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Abstract. We show that two classical theorems in graph theory and a simple

result concerning the interlace polynomial imply that if K is a reduced alter-
nating link diagram with n ≥ 2 crossings then the determinant of K is at least

n. This gives a particularly simple proof of the fact that reduced alternating

links are nontrivial.

Tait’s conjectures concerning alternating knot diagrams remained open for over
100 years, and were proved only a few years ago by Kauffman [7], Murasugi [9] and
Thistlethwaite [11] with the aid of the Jones polynomial. The weak form of one
of these conjectures, namely that every knot having a reduced alternating diagram
with at least one crossing is nontrivial, was first proved by Bankwitz [5] in 1930;
more recently, Menasco and Thistlethwaite [8] and Andersson [2] published simpler
proofs. Our aim in this note is to point out that this result on alternating knots is
closely related to two fundamental theorems in graph theory and a simple extremal
property of the recently introduced interlace polynomial. This relationship gives a
very simple combinatorial proof of the assertion that if K is a reduced alternating
link diagram with n ≥ 2 crossings then the determinant detK of K is at least n.
Since the determinant is an ambient isotopy invariant of link diagrams, this gives
a particularly simple proof of the fact that alternating links are nontrivial.

Let us start by recalling some basic definitions and results concerning directed
multigraphs, or digraphs as we shall call them. Let G be a digraph with vertex
set {v1, . . . , vn}, with aij edges from vi to vj . The outdegree of a vertex vi is
d+(vi) =

∑n
j=1 aij , and the indegree of vi is d−(vi) =

∑n
j=1 aji. The adjacency

matrix of G is A = A(G) = (aij), and its (combinatorial) Laplacian is the matrix
L = L(G) = (`ij) = D − A, where D = (dij) is the diagonal matrix with dii =
d+(vi). We shall write `i(G) for the first cofactor of L(G) belonging to `ii.

A spanning tree T of G is oriented towards vi if for every edge −−→vjvk ∈ E(T ), the
vertex vk is on the (unique) path in T from vj to vi. We shall write ti(G) for the
number of spanning trees of G oriented towards vi. In this notation, the classical
matrix-tree theorem for digraphs (see, e.g., [6, p. 58, Theorem 14]) states that

ti(G) = `i(G). (1)

The digraph G is Eulerian if it has an (oriented) Euler circuit, i.e., if it is con-
nected and d+(vi) = d−(vi) for every i. Let s(G) be the number of Euler circuits
of G. Then the BEST theorem of de Bruijn, van Aardenne-Ehrenfest, Smith and
Tutte (see [1], and also [6, p. 19, Theorem 13]) states that

s(G) = ti(G)

n∏
j=1

(d+(vj)− 1)!. (2)
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In particular, if G is a 2-in 2-out digraph, i.e., d+(vi) = d−(vi) = 2 for every i, then
equations (1) and (2) imply that

s(G) = ti(G) = `i(G) (3)

for every i.
For an Euler circuit C of G, two vertices vi and vj are interlaced in C if they

appear on C in the order . . . vi . . . vj . . . vi . . . vj . . .. Read and Rosenstiehl [10]
defined the interlace graph H = H(C) of C as the graph with vertex set V (G) =
{v1, . . . , vn} and edge set

{vivj : vi and vj are interlaced inC}.
The graph H is also said to be an interlace graph of the digraph G. Recently, Arra-
tia, Bollobás and Sorkin [3] defined a one-variable polynomial qH(x) of undirected
graphs H, the interlace polynomial, such that if H is an interlace graph of G then
qH(1) = s(G). One of the many properties of the interlace polynomial qH(x) proved
in [4] is that if H has n ≥ 2 vertices, none of which is isolated, then qH(1) ≥ n,
with equality iff either n = 4 and H consists of two independent edges, or n ≥ 2
and H is a star. First we shall give an immediate consequence of this simple result.

Recall that a vertex v of a graph G is an articulation vertex if G is the union
of two nontrivial graphs with only the vertex v in common. In particular, a vertex
incident with a loop is an articulation vertex.

Theorem 1. Let G be a connected 2-in 2-out digraph with n ≥ 2 vertices, whose
underlying multigraph has no articulation vertices. Then s(G) ≥ n, with equality if
and only if either n = 4 and G is the digraph shown in Fig. 1(a), or n ≥ 2 and G
is the alternately oriented double cycle with n vertices, as in Fig. 1(b).

(a) (b)

Figure 1. The extremal digraph for n = 4 and the alternately
oriented double 5-cycle.

Proof. Let H be the interlace graph of an Euler circuit C of G. If v is an isolated
vertex of H then v is interlaced with no other vertex of G in C. Thus v splits C
into two circuits C1 and C2 so that every vertex w 6= v of G is visited either twice
by C1, or twice by C2. This implies that v is an articulation vertex of G. Thus H
has no isolated vertices, so s(G) = qH(1) ≥ n, with equality iff either H = 2K2 or
H is a star. In the first case, G is the digraph shown in Fig. 1(a). Also, by the
definition of the interlace graph, H is a star iff in C one vertex is interlaced with
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every vertex, but no other two vertices are interlaced. In the second case G is thus
an alternately oriented double cycle. �

Let us recall the definition of the Alexander polynomial of a link diagram. First,
a strand of a link diagram is an arc of the diagram from an undercrossing to an
undercrossing, with only overcrossings in its interior. Thus a link diagram with
n crossings has precisely n strands. Let K be a connected oriented link diagram
with crossings v1, . . . , vn and strands s1, . . . , sn, n ≥ 1. The Alexander matrix
MK(t) = (mij) of K is the n by n matrix defined as follows. Suppose that, at
a crossing v`, strand si passes over strands sj and sk in such a way that if si is
rotated counterclockwise to cover sj and sk, then si is oriented from sj to sk. If
si, sj and sk are distinct then m`,i = 1 − t, m`,j = −1, m`,k = t, and all other
entries in row ` are 0; if two or more of the strands are the same then we add the
corresponding entries. The Alexander polynomial AK(t) of K is the determinant of
the matrix obtained from MK(t) by deleting the first row and first column. (For
n = 0 and 1 we take AK(t) = 1.) Also, the determinant of K is detK = |AK(−1)|.
In general, the Alexander polynomial of a link depends on the diagram and on the
particular numbering chosen. However, up to a factor ±tk, it is an ambient isotopy
invariant, i.e., it is independent of the particular diagram and of the numbering
used. In particular, the determinant is an invariant of ambient isotopy. (In fact,
the invariance of the determinant is even easier to see than that of the Alexander
polynomial.)

A link diagram K defines a 4-regular plane multigraph, the universe of K. A
crossing of K is nugatory if the corresponding vertex of the universe is an artic-
ulation vertex, and a diagram is reduced if it is connected and has no nugatory
crossings.

Theorem 2. Let K be a reduced alternating link diagram with n ≥ 1 crossings.
Then detK ≥ n, with equality if and only if either n = 4 and K is the link diagram
with three components shown in Fig. 2(a), or n ≥ 2 and K is the standard diagram
of a (2, n)-torus link, as in Fig. 2(b). In particular, if K is a reduced alternating
diagram with at least one crossing then K is nontrivial.

(a) (b)

Figure 2. Extremal link diagrams.

Proof. Since K is alternating, each strand goes over precisely one crossing. In
particular, we may assume that the crossings are v1, . . . , vn, the strands s1, . . . , sn,



4 P. N. BALISTER, B. BOLLOBÁS, O. M. RIORDAN AND A. D. SCOTT

and that strand si goes over crossing vi. For each strand si passing over strands sj
and sk, send directed edges from vi to vj and vk. In this way we obtain a 2-in 2-out

Figure 3. The 2-in 2-out digraph of an alternating link diagram.

digraph G = G(K) on the universe of K, as in Fig. 3. As K is reduced, n ≥ 2, and
the multigraph underlying G has no articulation vertices. The Laplacian L(G) of
G is precisely the Alexander matrix MK(t) of K with t = −1. In particular, the
Alexander polynomial AK(t) obtained from this representation of K, namely, the
determinant of the matrix obtained from MK(t) by deleting its first row and first
column, satisfies AK(−1) = `1(G). Consequently, by (3) we have

|AK(−1)| = s(G),

so the result follows from Theorem 1. �

Let K be a reduced alternating knot diagram with at least one crossing. As
remarked in [2], if p is an odd prime dividing detK, then K can be coloured mod p.
In particular, as the determinant is always odd, if it is at least 2 then an elementary
colouring argument shows that the knot is nontrivial, without any reference to the
ambient isotopy invariance of the Alexander polynomial. The results in this paper
arose from our failed attempts at understanding the proof in [2] that detK ≥ 2 for
a reduced alternating diagram with at least one crossing.
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