and G is the alternately oriented double cycle with n vertices, as in Fig. 1(b).

Figure 1. The extremal digraph for $n=4$ and the alternately oriented double 5-cycle.

Proof. Let H be the interlace graph of an Euler circuit C of G. If v is an isolated vertex of H then v is interlaced with no other vertex of G in C. Thus v splits C into two circuits C_{1} and C_{2} so that every vertex $w \neq v$ of G is visited either twice by C_{1}, or twice by C_{2}. This implies that v is an articulation vertex of G. Thus H has no isolated vertices, so $s(G)=q_{H}(1) \geq n$, with equality iff either $H=2 K_{2}$ or H is a star. In the first case, G is the digraph shown in Fig. 1(a). Also, by the definition of the interlace graph, H is a star iff in C one vertex is interlaced with
every vertex, but no other two vertices are interlaced. In the second case G is thus an alternately oriented double cycle.

Let us recall the definition of the Alexander polynomial of a link diagram. First, a strand of a link diagram is an arc of the diagram from an undercrossing to an undercrossing, with only overcrossings in its interior. Thus a link diagram with n crossings has precisely n strands. Let K be a connected oriented link diagram with crossings v_{1}, \ldots, v_{n} and strands $s_{1}, \ldots, s_{n}, n \geq 1$. The Alexander matrix $M_{K}(t)=\left(m_{i j}\right)$ of K is the n by n matrix defined as follows. Suppose that, at a crossing v_{ℓ}, strand s_{i} passes over strands s_{j} and s_{k} in such a way that if s_{i} is rotated counterclockwise to cover s_{j} and s_{k}, then s_{i} is oriented from s_{j} to s_{k}. If s_{i}, s_{j} and s_{k} are distinct then $m_{\ell, i}=1-t, m_{\ell, j}=-1, m_{\ell, k}=t$, and all other entries in row ℓ are 0 ; if two or more of the strands are the same then we add the corresponding entries. The Alexander polynomial $A_{K}(t)$ of K is the determinant of the matrix obtained from $M_{K}(t)$ by deleting the first row and first column. (For $n=0$ and 1 we take $A_{K}(t)=1$.) Also, the determinant of K is $\operatorname{det} K=\left|A_{K}(-1)\right|$. In general, the Alexander polynomial of a link depends on the diagram and on the particular numbering chosen. However, up to a factor $\pm t^{k}$, it is an ambient isotopy invariant, i.e., it is independent of the particular diagram and of the numbering used. In particular, the determinant is an invariant of ambient isotopy. (In fact, the invariance of the determinant is even easier to see than that of the Alexander polynomial.)

A link diagram K defines a 4-regular plane multigraph, the universe of K. A crossing of K is nugatory if the corresponding vertex of the universe is an articulation vertex, and a diagram is reduced if it is connected and has no nugatory crossings.

Theorem 2. Let K be a reduced alternating link diagram with $n \geq 1$ crossings. Then $\operatorname{det} K \geq n$, with equality if and only if either $n=4$ and K is the link diagram with three components shown in Fig. 2(a), or $n \geq 2$ and K is the standard diagram of a $(2, n)$-torus link, as in Fig. 2(b). In particular, if K is a reduced alternating diagram with at least one crossing then K is nontrivial.

Figure 2. Extremal link diagrams.

Proof. Since K is alternating, each strand goes over precisely one crossing. In particular, we may assume that the crossings are v_{1}, \ldots, v_{n}, the strands s_{1}, \ldots, s_{n},
and that strand s_{i} goes over crossing v_{i}. For each strand s_{i} passing over strands s_{j} and s_{k}, send directed edges from v_{i} to v_{j} and v_{k}. In this way we obtain a 2-in 2-out

Figure 3. The 2-in 2-out digraph of an alternating link diagram.
digraph $G=G(K)$ on the universe of K, as in Fig. 3. As K is reduced, $n \geq 2$, and the multigraph underlying G has no articulation vertices. The Laplacian $L(G)$ of G is precisely the Alexander matrix $M_{K}(t)$ of K with $t=-1$. In particular, the Alexander polynomial $A_{K}(t)$ obtained from this representation of K, namely, the determinant of the matrix obtained from $M_{K}(t)$ by deleting its first row and first column, satisfies $A_{K}(-1)=\ell_{1}(G)$. Consequently, by (3) we have

$$
\left|A_{K}(-1)\right|=s(G)
$$

so the result follows from Theorem 1.
Let K be a reduced alternating knot diagram with at least one crossing. As remarked in [2], if p is an odd prime dividing det K, then K can be coloured $\bmod p$. In particular, as the determinant is always odd, if it is at least 2 then an elementary colouring argument shows that the knot is nontrivial, without any reference to the ambient isotopy invariance of the Alexander polynomial. The results in this paper arose from our failed attempts at understanding the proof in [2] that det $K \geq 2$ for a reduced alternating diagram with at least one crossing.

References

[1] van Aardenne-Ehrenfest, T., and de Bruijn, N. G., Circuits and trees in oriented linear graphs, Simon Stevin 28 (1951), 203-217.
[2] Andersson, P., The color invariant for knots and links, Amer. Math. Monthly 102 (1995), 442-448.
[3] Arratia, R., Bollobás, B., and Sorkin, G. B., The interlace polynomial: a new graph polynomial, Extended Abstract, Eleventh Annual ACM-SIAM Symposium on Discrete Algorithms, January, 2000.
[4] Arratia, R., Bollobás, B., and Sorkin, G. B., The interlace polynomial: a new graph polynomial, to appear.
[5] Bankwitz, C., Über die Torsionzahlen der alternierenden Knoten, Math. Annalen 103 (1930), 145-161.
[6] Bollobás, B., Modern Graph Theory, Graduate Texts in Mathematics, vol. 184, Springer, New York, 1998, xiv +394 pp.
[7] Kauffman, L. H., State models and the Jones polynomial, Topology 26 (1987), 395-407.
[8] Menasco, W., and Thistlethwaite, M., A geometric proof that alternating knots are nontrivial, Math. Proc. Cambridge Philos. Soc. 109 (1991), 425-431.
[9] Murasugi, K., Jones polynomials and classical conjectures in knot theory, Topology 26 (1987), 187-194.
[10] Read, R. C., and Rosenstiehl, P., On the Gauss crossing problem, in Combinatorics, vol. II (A. Hajnal and V. T. Sós, eds), Coll. Math. Soc. J. Bolyai, vol. 18, North-Holland, Amsterdam, 1978, pp. 843-876.
[11] Thistlethwaite, M. B., A spanning tree expansion of the Jones polynomial, Topology 26 (1987), 297-309.

Department of Mathematical Sciences, University of Memphis, Memphis, TN 38152, USA,

Trinity College, Cambridge CB2 1TQ, UK,
and Department of Mathematics, University College, London, UK.

