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Abstract

Let G be a graph, and let fG be the sum of (−1)|A|, over all stable sets A. If G is a cycle with
length divisible by three, then fG = ±2. Motivated by topological considerations, G. Kalai and R.
Meshulam [8] made the conjecture that, if no induced cycle of a graph G has length divisible by
three, then |fG| ≤ 1. We prove this conjecture.



1 Introduction

In the late 1990’s, G. Kalai and R. Meshulam [8] made an intriguing sequence of conjectures about
the connections between induced cycle lengths, chromatic number, and the number of stable sets of
different parities in a graph.

A graph is ternary if no induced cycle has length a multiple of three; thus, ternary graphs have
no triangles. (All graphs in this paper are finite and have no loops or parallel edges.) First, Kalai
and Meshulam conjectured:

1.1 There exists c such that every ternary graph is c-colourable.

This was proved by Bonamy, Charbit and Thomassé [1], for some large constant c (although it
may be that all ternary graphs are 3-colourable, and this remains open). A much stronger result was
later proved by two of us [9]: that for all integers p, q ≥ 0, every graph with bounded clique number
and with no induced cycle of length p modulo q has bounded chromatic number.

Second, Kalai and Meshulam conjectured:

1.2 For every ternary graph, the number of stable sets with even cardinality and the number with
odd cardinality differ by at most one.

This has remained open, and we prove it in this paper.
Two further conjectures of Kalai and Meshulam were proved in [9]. The stronger of these conjec-

tures stated that for all k there exists c, such that, if for every induced subgraph of G the number of
even stable sets and the number of odd ones differ by at most k, then G is c-colourable. This follows
from a generalization of the strengthening of 1.1 mentioned above.

A final Kalai-Meshulam conjecture concerns Betti numbers and ternary graphs. The independence
complex I(G) of a graph G is the simplicial complex whose faces are the stable sets of vertices of G.
Let bi denote the ith Betti number of I(G) and let b(G) denote the sum of the Betti numbers.

1.3 Conjecture: A graph G is ternary if and only if |b(H)| ≤ 1 for every induced subgraph H.

Let fG(∅) denote the number of even stable sets in G minus the number of odd ones. If |b(H)| ≤ 1
for every induced subgraph H, then G has no induced cycle of length divisible by 3, since b(H) = 2
for every cycle H of length divisible by three. For the converse, suppose G has no such induced cycle.
Then by 1.2, |fG(∅)| ≤ 1, but we need to prove that b(G) ≤ 1. Now fG(∅) is the Euler characteristic
of I(G), and in particular there is a connection between fG(∅) and b(G). It is a basic theorem from
homology theory that the Euler characteristic of I(G) is the alternating sum of the Betti numbers
of I(G) (see [6]). It follows that |fG(∅)| ≤ b(G); but this inequality is in the wrong direction for us,
and the conjecture remains open.

We mention a few other related results:

• Chen and Saito [3] proved that every non-null graph with no cycle of length divisible by three
(not just induced cycles) has a vertex of degree at most two (and so all such graphs are 3-
colourable).

• G. Gauthier [5] found an explicit construction for all graphs with no cycle of length divisible
by three.
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• D. Král’ asked (unpublished): is it true that in every ternary graph with an edge, there is an
edge e such that the graph obtained by deleting e is also ternary? This would have implied that
all ternary graphs are 3-colourable, but has very recently been disproved; a counterexample
was found by M. Wrochna. (Take the disjoint union of a 5-cycle and a 10-cycle, and join each
vertex of the 5-cycle to two opposite vertices of the 10-cycle, in order.)

• The difference between the numbers of odd and even stable sets has also appeared in statistical
physics. Let us define the polynomial

IG(z) =
∑
I

z|I|,

where the sum is over stable sets I in G. This polynomial is known in combinatorics as the
independent set polynomial and statistical physics as the partition function of the hard-core
lattice gas (see, for instance, [10]). We see that IG(−1) is the number of even stable sets minus
the number of odd stable sets. The question of when |IG(−1)| ≤ 1 has been the focus of
considerable study, particularly on the square lattice (see [2, 4, 7]).

If G is a graph, and X,Y are disjoint subsets of V (G), let fG(X,Y ) be the sum of (−1)|A|,
summed over all stable sets A in G that include X and are disjoint from Y . Our main theorem
states:

1.4 If G is ternary then |fG(∅, ∅)| ≤ 1.

The proof of 1.4 is by induction on |V (G)|, and it follows easily that if G is a minimum coun-
terexample then fG(∅, ∅) = ±2. It is very helpful to know the value of fG(∅, ∅), and so the proof
breaks into two cases, depending whether this value is 2 or −2. The proof for the second is obtained
from the first proof by negating fG throughout, and we would like to say “we may assume that
fG(∅, ∅) = 2 without loss of generality”; but this gives us a difficulty, because negating fG does not
give a function that equals fH for some graph H. We overcome this as follows.

Let G be a graph, and with fG as before, let us say the functions fG and −fG are counters on
G. We will prove that if G is ternary and g is a counter on G, then |g(∅, ∅)| ≤ 1. Now we are free to
replace g by its negative if that is convenient.

We will frequently need to talk about g(X,Y ) when Y = ∅; so often that it is worthwhile to make
a special convention for it. We define g(X) = g(X, ∅) (and the same for fG).

If g is a counter on G, we say g is a good counter if for all disjoint X,Y ⊆ V (G) with X ∪ Y 6= ∅:

• |g(X,Y )| ≤ 1; and

• |g(X ∪ {u}, Y )− g(X ∪ {v}, Y )| ≤ 1 for all u, v ∈ V (G) \ (X ∪ Y ).

In section 3, we show that:

1.5 If g is a good counter on a graph G, then |g({u})− g({v})| ≤ 1 for all u, v ∈ V (G).

Then in section 4, we show that:

1.6 If g is a good counter on a ternary graph G, then |g(∅)| ≤ 1.
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Proof of 1.4, assuming 1.5 and 1.6. We prove by induction on |V (G)| that for every ternary
graph G, if g is a counter on G, then |g({u})− g({v})| ≤ 1 for all u, v ∈ V (G), and |g(∅)| ≤ 1. Thus
we may assume that these two statements hold for every proper induced subgraph of G. Now g is a
counter on G, and so g = ±fG. If the result holds for −g then it holds for g; so we may assume that
g = fG, by replacing g by −g if necessary.

(1) If X,Y ⊆ V (G) are disjoint, with X ∪ Y 6= ∅, then |fG(X,Y )| ≤ 1.

We may assume that X is a stable set. Let H be the graph obtained from G by deleting X ∪ Y and
deleting all vertices with a neighbour in X. Thus, if A is a stable set of G including X and disjoint
from Y , then A \X is a stable set of H; and conversely, if B is a stable set of H, then X ∪ B is a
stable set of G including X and disjoint from Y . In particular, fH(∅) = (−1)|X|fG(X,Y ); but from
the inductive hypothesis, |fH(∅)| ≤ 1, and so |fG(X,Y )| ≤ 1. This proves (1).

(2) If X,Y ⊆ V (G) are disjoint, with X ∪ Y 6= ∅, and u, v ∈ V (G) \ (X ∪ Y ), then

|fG(X ∪ {u}, Y )− fG(X ∪ {v}, Y )| ≤ 1.

We may assume that X is stable. Suppose first that u has a neighbour in X. Then fG(X∪{u}, Y ) = 0
(because X ∪{u} is not a subset of any stable set). Also |fG(X ∪{v}, Y )| ≤ 1, by (1), and the claim
follows. So we may assume that u and similarly v has no neighbour in X; and so u, v ∈ V (H), if we
define H as before. Thus fG(X ∪ {u}, Y ) = (−1)|X|fH({u}), and fG(X ∪ {v}, Y ) = (−1)|X|fH({v});
and from the inductive hypothesis, |fH({u})−fH({v})| ≤ 1. It follows that |fG(X∪{u}, Y )−fG(X∪
{v}, Y )| ≤ 1. This proves (2).

From (1) and (2), g is a good counter on G. From 1.6 and 1.5, it follows that |g({u})−g({v})| ≤ 1
for all u, v ∈ V (G), and |g(∅)| ≤ 1. This completes the inductive proof; and 1.4 follows.

2 Some lemmas

Here are a few useful lemmas. First, we observe:

2.1 Let g be a counter on G, let X,Y ⊆ V (G) be disjoint, and let Y ′ ⊆ Y . Then

g(X,Y ) =
∑

Z⊆Y \Y ′
(−1)|Z|g(X ∪ Z, Y ′).

Proof. We may assume that g = fG, by replacing g by −g if necessary. If A is a stable set of G
including X and disjoint from Y ′, define nA to be∑

Z⊆A∩Y
(−1)|A|−|Z|.

Thus nA = 0 unless A ∩ Y = ∅, in which case nA = (−1)|A|. But
∑

Z⊆Y \Y ′(−1)|Z|fG(X ∪ Z, Y ′)

is the sum of nA, over all stable sets A of G including X and disjoint from Y ′. It follows that∑
Z⊆Y \Y ′(−1)|Z|fG(X ∪Z, Y ′) is the sum of (−1)|A| over all stable sets of G that include X and are

disjoint from Y . But this sum equals fG(X,Y ). This proves 2.1.
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In evaluating an expression given by 2.1, it often happens that for some number `, g(X ∪Z) = `
for “most” subsets Z ⊆ Y , and if so the following is helpful:

2.2 Let g be a counter on G, let X,Y ⊆ V (G) be disjoint, with Y 6= ∅, and let ` be some number.
Then

g(X,Y ) =
∑
Z⊆Y

(−1)|Z|(g(X ∪ Z)− `).

Proof. By 2.1,

g(X,Y ) =
∑
Z⊆Y

(−1)|Z|g(X ∪ Z),

and
∑

Z⊆Y (−1)|Z|(−`) = 0 since Y 6= ∅. This proves 2.2.

2.3 Let g be a good counter on G, let X,Y ⊆ V (G) be disjoint, and let v ∈ V (G) \ (X ∪ Y ). Then
|g(X,Y )− g(X ∪ {v}, Y )| ≤ 1 and |g(X,Y )− g(X,Y ∪ {v})| ≤ 1.

Proof. We may assume that g = fG. Every stable set including X and disjoint from Y either
includes X ∪ {v} or is disjoint from Y ∪ {v}, and not both. Consequently

g(X,Y ) = g(X ∪ {v}, Y ) + g(X,Y ∪ {v}).

But |g(Y ∪ {v})| ≤ 1 since g is a good counter, and therefore |g(X,Y )− g(X ∪ {v}, Y )| ≤ 1; and the
second claim follows similarly.

For X ⊆ V (G), let N [X] denote the set of vertices in G that either belong to X or have a
neighbour in X. We observe that

2.4 Let g be a counter on G. If X,Y ⊆ V (G) are disjoint with g(X,Y ) 6= 0, and v ∈ V (G) \
(N [X] ∪ Y ), then v has a neighbour in V (G) \ (N [X] ∪ Y ).

Proof. We may assume that g = fG, by replacing g by −g if necessary. The stable sets of G that
include X and are disjoint from Y are obtained from the stable sets of G \ (N [X]∪Y ) (= H say) by
adding the set X to each such stable set; and so fH(∅) 6= 0. But fK(∅) = 0 for every graph K with
a vertex of degree zero, and so H has no vertex of degree zero. The result follows.

2.5 Let g be a good counter on G, let X,Y ⊆ V (G) be disjoint, and let u, v ∈ V (G) \ (X ∪ Y ). If
g(X,Y ) = g(X ∪ {u, v}, Y ) 6= 0, then g(X,Y ) = g(X ∪ {v}, Y ).

Proof. We proceed by induction on |V (G) \ (X ∪ Y )|. By replacing g by −g if necessary we may
assume that g(X,Y ) > 0. For all disjoint A,B ⊆ V (G)\(X∪Y ), let h(A,B) = g(X∪A, Y ∪B) (and
h(A) means h(A, ∅)). Since g is a good counter it follows that |h({u, v})| ≤ 1, and so h({u, v}) =
h(∅) = 1. We suppose for a contradiction that h({v}) 6= 1. Hence u 6= v, and X ∪ {u, v} is stable.
By 2.3, it follows that h({v}) = 0. Since |h(∅, {u, v})| ≤ 1, 2.1 implies that

h(∅)− h({u})− h({v}) + h({u, v}) ≤ 1.
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Consequently h({u}) ≥ 1, and so h({u}) = 1. From 2.4, v has a neighbour w.
Now h(∅, {v}) = h(∅) − h({v}) = 1, and h({u}, {v}) = h({u}) − h({u, v}) = 0, and so from

the inductive hypothesis, h({u,w}, {v}) 6= 1. Consequently h({u,w}) − h({u, v, w}) 6= 1, and since
h({u, v, w}) = 0, it follows that h({u,w}) 6= 1. By 2.3, h({u,w}) = 0. Thus h({u}, {w}) = 1 by 2.1,
since h({u}) = 1. Since h({v}, {w}) = 0 and h({u, v}, {w}) = 1 by 2.1 (the first since h({v, w}) = 0
and h({v}) = 0, and the second since h({u, v, w}) = 0 and h({u, v}) = 1), it follows from the
inductive hypothesis that h(∅, {w}) 6= 1, and so h(∅, {w}) = 0 by 2.3. Hence h(∅) − h({w}) = 0 by
2.1, and so h({w}) = 1. But then h({w}, {u}) = 1, because h({u,w}) = 0; and h({v}, {u}) = −1,
since h({v}) = 0 and h({u, v}) = 1. This contradicts that g is good, and so proves 2.5.

The next result has been independently discovered several times.

2.6 Let G be a nonnull graph and let A1, A2, A3 be the classes of a 3-colouring of G. Suppose that
for i = 1, 2, 3, every vertex in Ai has a neighbour in Ai+1, where A4 means A1. Then G is not
ternary.

Proof. Throughout we read subscripts modulo 3. For i = 1, 2, 3, direct each edge of G between
Ai and Ai+1 from Ai to Ai+1. Since each vertex has positive outdegree, the digraph we form has a
directed cycle, and hence an induced directed cycle. But such a cycle is an induced cycle of G, and
has length a multiple of three.

2.7 Let H be a set of subsets of some set V , all of the same cardinality k; and suppose that for
every subset X ⊆ V with |X| = k + 1, if X includes a member of H then it includes at least two
such members. Then there is a partition P1, . . . , Pn of V with P1, . . . , Pn all nonempty, such that
for all distinct u, v ∈ V , either there exists i ∈ {1, . . . , n} with u, v ∈ Pi, or there exists B ∈ H with
u, v ∈ B, and not both.

Proof. Say two vertices u, v ∈ V are equivalent if either u = v, or:

• there is no member of H containing both u, v; and

• for each C ⊆ V \ {u, v}, C ∪ {u} ∈ H if and only if C ∪ {v} ∈ H.

We claim that this is an equivalence relation. To see this, we may assume that u, v, w ∈ V (G) are
distinct, and v is equivalent to both u and w; and we must show that u,w are equivalent. If there
exists B ∈ H containing u,w, then v /∈ B (since u, v are equivalent) and so (B \ {u}) ∪ {v} ∈ H
(since (B \ {u}) ∪ {u} ∈ H and u, v are equivalent), and so this is a member of H containing v, w,
a contradiction. Thus there is no such B. Let C ⊆ V \ {u,w}, with C ∪ {u} ∈ H. Consequently
v /∈ C, and C ∪ {v} ∈ H (because u, v are equivalent), and consequently C ∪ {w} ∈ H (since v, w
are equivalent). Similarly C ∪ {u} ∈ H if and only if C ∪ {w} ∈ H. This proves that equivalence is
indeed an equivalence relation.

We claim that for all distinct u, v ∈ V , if they do not belong to the same equivalence class then
some member of H contains both u, v. To see this, since u, v are not equivalent, if no member
of H contains both u and v, then we may assume (exchanging u, v if necessary) that there exists
C ⊆ V \ {u, v} such that C ∪ {u} ∈ H and C ∪ {v} /∈ H. Thus |C| = k − 1, and since C ∪ {u, v}
includes a member of H, by hypothesis it includes at least two members. But since no member of H
contains both u, v, and C ∪ {v} /∈ H, this is impossible. This proves 2.7.
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3 The value on distinct vertices

In this section we prove 1.5. Thus, throughout this section, let g be a good counter on a graph G.
For i = −1, 0, 1 let Ai be the set of vertices v of G such that g({v}) = i. Thus A−1, A0, A1 are
disjoint and have union V (G). We need to show that one of A−1, A1 is empty, and so we assume for
a contradiction that they are both nonempty. We will prove a series of statements about G, g. We
begin with:

3.1 The following hold:

• g(∅) = 0;

• G is connected;

• A1, A−1 are both stable sets;

• there is not both an edge between A1, A0 and an edge between A−1, A0.

Proof. Since there exists v ∈ A1, and hence with g({v}) = 1, we deduce from 2.3 that g(∅) ≥ 0,
and similarly g(∅) ≤ 0. This proves the first statement.

For the second statement, we may assume (replacing g by −g if necessary) that g = fG. By
assumption, there exist ui ∈ V (G) with g({ui}) = i, for i ∈ {1,−1}. Suppose that G is not
connected, and let G1 be a component of G containing u1, and let G2 be obtained from G by
deleting G1. Write gi for fGi(i = 1, 2). Thus for disjoint X,Y ⊆ V (G),

g(X,Y ) = g1(X ∩ V (G1), Y ∩ V (G1))g2(X ∩ V (G2), Y ∩ V (G2)),

and in particular, g1(X) = g(X,V (G2)) for X ⊆ V (G1), and g2(X) = g(X,V (G1)) for X ⊆ V (G2).
Since 0 = g(∅) = g1(∅)g2(∅), one of g1(∅), g2(∅) is zero.

Since g({u1}) = g1({u1})g2(∅), it follows that g2(∅) 6= 0, and so g1(∅) = 0. In particular, G1

is the unique component C of G such that fC(∅) = 0, and so u−1 ∈ V (G1). Thus g({u−1}) =
g1({u−1})g2(∅), and so one of g1({u1}), g1({u−1}) equals 1 and the other equals −1, contradicting
that g is good. This proves the second statement.

For the third, suppose that u, v ∈ A1 are adjacent. By 2.1,

g(∅, {u, v}) = g(∅)− g({u})− g({v}) + g({u, v});

but the last term is zero since u, v are adjacent, and since u, v ∈ A1 and g(∅) = 0, we deduce that
g(∅, {u, v}) = −2, contradicting that g is good.

For the fourth statement, suppose that u1 ∈ A1 is adjacent to v1 ∈ A0, and u−1 ∈ A−1 is
adjacent to v−1 ∈ A0. Suppose first that g({v1, u−1}) = 0. Then by two applications of 2.1,
g({u−1}, {v1}) = g({u−1}) − g({u−1, v1}) = −1, and g({u1}, {v1}) = g({u1}) − g({u1, v1}) = 1
(since u1, v1 are adjacent), contradicting that g is good. This proves that g({v1, u−1}) 6= 0, and so
g({v1, u−1}) = −1 by 2.3. Similarly g({v−1, u1}) = 1 (and in particular, v1 6= v−1). But by 2.1,

g({v1}, {u1, u−1}) = g({v1})− g({v1, u1})− g({v1, u−1}) + g({v1, u1, u−1});

and since g({v1}) = 0 and g({v1, u1}) = g({v1, u1, u−1}) = 0 (since u1, v1 are adjacent) it follows
that g({v1}, {u1, u−1}) = 1. Similarly g({v−1}, {u1, u−1}) = −1, contradicting that g is good. This
proves 3.1.
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In the same notation, because of the third statement of 3.1, we may assume (replacing g by −g
if necessary) that there are no edges between A−1 and A0. Let B1 be the set of vertices v ∈ A0 such
that g({u, v}) = 1 for each u ∈ A1 and g({u, v}) = 0 for each u ∈ A−1; and let B−1 be the set of
vertices v ∈ A0 such that g({u, v}) = 0 for each u ∈ A1 and g({u, v}) = −1 for each u ∈ A−1.

3.2 Every vertex in A0 belongs to one of B1, B−1.

Proof. Let v ∈ A0, and for i ∈ {1,−1} let ui ∈ Ai. Not both g({v, u1}) = 1 and g({v, u−1)) = −1,
since g is good. Suppose that neither of these holds. Then g({v, u1}) = 0 and g({v, u−1)) = 0, by
2.3. Then by two applications of 2.1, g({u1}, {v}) = g({u1}) − g({u1, v}) = 1, and g({u−1}, {v}) =
g({u−1})− g({u−1, v}) = −1, contradicting that g is good. It follows that either g({v, u1}) = 1 and
g({v, u−1}) = 0, or g({v, u1}) = 0 and g({v, u−1}) = −1. Since this holds for all u1, u−1, it follows
that v ∈ B1 ∪B−1. This proves 3.2.

3.3 A0 is empty.

Proof. Suppose that A0 6= ∅. Since G is conected by 3.1, and by assumption there are no edges
between A−1 and A0, it follows that there is an edge between A0 and A1, say between b ∈ A0 and
a1 ∈ A1. Consequently g({a1, b}) = 0, and so b /∈ B1 from the definition of B1; and so b ∈ B−1
by 3.2. Choose a−1 ∈ A−1. By three applications of 2.1, g(∅, {a1}) = g(∅) − g({a1}) = −1,
g({b}, {a1}) = g({b}) − g({b, a1}) = 0, and g({b, a−1}, {a1}) = g({b, a−1}) − g({b, a1, a−1}) = −1,
contrary to 2.5. Thus A0 = ∅. This proves 3.3.

Now we prove 1.5, which we restate:

3.4 If g is a good counter on a graph G, then |g({u})− g({v})| ≤ 1 for all u, v ∈ V (G).

Proof. As all through this section, we assume that G, g is a counterexample. In the previous nota-
tion, 3.3 and 3.1 imply that G is bipartite, and (A1, A−1) is a bipartition. We recall that g(∅) = 0.

(1) Every vertex of G has degree at least two.

Since G is connected by 3.1, all vertices have degree at least one; suppose that v ∈ A1 has only
one neighbour u ∈ A−1 say. Since G is connected and |V (G)| ≥ 3, u has another neighbour v′ ∈ A1.
Now g({v′}) = 1, and since v ∈ V (G)\N [{v′}], 2.4 implies that v has a neighbour in V (G)\N [{v′}],
a contradiction. This proves (1).

(2) There is a subset X ⊆ A1 with g(X) = 0.

Choose v ∈ A1, and let X = A1 \ {v}. Since v ∈ V (G) \ N [X], and v has no neighbour in
V (G) \N [X] (by (1)), 2.4 implies that g(X) = 0. This proves (2).

For i ∈ {1,−1} let ki > 0 be minimum such that some subset B of Ai with cardinality ki satisfies
g(B) 6= i. Thus ki ≥ 2; and by 2.3, g(B) = 0 or i for each subset B ⊆ Ai with |B| = ki.
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(3) For i ∈ {1,−1}, ki is odd.

Choose B ⊆ Ai with cardinality ki such that g(B) 6= i, and hence g(B) = 0. Since g is good,
|g(∅, B)| ≤ 1; and so by 2.2, ∣∣∣∣∣∣

∑
Z⊆B

(−1)|Z|(g(Z)− i)

∣∣∣∣∣∣ ≤ 1.

But g(Z) = i for all Z ⊆ B with Z 6= B, ∅, and g(Z) = 0 if Z = B, ∅; and consequently | − i −
i(−1)ki | ≤ 1, and so ki is odd. This proves (3).

Let Hi be the set of all subsets B of Ai such that |B| = ki and g(B) = 0.

(4) For every subset X of Ai with cardinality ki + 1, if X includes a member of Hi then it in-
cludes at least two such members.

Let X = {v0, . . . , vki}, and suppose that {v1, . . . , vki} is the only member of Hi included in X.
Then g(X) 6= i, by 2.5, and g(X) 6= −i by 2.3; so g(X) = 0. Let Y = {v2, . . . , vki}. By 2.2 and (3):

g(∅, Y ) =
∑
Z⊆Y

(−1)|Z|(g(Z)− i) = −i,

g({v0}, Y ) =
∑
Z⊆Y

(−1)|Z|(g(Z ∪ {v0})− i) = 0,

g({v0, v1}, Y ) =
∑
Z⊆Y

(−1)|Z|(g(Z ∪ {v0, v1})− i) = −(−1)|Y |i = −i,

contrary to 2.5. This proves (4).

(5) There exist Bi ∈ Hi for i ∈ {1,−1}, such that there are two edges of G between B1 and B−1 with
no end in common.

By (4) and 2.7, there is a partition P1, . . . , Pm of A1 such that every two vertices in A1 either
belong to the same Pi or to some member of H1, and not both; and let Q1, . . . , Qn ⊆ A−1 be defined
analogously. Say Pi, Qj are adjacent if there is an edge in G between a vertex in Pi and a vertex in
Qj . Since m,n ≥ 2 and each Pi is adjacent to some Qj and vice versa, there are distinct P1, P2 (say)
and distinct Q1, Q2 such that P1 is adjacent to Q1 and P2 to Q2. Choose pi ∈ Pi and qi ∈ Qi(i = 1, 2)
such that p1q1 and p2q2 are edges of G. Since p1, p2 do not belong to the same one of P1, . . . , Pm,
there exists B1 ∈ H1 containing p1, p2; and similarly there exists B−1 ∈ H−1 containing q1, q2. This
proves (5).

For i ∈ {1,−1} choose Bi as in (5).

(6) For i ∈ {1,−1}, let Xi ⊆ Bi with ∅ 6= Xi 6= Bi. Then g(X1 ∪X−1) = 0.

Suppose not, and for i ∈ {1,−1} choose Xi ⊆ Bi with ∅ 6= Xi 6= Bi, with X1 ∪ X−1 minimal
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such that g(X1∪X−1) 6= 0. We may assume that g(X1∪X−1) = 1, by replacing g by −g if necessary.
By 2.1 and the minimality of X1 ∪X−1,

g(X1, X−1) = g(X1) + (−1)|X−1|g(X1 ∪X−1) = 1 + (−1)|X−1|,

and so |X−1| is odd; and similarly |X1| is even. Choose u ∈ X1 and v ∈ X−1. Then by three
applications of 2.1,

g(X1 \ {u}, X−1 \ {v}) = g(X1 \ {u}) = 1,

g((X1 ∪ {v}) \ {u}, X−1 \ {v}) = 0,

g(X1 ∪ {v}, X−1 \ {v}) = (−1)|X−1\{v}|g(X1 ∪X−1) = 1,

contrary to 2.5. This proves (6).

Choose C1 ⊆ B1 maximal such that either C1 = ∅ or g(C1 ∪ B−1) 6= 0, and choose C−1 ⊆ B−1
maximal such that either C−1 = ∅ or g(C−1 ∪ B1) 6= 0. It follows that |Ci| ≤ ki − 2 for i ∈ {1,−1},
since there is a 2-edge matching between B1, B−1. For i ∈ {1,−1} let Di = Bi \ Ci, and let
C = C1 ∪ C−1 and D = D1 ∪D−1.

(7) If C1 6= ∅ then g(C1 ∪B−1) = 1; and if C−1 6= ∅ then g(C−1 ∪B1) = −1.

Since g(C1, B−1) 6= 2 (because g is good), and g(C1 ∪ Z) = 0 for all Z ⊆ B−1 with Z 6= ∅, B−1
by (6), 2.1 implies that g(C1) + (−1)|k−1|g(C1 ∪ B−1) ≤ 1. But g(C1) = 1 (since C1 6= ∅), and k1 is
odd, and so g(C1 ∪B−1) = 1. Similarly if C−1 6= ∅ then g(C−1 ∪B1) = −1. This proves (7).

(8) One of C1, C−1 is empty.

Suppose they are both nonempty. By 2.1,

g(C,D) =
∑
Z⊆D

(−1)|Z|g(C ∪ Z).

But for Z ⊆ D, g(C∪Z) 6= 0 only if Z includes one of D1, D−1 by (6), and only if one of Z∩B1, Z∩B−1
is empty (from the definition of C1, C−1); that is, only if Z is one of D1, D−1. These two sets are
distinct, since they are nonempty. Consequently

g(C,D) = (−1)|D1|g(B1 ∪ C−1) + (−1)|D−1|g(B−1 ∪ C1)

and so by (7), g(C,D) = (−1)|D1|+1 + (−1)|D−1|. Since |g(C,D)| ≤ 1 (because g is good) it follows
that |D1|, |D−1| have the same parity.

Choose u ∈ D1 and v ∈ D−1. Then by 2.1,

g(C ∪ {u}, D \ {u, v}) =
∑

Z⊆D\{u,v}

(−1)|Z|g(C ∪ {u} ∪ Z).

But for Z ⊆ D\{u, v}, g(C∪{u}∪Z) 6= 0 only if Z = D1 \{u} (by (6) and the definition of C1, C−1)
and so

g(C ∪ {u}, D \ {u, v}) = (−1)|D1\{u}|g(B1 ∪ C−1) = (−1)|D1|.
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Similarly
g(C ∪ {v}, D \ {u, v}) = (−1)|D2\{v}|g(B−1 ∪ C1) = (−1)|D−1|+1.

Since |D1|, |D−1| have the same parity, one of g(C ∪ {u}, D \ {u, v}), g(C ∪ {v}, D \ {u, v}) equals 1
and the other equals −1, contradicting that g is good. This proves (8).

From (8) we may assume that C−1 = ∅ (replacing g by −g if necessary).

(9) |D1| is odd.

To prove this, we may assume that C1 6= ∅, since |B1| is odd. By 2.1,

g(C1, B−1 ∪D1) =
∑

Z⊆B−1∪D1

(−1)|Z|g(C1 ∪ Z).

But, by (6), for Z ⊆ B−1∪D1, g(C1∪Z) is nonzero only if Z ⊆ D1 or Z = B−1; and then it has value 1
if Z ⊆ D1 and Z 6= D1; 0 if Z = D1; and 1 if Z = B−1. Thus g(C1, B−1∪D1) = (−1)|D1|+1+(−1)|B−1|

and since |B−1| is odd by (5), and |g(C1, B−1 ∪D1)| ≤ 1 since g is good, it follows that |D1| is odd.
This proves (9).

Now |C1| ≤ |B1| − 2 as we saw. Choose u ∈ D1 and v ∈ B−1, and let W = (D1 ∪ B−1) \ {u, v}.
By 2.1,

g(C1 ∪ {u},W ) =
∑
Z⊆W

(−1)|Z|g(C1 ∪ {u} ∪ Z).

But for Z ⊆ W , g(C1 ∪ {u} ∪ Z) is nonzero only if Z ⊆ D1, and in that case it has value 1 if
Z 6= D1 \ {u}, and 0 if Z = D1 \ {u}. Since |D1| ≥ 2, it follows that

g(C1 ∪ {u},W ) = (−1)|D1| = −1

since |D1| is odd by (9). On the other hand, by 2.1,

g(C1 ∪ {v},W ) =
∑
Z⊆W

(−1)|Z|g(C1 ∪ {v} ∪ Z).

We claim that g(C1 ∪ {v},W ) = 1. To see this there are two cases, depending whether C1 6= ∅ or
not. First, suppose that C1 6= ∅. Then for Z ⊆W , g(C1 ∪{v}∪Z) is nonzero only if Z = B−1 \ {v},
by (6) and the maximality of C1; so

g(C1 ∪ {v},W ) = (−1)|B1|−1g(C1 ∪B−1) = 1,

by (7) and (3), contradicting that g is good. Now suppose that C1 = ∅. Then, again by (6), for
Z ⊆ W , g(C1 ∪ {v} ∪ Z) is nonzero only if Z $ B−1 \ {v}, and in that case it has value −1.
Consequently

g(C1 ∪ {v},W ) = (−1)|B−1\{v}| = 1,

again contradicting that g is good. This proves 3.4.
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4 The value on the null set

In this section we prove 1.6, thereby completing the inductive proof of 1.4. We need to show that if
g is a good counter on a ternary graph G, then |g(∅)| ≤ 1. The proof is divided into several steps.
We may assume the statement is false, for a contradiction; and by replacing g by −g if necessary, we
may assume that g(∅) ≥ 2. Throughout this section, G is a counterexample to 1.6, and g is a good
counter on G, with g(∅) ≥ 2.

4.1 The following hold:

• g(∅) = 2;

• g({v}) = 1 for every vertex v ∈ V (G); and

• G is connected.

Proof. Let v ∈ V (G); since g is good, it follows that |g({v})| ≤ 1, and so 2.3 implies that g({v}) = 1
and g(∅) = 2. This proves the first two statements.

Suppose that G is not connected, let G1 be a component of G and let G2 be obtained from G
by deleting V (G1). Since fG1(∅) = ±g(∅, V (G2)), and g is good, it follows that |fG1(∅)| ≤ 1, and
similarly |fG2(∅)| ≤ 1. But

g(∅) = ±fG(∅) = ±fG1(∅)fG2(∅),

a contradiction. This proves the third statement, and so proves 4.1.

In particular, if u, v ∈ V (G) are distinct, then since g({u}) = 1 by the second statement of 4.1,
it follows that g({u, v}) ∈ {0, 1} by 2.3. Let H be the graph with vertex set V (G) in which distinct
u, v are adjacent if g({u, v}) = 1.

4.2 Every component of H is a complete graph, and H has at least two and at most four components.

Proof. Suppose the first statement is false. Then there are three distinct vertices u, v, w ∈ V (H)
such that uv, vw ∈ E(H) and uw /∈ E(H). From 2.3, g({u,w}) = 0. Now

g(∅, {w}) = g(∅)− g({w}) = 1,

g({v}, {w}) = g({v})− g({v, w}) = 0

g({u, v}, {w}) = g({u, v})− g({u, v, w});

and by 2.5, g({u, v}, {w}) 6= 1. Consequently g({u, v, w}) = 1. But then g({w}) = 1, g({u,w}) = 0
and g({u, v, w}) = 1, contrary to 2.5. This proves that every component of H is a complete graph.

Since each edge of H joins two vertices that are nonadjacent in G, it follows that H has at least
two components. Suppose it has at least five. Since G is connected, there is a vertex of H that
has neighbours (in G) in at least two components of H. Thus we can choose v1, . . . , v5 ∈ V (G),
all in different components of H, where v1 is adjacent (in G) to v2, v3. Let a, b, c ∈ {v1, . . . , v5}
be distinct. Since |g(∅, {a, b, c})| ≤ 1, and g({a, b}) = 0 (because g({a, b}) 6= 1 since a, b belong to
different components of H, and g({a, b}) 6= −1 by 2.3), and the same for {a, c} and {b, c}, it follows
from 2.1 that |2 − 3 + 0 − g({a, b, c})| ≤ 1, and so g({a, b, c}) 6= 1. Hence g({a, b, c}) ∈ {0,−1} for
every triple a, b, c of distinct members of {v1, . . . , v5}.
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Note that since v1v2, v1v3 ∈ E(G), it follows that g({v1, v2, vi}) = 0 for every i ∈ {3, 4, 5} and
g({v1, v3, vj}) = 0 for every j ∈ {2, 4, 5}. Let T be the set of all subsets T ⊆ {v1, . . . , v5} with |T | = 3
and g(T ) = −1. Thus g(T ) = 0 for all triples T /∈ T . Since |g(∅, {v1, v2, v3, v4})| ≤ 1, it follows from
2.1 that {v2, v3, v4} ∈ T , and similarly {v2, v3, v5} ∈ T .

Suppose that {v1, v4, v5} /∈ T . Now 2.1 implies that

g(∅, {v1, v2, v4, v5}) = 2− 4 + 0− g({v2, v4, v5}),

and so {v2, v4, v5} ∈ T , and similarly {v3, v4, v5} ∈ T . But then

g({v5}, {v2, v3, v4}) = −2− g(v2, v3, v4, v5) ≤ −1

and g({v1}, {v2, v3, v4}) = 1, contradicting that g is good. Thus {v1, v4, v5} ∈ T .
If also {v2, v4, v5} ∈ T then g({v4, v5}, {v1, v2}) = 2, contradicting that g is good; so {v2, v4, v5} /∈

T , and similarly {v3, v4, v5} /∈ T . Since g({v2, v3}, {v4, v5}) ≤ 1, it follows that g({v2, v3, v4, v5}) =
−1. But then g({v4}, {v2}) = 1, g({v4, v5}, {v2}) = 0 and g({v3, v4, v5}, {v2}) = 1, contrary to 2.5.
This proves 4.2.

4.3 Let C1, C2 be distinct components of H, and let X ⊆ C1 ∪ C2. Suppose that

• X ∩ C1, X ∩ C2 6= ∅;

• g(X) 6= 0; and

• for all X ′ ⊆ X, if g(X ′) 6= 0 then either X ′ = X or X ′ ⊆ C1 or X ′ ⊆ C2.

If |X ∩ C1| > 1 then there is a subset B ⊆ X ∩ C1 with g(B) = 0.

Proof. Let Xi = X ∩ Ci for i = 1, 2; and suppose there is no B ⊆ X1 with g(B) = 0. From
2.3 it follows that g(B) = 1 for all nonempty subsets B of X1, and in particular, g(X1) = 1. Let
g(X) = i = ±1. Because of the third bullet of the hypothesis, 2.1 implies that

g(X1, X2) =
∑

Z⊆X2

(−1)|Z|g(X1 ∪ Z) = g(X1) + (−1)|X2|i;

and since g(X1, X2) ≤ 1, it follows that (−1)|X2|i = −1, that is, |X2| is odd if i = 1, and even if
i = −1. Choose u ∈ X1 and v ∈ X2; then by 2.1, g(X1 \ {u}, X2 \ {v}) = 1 (since |X1| > 1),
g(X1 ∪ {v} \ {u}, X2 \ {v}) = 0, and by 2.1,

g(X1 ∪ {v}, X2 \ {v}) =
∑

Z⊆X2\{v}

(−1)|Z|g(X1 ∪ Z \ {v}) = (−1)|X2|−1g(X) = 1,

contrary to 2.5. This proves 4.3.
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Let C be a component of H, and let D ⊆ C. We say that B ⊆ D is a base of D if g(B) 6= 1 and
there is no B′ ⊆ D with |B′| < |B| and with g(B′) 6= 1.

4.4 Let C be a component of H, and let D ⊆ C.

• If there is a vertex v of G such that all its neighbours belong to D, then D has a base.

• If B is a base of D then g(B) = 0, and |B| is even and at least four.

• If D has a base, of cardinality k say, then every subset of D of cardinality k + 1 includes two
bases of D, and so every vertex of D belongs to a base of D.

• If D has a base, of cardinality k, then there is a partition of D into nonempty sets D1, . . . , Dn,
such that for all distinct u, v ∈ D, there is a base of D containing both u, v if and only if u, v
do not belong to the same set Di; and consequently n ≥ k.

Proof. For the first statement, suppose that all neighbours of v belong to D. If V (G) = C ∪ {v},
then v is adjacent to all other vertices (since no vertex has degree zero, by 2.4), contradicting that
g(∅) = 2. Thus we may choose u /∈ C ∪ {v}. By 2.4, g({u}, D) = 0, but g({u}) = 1, and so by 2.1,
there exists a nonempty subset Z ⊆ D such that g(Z ∪ {u}) 6= 0. Since C is the vertex set of a
component of H, it follows that |Z| ≥ 2. From 4.3, there exists B ⊆ Z with g(B) = 0. This proves
the first statement.

For the second, let B be a base of D. Then g(B) 6= 1 by hypothesis, and in particular |B| ≥ 3,
since B ⊆ C. For every B′ ⊆ B with B′ 6= ∅, B, we have g(B′) = 1, and since there is such a choice
of B′ with |B′| = |B| − 1, 2.3 implies that g(B) 6= −1; and hence g(B) = 0 since g is good. But by
2.2,

g(∅, B) =
∑
Z⊆B

(−1)|Z|(g(Z)− 1) = (g(∅)− 1) + (−1)|B|(g(B)− 1) = 1− (−1)|B|,

and so |B| is even. This proves the second statement.
For the third, let B be a base of D, with |B| = k say; it suffices to prove that for all v ∈ D \B,

B∪{v} includes at least two bases of D. Let X = B∪{v}, and choose u ∈ B. Thus g(X \{u, v}) = 1
and g(X\{v}) = 0, so by 2.5, g(X) 6= 1. We may assume that g(X\{u}) = 1, and so by 2.3, g(X) = 0.
By 2.1, g(∅, X \ {u, v}) = 1 and g({u, v}, X \ {u, v}) = 1, so by 2.5, g({v}, X \ {u, v}) = 1. Hence by
2.1, since |X| ≥ 3, there exists Z ⊆ X \ {u, v} with g(Z ∪ {v}) 6= 1. Then |Z| ≤ |B|, and since B is
a base for D, it follows that Z is minimal with g(Z) 6= 1, and hence Z is another base for D. This
proves the third statement.

The fourth statement follows from 2.7. This proves 4.4.

We call a partition D1, . . . , Dn as in the fourth statement of 4.4 the induced partition of D, and
the sets D1, . . . , Dn are called its classes. (If the partition exists then it is unique, as is easily seen.)

4.5 Let C1, C2 be distinct components of H, and for i = 1, 2, let Di ⊆ Ci, including a base for Di.
Then for one of i = 1, 2, there is a class of the induced partition of Di that meets all edges between
D1 and D2.

Proof. Let the induced partition of D1 have classes P1, . . . , Pm, and let the induced partition of D2

have classes Q1, . . . , Qn. We may assume that there is no i ∈ {1, . . . ,m} such that all edges between
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D1, D2 have an end in Pi, and there is no j ∈ {1, . . . , n} similarly. By König’s theorem, there exist
distinct i1, i2 ∈ {1, . . . ,m} and distinct j1, j2 ∈ {1, . . . , n} such that there is an edge between Pi1 and
Qj1 , and an edge between Pi2 and Qj2 . Hence there is a base B1 for D1 and a base B2 for D2, such
that there are two edges of G between B1, B2 with no end in common.

(1) Suppose that there exists M1 ⊆ B1 with g(B2 ∪ M1) 6= 0, and choose M1 maximal with this
property. Then |M1| ≤ |B1| − 2, and g(B2 ∪M1) = −1, and |M1| is odd.

Since there are two edges of G between B1, B2 with no end in common, and both have an end
in B2, it follows that neither has an end in M1, and so |M1| ≤ |B1| − 2. Let A1 = B1 \M1. By 2.1,

g(M1, B2) =
∑
Z⊆B2

(−1)|Z|g(M1 ∪ Z).

But for Z ⊆ B2, g(M1 ∪ Z) 6= 0 only if Z = ∅ or Z = B2, by 4.3. Consequently g(M1, B2) =
g(M1) + (−1)|B2|g(M1 ∪B2). But g(M1) = 1 and |B2| is even, so g(M1 ∪B2) = −1 since g is good.
Now by 2.1,

g(M1, A1 ∪B2) =
∑

Z⊆A1∪B2

(−1)|Z|g(M1 ∪ Z).

But for Z ⊆ A1 ∪B2, g(M1 ∪ Z) 6= 0 only if Z ⊆ A1 or Z = B2; and so

g(M1, A1 ∪B2) = (−1)|A1|(g(B1)− 1) + (−1)|B2|g(M1 ∪B2).

Since |B2| is even, g(B1) = 0 and g(M1 ∪B2) = −1, it follows that g(M1, A1 ∪B2) = (−1)|A1|+1− 1,
and so |A1| is odd, and therefore so is |M1|. This proves (1).

(2) There do not exist M1 ⊆ B1 and M2 ⊆ B2 with g(B2 ∪M1), g(B1 ∪M2) 6= 0 and with M1,M2

both nonempty.

Suppose such sets M1,M2 exist and choose them maximal. Let Ai = Bi \ Mi for i = 1, 2. By
(1), g(B2 ∪M1), g(B1 ∪M2) = −1, and |M1|, |M2| are odd. Thus |A1| and |A2| are odd, and so
g(M1 ∪M2, A1 ∪A2) = 2 by 2.1, a contradiction, This proves (2).

(3) g(X) = 0 for all X ⊆ B1 ∪B2 with X ∩B1, X ∩B2 both nonempty.

Suppose not; then from 4.3, and by exchanging C1, C2 if necessary, we may assume that there exists
M1 ⊆ B1, nonempty, with g(B2∪M1) 6= 0. Choose M1 maximal. By (1), g(B2∪M1) = −1 and |M1|
is odd. Let A1 = B1 \M1, and choose u ∈ A1. Choose v ∈ B2. Then by 2.1, since A1 \ {u} 6= ∅, it
follows that g(M1∪{u}, (A1∪B2)\{u, v}) = −1 and g(M1∪{v}, (A1∪B2)\{u, v}) = 1, contradicting
that g is good. This proves (3).

From (3), 2.1 implies that g(∅, B1 ∪B2) = −2, a contradiction. This proves 4.5.

4.6 Let C1, C2 be distinct components of H, and suppose there is a base for C2. Let D1, . . . , Dn be
the induced partition of C2. Then there is no i ∈ {D1, . . . , Dn} such that every edge of G between
C2 and V (G) \ (C1 ∪ C2) has an end in Di.
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Proof. Suppose there is such a value of i, say i = 1. Let A1 be the set of vertices in C1 with
neighbours in C2. Now n ≥ 4 (by the second and last statements of 4.4); choose v ∈ D2. Thus all
neighbours of v belong to C1, and hence to A1. By the first statement of 4.4, there is a base for
A1. By 4.5, there is a set X that meets all edges between A1 and C2, and X is either a class of the
induced partition of C2 or a class of the induced partition of A1. The first is impossible since there
are at least four classes of the induced partition of C2, and each such class different from D1 meets
an edge between C2 and A1 (because it meets some edge, and it has no edge to V (G) \ (C1 ∪ C2)
from the choice of D1). Also the second is impossible, since each class of the induced partition of A1

has an edge to C2, from the definition of A1. This proves 4.6.

Now we complete the proof of 1.6, which we restate:

4.7 If g is a good counter on a ternary graph G, then |g(∅)| ≤ 1.

Proof. In the same notation as before, we know that H has two, three or four components. Suppose
it has only two, say C1, C2. By the first statement of 4.4, there are bases for C1 and for C2, contrary
to 4.6.

Now suppose that H has exactly three components C1, C2, C3. By 2.6 we may assume that some
vertex v ∈ C2 has no neighbour in C1, and so by 4.4, there is a base for C3. Suppose that there is
also a base for C2. By 4.5, by exchanging C2, C3 if necessary, we may assume that there is a class
of the induced partition of C2 that meets all edges between C2, C3, contrary to 4.6. Thus, neither
of C1, C2 have bases. By 4.4, every vertex in C1 ∪ C2 has a neighbour in C3. We recall that v ∈ C2

has no neighbour in C1. Since C1 has no base, it follows that g(C1) = 1, and so by 2.4, v has a
neighbour, u say, with no neighbour in C1. But then all neighbours of u are in C2, and so by 4.4,
there is a base for C2, a contradiction.

Finally, suppose that H has four components C1, . . . , C4. Let K be the graph with vertex set
{1, . . . , 4} in which distinct i, j are adjacent if there is an edge of G between Ci, Cj . Since G is
connected, it follows that every vertex of K has nonzero degree. Suppose that K has a 2-edge
matching; then by renumbering C1, . . . , C4 we may assume that there exist ui ∈ Ci for 1 ≤ i ≤ 4
such that u1u2, u3u4 ∈ E(G). But then g(∅, {u1, u2, u3, u4}) = −2 by 2.1, a contradiction. Thus K
has no 2-edge matching, and since every vertex of K has nonzero degree, we may assume that every
edge of K is incident with 1, and so all edges of G have an end in C1.

For i = 2, 3, 4, let Xi be the set of vertices in C1 with no neighbour in Ci. By the first statement
of 4.4, there is a base for C1. By 4.6, there is no base for C2, and similarly none for C3, C4; and
so by the first statement of 4.4, every vertex of C1 has neighbours in at least two of C2, C3, C4. In
particular, for all distinct i, j ∈ {2, 3, 4} every vertex in Xi has a neighbour in Cj .

Since g(C2) 6= 0, 2.4 implies that for all distinct i, j ∈ {2, 3, 4}, every vertex in Ci has a neighbour
in Xj . Make a digraph J with vertex set C2∪C3∪C4 in which for i = 2, 3, 4 and u ∈ Ci and v ∈ Ci+1

(where C5 means C2), there is an edge of J from u to v if u, v has a common neighbour in Xi−1
(where X1 means X4). Every vertex has positive outdegree in J , and so J has an induced directed
cycle. Let K be such a cycle, with vertices (in order):

a1, b1, c1, a2, b2, c2, . . . , ak, bk, ck, a1

where a1, . . . , ak ∈ C2, b2, . . . , bk ∈ C3 and c1, . . . , ck ∈ C4. For each i with 1 ≤ i ≤ k, there exists
xi ∈ X4 adjacent in G to ai, bi, and yi ∈ X2 adjacent to bi, ci, and zi ∈ X3 adjacent to ci, ai+1 (where
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ak+1 means a1). Also, for each such i, xi has no other neighbours in V (K); it is nonadjacent to
each aj because xi ∈ X4, and nonadjacent to the remaining vertices of V (K) since K is induced. A
similar statement holds for the yi’s and zi’s. Consequently the subgraph of G induced on

{ai, bi, ci, xi, yi, zi : 1 ≤ i ≤ k}

is an induced cycle of length 6k, contradicting that G is ternary. This proves that H does not have
four components, and so proves 4.7 and hence 1.4.
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