
Induced subgraph density. I. A loglog step towards Erdős-Hajnal
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Abstract

In 1977, Erdős and Hajnal made the conjecture that, for every graph H, there exists c > 0 such that
every H-free graph G has a clique or stable set of size at least |G|c; and they proved that this is

true with |G|c replaced by 2c
√

log |G|. Until now, there has been no improvement on this result (for
general H).

We prove a strengthening: that for every graph H, there exists c > 0 such that every H-free
graph G with |G| ≥ 2 has a clique or stable set of size at least

2c
√

log |G| log log |G|.

Indeed, we prove the corresponding strengthening of a theorem of Fox and Sudakov, which in turn
was a common strengthening of theorems of Rödl, Nikiforov, and the theorem of Erdős and Hajnal
mentioned above.



1 Introduction

A graph G contains a graph H if H is isomorphic to an induced subgraph of G, and G is H-free
otherwise. |G| denotes the number of vertices of the graph G; and we write κ(G) for the largest t
such that G has a clique or stable set of cardinality t. For most n-vertex graphs G, κ(G) = O(log n),
but this changes dramatically if we forbid some induced subgraph. In 1977, Erdős and Hajnal [5, 6]
proposed the following well-known conjecture:

1.1 Conjecture: For every graph H there exists c > 0 such that κ(G) ≥ |G|c for every H-free
graph G.

The Erdős-Hajnal conjecture has attracted a great deal of attention over the years, but despite
this, it is only known to be true for a few graphs H. Until recently, it was only known for the graphs
with at most five vertices except the five-vertex path and its complement, and graphs that can be
made from these by vertex-substitution. In two recent papers [8, 10], three of us have got further:
we have shown it for the five-vertex path, and for infinitely many other graphs that are cannot be
built from smaller graphs by vertex-substitution. But it remains the case that the graphs known to
satisfy 1.1 are rare and highly restricted.

On the other hand, it is known that excluding any fixed induced subgraph will guarantee that
κ(G) is much bigger than log |G|. Erdős and Hajnal [6] themselves proved the following:

1.2 For every graph H there exists c > 0 such that κ(G) ≥ 2c
√

log |G| for every non-null H-free
graph G.

Indeed they proved something slightly stronger, that for allH and all c > 0 the same conclusion holds,
provided that |G| is sufficiently large. Rather surprisingly, until now there has been no improvement
on this for a general graph H. Our result is such an improvement:

1.3 For every graph H there exists c > 0 such that κ(G) ≥ 2c
√

log |G| log log |G| for every H-free graph
G with |G| ≥ 2.

Over the years, there have been several theorems discovered that are related to the Erdős-Hajnal
conjecture, and our proof method allows us to strengthen some of them. First, a fundamental
theorem of Rödl [12] shows that every H-free graph contains a large dense or sparse set:

1.4 For every graph H and all x > 0, there exists δ > 0 with the following property. For every
H-free graph G, there exists S ⊆ V (G) with |S| ≥ δ|G| such that one of G[S], G[S] has at most x

(|S|
2

)
edges.

How large can δ be as a function of x? Fox and Sudakov [7] conjectured that δ can be taken to
be a polynomial in x, and noted that this would imply the Erdős-Hajnal conjecture. Rödl’s original
proof gave a tower-type bound, because it used the regularity lemma, but Fox and Sudakov [7] made
a significant improvement, proving a version of 1.4 with better bounds:

1.5 There exists c > 0 such that for every graph H and all x ∈ (0, 1/2), 1.4 holds with δ =

2−c|H|(log 1
x
)2.
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This result implies 1.2 (by setting x = 2
−
√

log |G|
2c|H| , and applying Turán’s theorem; the proof is similar

to the proof that 1.8 implies 1.3, which we give later).
Nikiforov [11] gave a different strengthening of 1.4, allowing for a small number of copies of H:

1.6 For every graph H and all x > 0, there exists δ > 0 such that if G is a graph containing fewer
than (δ|G|)|H| induced copies of H, then there exists S ⊆ V (G) with |S| ≥ δ|G| such that one of
G[S], G[S] has at most x

(|S|
2

)
edges.

Fox and Sudakov [7] were able to incorporate the analogous strengthening of 1.6 into 1.5:

1.7 There exists c > 0 such that for every graph H and all x ∈ (0, 1/2), setting δ = 2−c|H|(log 1
x
)2

satisfies 1.6.

Our main result is:

1.8 For every graph H there exists c such that, if x ∈ (0, 1/2) and

δ = 2−c(log
1
x
)2/ log log 1

x ,

and G is a graph containing fewer than (δ|G|)|H| induced copies of H, then there exists S ⊆ V (G)
with |S| ≥ δ|G| such that one of G[S], G[S] has at most x

(|S|
2

)
edges.

1.8 strengthens the result 1.7 of Fox and Sudakov, and improves the best known quantitative bounds
in Nikiforov’s theorem 1.6 and Rödl’s theorem 1.4. It also implies 1.3, as we will show later. The
proof of 1.8 is by induction on |H|: let us mention that it is essential for inductive purposes that we
allow G to contain a few copies of H, rather than that G is H-free.

The rest of the paper is organized as follows. We give some definitions and outline the strategy
in section 2. We prove 2.4 in section 3 and 2.3 in section 4. We complete the proofs of our main
results in section 5, where we show that 2.3 implies 1.8, and that 1.8 implies 1.3. In the final section
we discuss analogous results for tournaments and ordered graphs.

We note that all logarithms in this paper are to base 2.

2 Blockades, and a sketch of the proof

A cograph means a P4-free graph, where P4 denotes the path with four vertices; and we denote by
µ(G) the largest t such that some t-vertex induced subgraph of G is a cograph. Cliques and stable
sets induce cographs, and every cograph J has a clique or stable set of size at least |J |1/2; so 1.1,
1.2, and 1.3 are equivalent to the same statements with κ(G) replaced by µ(G), and in that form
they are often easier to work with.

If X ⊆ V (G), G[X] denotes the induced subgraph with vertex set X. A pure pair in G is a pair of
disjoint subsets A,B of V (G) such that either there are no edges between A,B, or all edges between
A,B are present. If we are trying to prove that µ(G) ≥ f(|G|) for all H-free graphs G, where f is
some function, it is enough to know that all H-free graphs G with |G| > 1 have pure pairs A,B with
|A|, |B| appropriately large in terms of |G|. Because then we could deduce by induction on |G| that
G[A] contains a cograph C with |C| ≥ f(|A|), and similarly G[B] contains a large cograph D, and
so V (C) ∪ V (D) induces a cograph in G, and therefore µ(G) ≥ f(|A|) + f(|B|); and if |A|, |B| are
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large enough, then f(|A|) + f(|B|) ≥ f(|G|) and the inductive step is complete. The key factor here
is how large we can take A and B to be. For example, if we can take them to be a constant fraction
of G then we would obtain a bound of form |G|c (see, for example, [2, 3]).

In fact, for this purpose, we do not really need the pair A,B to be pure. Suppose that either every
vertex in B has at most |A|/(2µ(G)) neighbours in A, or every vertex in B has at most |A|/(2µ(G))
non-neighbours in A. Choose D ⊆ B as before; then, since |D| ≤ µ(G), there exists A′ ⊆ A with
|A′| ≥ |A|/2 such that A′, D is a pure pair, and we apply the inductive hypothesis to G[A′], and
reach the same conclusion as before.

Do such pairs A,B necessarily exist with A,B large? If A,B ⊆ V (G) are disjoint, we say B is
x-sparse to A in G if every vertex in B has at most x|A| neighbours in A. Erdős and Hajnal [6]
proved:

2.1 For every graph H, there exists c > 0 such that for every H-free graph G with |G| ≥ 2, and all
x ∈ (0, 1/2), there exist disjoint A,B ⊆ V (G) with |A|, |B| ≥ xc|G|, such that B is x-sparse to A in
one of G,G.

Then they used 2.1 (with an appropriate choice of x) and the inductive argument sketched above,
to prove 1.2. But perhaps 2.1 can be strengthened. There is a pretty conjecture of Conlon, Fox and
Sudakov [4] that would strengthen it:

2.2 Conjecture: For every graph H there exists c1, c2 > 0 such that for every H-free graph G with
|G| ≥ 2, and all x ∈ (0, 1/2), there exist disjoint A,B ⊆ V (G) with |A| ≥ xc1 |G| and |B| ≥ c2|G|,
such that B is x-sparse to A in one of G,G.

If this were true, then, as Conlon, Fox and Sudakov observed, the inductive argument would yield
exactly our result 1.3 (by choosing x = 1/(2µ(G))).

Our argument takes a different approach and leaves this conjecture open, however. Rather than
look for a sparse pair of large subsets, we will look for a large number of smaller subsets, with a
sparseness condition between each pair.

If G,H are graphs, a copy of H in G is an isomorphism from H to an induced subgraph of
G, and we denote by indH(G) the number of copies of H in G. A blockade in G is a sequence
B = (B1, . . . , Bk) of pairwise disjoint subsets of V (G), and we call B1, . . . , Bk its blocks. (In some
earlier papers, the blocks of a blockade must be nonempty, but here it is convenient to allow empty
blocks.) The length of the blockade B = (B1, . . . , Bk) is k, and its width is the minimum of the
cardinalities of its blocks. For ε > 0, the blockade B = (B1, . . . , Bk) is x-sparse in G if for all i
with 1 ≤ i ≤ k, Bi+1 ∪ · · · ∪ Bk is ε-sparse to Bi in G; and ε-restricted if for all i with 1 ≤ i ≤ k,
Bi+1 ∪ · · · ∪Bk is ε-sparse to Bi in one of G,G.

Let us give a sketch of the proof of 1.3. The key step is the following lemma, which says that
if G does not contain too many copies of H then we can find a large blockade that is very dense or
very sparse:

2.3 For all H, there exist k1, k2 > 0 such that for every non-null graph G and every x with 0 < x ≤
1

8|H| , if indH(G) < xk1 |G||H|, then there is an x-restricted blockade in G of length at least 2 log(1/x),

and width at least ⌊xk2 |G|⌋.

First let us see that 2.3 implies 1.3. Choose c > 0 sufficiently small; we will show that c satisfies
1.3 by induction on |G|. Let x := 1/(2µ(G)). It is easy to arrange that x ≤ 1

8|H| , and so we can
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apply 2.3 to the H-free graph G, and obtain a blockade (B1, . . . , Bk). Then choose subsets Di ⊆ Bi
for i = k, k − 1, . . . , 1 in turn, such that Di ∪ · · · ∪Dk induces a cograph, as follows. Having chosen
Di+1, . . . , Dk, since Di+1 ∪ · · · ∪ Dk induces a cograph, it has cardinality at most µ(G), and so
(assuming every vertex of Bi+1 ∪ · · · ∪ Bk has at most x|Bi| neighbours in Bi; the other case is
similar), at least half the vertices in Bi have no neighbour in Di+1 ∪ · · · ∪Dk. By induction, we may
choose Di from this half, inducing a cograph and of cardinality at least (|Bi|/2)c. Then Di∪· · ·∪Dk

induces a cograph, completing the inductive definition. Consequently µ(G) ≥
∑

(|Bi|/2)c, and the
result follows after some calculation, which we omit. (We will not actually prove 1.3 this way; our
proof goes via the stronger theorem 1.8, which can also be derived from 2.3 with more work.)

The main issue is how to prove 2.3. The core of the argument is the following lemma, which
applies to graphs with few copies of H and has two possible outcomes: either we can drop to a large
induced subgraph with very few copies of some subgraph H ′ with |H ′| < |H|, in which case we can
continue by induction; or we obtain two large sets of vertices that have very few edges or very few
nonedges between them, in which case we attempt to build a blockade.

2.4 Let H be a graph, let g ∈ V (H), and let H ′ := H \{g}. Let b, c > 0, and let a := b+(1+ c)|H|.
Let G be a graph, let A,B be disjoint subsets of V (G), and let 0 < x ≤ 1/2. Suppose that every
vertex in A has at least x|B| non-neighbours in B. Then either:

• there exists B′ ⊆ B with |B′| ≥ x|B| such that indH′(G[B′]) < xb|B′||H′|; or

• indH(G) ≥ xa|A| · |B||H|−1; or

• there exists A′ ⊆ A and B′ ⊆ B with |A′| ≥ xa|A| and |B′| ≥ xa|B| such that the number of
edges between A′, B′ is at most 2xc|A′| · |B′|.

In the remainder of this section, we will sketch a proof of 2.4, and then sketch how we use it to prove
2.3.

Sketch of proof of 2.4: The idea of the proof of 2.4 is as follows. Let g have degree d in H, let
Hd := H, and for i = d − 1, d − 2, . . . , 0 let Hi be obtained from Hi+1 by deleting one of the i + 1
edges of Hi+1 incident with g. We are interested in copies of Hi in G, where g is mapped into A
and the other vertices of Hi are mapped into B. (Let us call such copies “special”.) Each v ∈ A
has at least x|B| non-neighbours in B, and we may assume that this set of non-neighbours (B′ say)
induces a subgraph that contains at least xb|B′||H|−1 ≥ xb+|H||B||H|−1 copies of H \ {g}, because
otherwise the first bullet holds. Since this is true for each v, there are at least xb+|H||A| · |B||H|−1

special copies of H0. On the other hand, we may assume that there are fewer than xa|A| · |B||H|−1

special copies of Hd = H, because otherwise the second bullet holds. So for some t, the number of
special copies of Ht is at least x

b+|H|+ct|A| · |B||H|−1, and the number of special copies of Ht+1 is less
than xb+|H|+c(t+1)|A| · |B||H|−1. Let us focus on this value of t.

Now Ht was obtained from Ht+1 by deleting some edge incident with g, say gh. Fix a copy ϕ
of H \ {g, h} in G[B]; let U be the set of u ∈ B such that mapping h to u extends ϕ to a copy of
H \ {g}, and let V be the set of v ∈ A such that mapping g to v extends ϕ to a copy of H \ {h}.
The number of special copies of Ht is the sum, over all ϕ, of the number of nonedges between U, V ,
and the number of special copies of Ht+1 is the sum over all ϕ of the number of edges between U, V .
Since the second sum is at most xc times the first, there is a choice of ϕ such that the number of
edges between U, V is at most xc|U | · |V | (and by allowing a factor of two here and averaging, we can

4



arrange that also |U | · |V | ≥ xa|A| · |B|). But then U, V satisfy the third bullet, and this will prove
2.4.

Sketch of proof of 2.3: Next, let us explain how to use 2.4 to prove 2.3. Let g ∈ V (H) and F = H\{g}.
We will assume inductively that 2.3 holds for F , with k1, k2 replaced by k′1, k

′
2 say. Choose k1, k2

sufficiently large, and let G be a graph with indH(G) < xk1 |G||H|. We must show that there is an
x-restricted blockade in G of length at least log(1/x), and width at least ⌊xk2 |G|⌋.

Choose an induced subgraph J of H maximal such that G contains a large “approximate blowup”
of J ; that is, |J | disjoint subsets Aj (j ∈ V (J)) of V (G), each of size about xk|G| (where k is an
appropriate constant depending on |J |), and such that for all distinct i, j ∈ V (J), if ij /∈ E(J) then
Ai, Aj are x-sparse to each other in G, and the same in the complement if ij ∈ E(J). It cannot be
that J = H since otherwise there would be xk1 |G||H| copies of H in G, contrary to the hypothesis;
let h ∈ V (H) \ V (J), and let J ′ := H[V (J) ∪ {h}]. There is no large approximate blowup of J ′

in G (even allowing its sets to be a little smaller than the Aj ’s, and the sparsity between them to
be relaxed a little), and we will exploit this. Let W be the set of vertices of G in none of the sets
Aj (j ∈ V (J)). Thus W contains almost all vertices of G.

Let us assume, first, that there exists X0 ⊆ W with |X0| ≥ |W |/2, such that for each j ∈ V (J),
if hj ∈ E(H) then every vertex in X0 has at least x|Aj | neighbours in Aj , and if hj /∈ E(H) then
every vertex in X0 has at least x|Aj | non-neighbours in Aj . Then we can obtain a blockade with the
properties we want, as follows. Let j ∈ V (J), and suppose that h, j are nonadjacent in H (the other
case is the same in the complement). Each vertex in X0 has at least x|Aj | non-neighbours in Aj ,
and so we can apply 2.4 with X0, Aj in place of A,B. If the first outcome of 2.4 holds, then since
F = H \ {g} satisfies 2.3, there is an x-restricted blockade in G[Aj ] of length at least log(1/x), and
width at least ⌊xk′2 |Aj |⌋; and that blockade has the properties we want, if we arrange the constants
properly. The second outcome of 2.4 cannot hold, since it would contradict the hypothesis of 2.3. So
we assume that the third outcome holds; and we can therefore choose X1 ⊆ X0 and Cj ⊆ Aj such
that |X1| ≥ poly(x)|X0|, and |Cj | ≥ poly(x)|Aj |, such that there are at most poly(x)|X1| · |A′

j | edges
between X1, Cj . Note what has happened: we started with every vertex in X0 just having a few (at
least x|Aj |) non-neighbours in Aj , and now there are almost no edges between X1 and Cj . We can
assume that |Cj | has size about equal to its lower bound poly(x)|Aj |; and by removing some “outlier”
vertices from X1, we can assume that in addition, X1 is poly(x)-sparse to Cj . (The advantage of
this is that, we will choose successively smaller subsets of X1, and they will all be poly(x)-sparse to
Cj .)

Now choose some other vertex j′ ∈ V (J) different from j, and apply 2.4 to the pair X1, Aj′ ; we
may assume this gives us X2 ⊆ X1 with |X2| ≥ poly(x)|X1|, and Cj′ ⊆ Aj′ with |Cj′ | ≥ poly(x)|Aj′ |,
such that X2 is poly(x)-sparse to Cj′ in G if ij′ /∈ E(H), and the same in the complement if
ij′ ∈ E(H). Continue in this way until we have processed each vertex of J . This gives us X|J | ⊆W
with |X|J || ≥ poly(x)|W |, and Cj ⊆ Aj with |Cj | ≥ poly(x)|Aj | for each j ∈ V (J), such that X|J | is

poly(x)-sparse to Cj in G or in G (depending whether hj ∈ E(H) or not) for each j ∈ V (J). We
can assume that each Cj is poly(x)-sparse to X|J | (again, by removing a few outliers). Since the

sets Aj (j ∈ V (J)) are poly(x)-sparse to each other in G or G (where poly(x) is some polynomial of
large degree), as in the definition of an approximate blowup, and since |Cj | ≥ poly(x)|Aj | for each
j, it follows that the sets Cj (j ∈ V (J)) are still poly(x)-sparse to each other in G or G (where
poly(x) is now some polynomial of somewhat smaller degree). This gives an approximate blowup of
J ′ := H[V (J) ∪ {h}], contradicting the choice of J . So this cannot happen; and therefore, at some

5



step, the first outcome of 2.4 held, and so we obtained the blockade we want.
Consequently, we may assume that there is no such X0; and so, for some j ∈ V (J), there is a

subset A ⊆ W with |A| ≥ |W |/(2|H|) that is x-sparse to Aj in G or in G. Now repeat the proof,
working completely within A. After 2 log(1/x) iterations of the argument, we will produce the x-
restricted blockade that we want; and until that stage, the various subsets we must deal with are
still large enough that the argument is valid. This completes the sketch of the proof of 1.3.

3 The proof of 2.4

In this section we prove 2.4, which we restate:

3.1 Let H be a graph, and let g ∈ V (H). Let b, c > 0, and define a := b + (1 + c)|H|. Let G be a
graph, let A,B be disjoint subsets of V (G), and let 0 < x ≤ 1/2, such that A is (1− x)-sparse to B.
Then either:

• there exists B′ ⊆ B with |B′| ≥ x|B| such that indH\{g}(G[B
′]) < xb|B′||H|−1; or

• indH(G) ≥ xa|A| · |B||H|−1; or

• there exists A′ ⊆ A and B′ ⊆ B with |A′| ≥ xa|A| and |B′| ≥ xa|B| such that the number of
edges between A′, B′ is at most 2xc|A′| · |B′|.

Proof. Let g have degree d, let Hd := H, and inductively for t = d−1, . . . , 0, let Ht be obtained from
Ht+1 by deleting one of the t+ 1 edges of Ht+1 incident with g. Let k := |H|, and s := |A| · |B|k−1.

Let v ∈ A. By hypothesis, the set B′ (say) of non-neighbours of v in B has cardinality at least
x|B|. If G[B′] contains fewer than xb|B′|k−1 copies of H \ {g} = H0 \ {g}, then the first bullet holds,
so we assume not. Consequently there are at least xb|B′|k−1 ≥ xk−1+b|B|k−1 copies ϕ of H0 in G
such that ϕ(g) = v and ϕ(j) ∈ B for each j ∈ V (H) \ {g}. It follows by summing over all v ∈ A that
there are at least xk−1+bs copies ϕ of H0 such that ϕ(g) ∈ A and ϕ(j) ∈ B for each j ∈ V (H) \ {g}.

For 0 ≤ t ≤ d, let τt be the number of copies ϕ ofHt in G such that ϕ(g) ∈ A and ϕ(j) ∈ B for each
j ∈ V (H) \ {g}. We have just seen that τ0 ≥ xk−1+bs. We may assume that τd < sxa ≤ xk−1+b+cds,
because otherwise the second bullet holds. Consequently, for some t with 1 ≤ t ≤ d,

• τt−1 ≥ xk−1+b+c(t−1)s ≥ 2xas, and

• τt < xk−1+b+cts, and therefore τt < xcτt−1.

Let Φ be the set of all copies ϕ of Ht−1 in G such that ϕ(g) ∈ A and ϕ(j) ∈ B for each j ∈ V (H)\{g}.
There is one edge of Ht that is not an edge of Ht−1, say gh. Let J be the graph obtained from H
by deleting both g and h, and let Ψ be the set of all copies of J in G[B]. Each member of Φ is
an extension of some member of Ψ. For each ψ ∈ Ψ, let n(ψ) be the number of ϕ ∈ Φ that are
extensions of ψ. Thus the sum of n(ψ) over all ψ ∈ Ψ equals τt−1. Let Ψ′ be the set of all ψ ∈ Ψ
such that n(ψ) ≥ τt−1/(2|B|k−2), and Ψ′′ = Ψ \Ψ′. Thus∑

ϕ∈Ψ′′

n(ψ) ≤ |B|k−2

(
τt−1

2|B|k−2

)
= τt−1/2
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since |Ψ′′| ≤ |B|k−2 and n(ψ) ≤ τt−1/(2|B|k−2) for each ϕ ∈ Ψ′′. Since∑
ψ∈Ψ′′

n(ψ) +
∑
ψ∈Ψ′

n(ψ) = τt−1,

it follows that ∑
ψ∈Ψ′

n(ψ) ≥ τt−1/2.

For each ψ ∈ Ψ′, let U(ψ) be the set of all u ∈ B such that mapping i to u extends ψ to a copy
of H \ {g}, and let V (ψ) be the set of all v ∈ A such that mapping g to v extends ψ to a copy of
H \ {h}. Thus n(ψ) is the number of pairs (u, v) with u ∈ U(ψ) and v ∈ V (ψ) such that u, v are
nonadjacent. Let p(ψ) be the number of edges between U(ψ) and V (ψ). Thus τt is at least the sum
of p(ψ) over all ψ ∈ Ψ′. Since τt < xcτt−1, it follows that∑

ψ∈Ψ′

p(ψ) ≤ τt < xcτt−1 ≤ 2xc
∑
ψ∈Ψ′

n(ψ);

and consequently there exists ψ ∈ Ψ′ such that p(ψ) ≤ 2xcn(ψ).
Since ψ ∈ Ψ′, it follows that

|U(ψ)| · |V (ψ)| ≥ n(ψ) ≥ τt−1

2|B|k−2
≥ 2sxa

2|B|k−2
= xa|A| · |B|;

and since |U(ψ)| ≤ |A| and |V (ψ)| ≤ |B|, it follows that |U(ψ)| ≥ xa|A| and similarly |V (ψ)| ≥ xa|B|.
Since

p(ψ) ≤ 2xcn(ψ) ≤ 2xc|U(ψ)| · |V (ψ)|,

there are at most 2xc|U(ψ)| · |V (ψ)| edges between U(ψ) and V (ψ). Hence the third bullet holds,
setting A′ = U(ψ) and B′ = V (ψ). This proves 3.1.

4 The proof of 2.3

Now we turn to the proof of 2.3. We will need:

4.1 Let A,B be disjoint subsets of V (G), such that there are at most c|A| · |B| edges between A and
B. Then there exists A′ ⊆ A with |A′| ≥ |A|/2 such that A′ is 2c-sparse to B.

Proof. There are at most c|A| · |B| edges between A and B, and so at most |A|/2 vertices in A have
more than 2c|B| neighbours in B. This proves 4.1.

Let J be a graph, and t > 0 an integer, and 0 ≤ q ≤ 1 a real number. Let G be a graph, and
let Aj (j ∈ V (J)) be pairwise disjoint subsets of V (G). We say that the family (Aj : j ∈ V (J)) is a
(t, q)-blowup of J if

• each set Aj (j ∈ V (J)) has cardinality t;
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• for all distinct i, j ∈ V (J), if ij /∈ E(J) then Ai, Aj are q-sparse to each other in G, and if
ij ∈ E(J) then Ai, Aj are q-sparse to each other in G.

We observe:

4.2 Let J be a graph, and t > 0 an integer. If there is a (t, 1/|J |)-blowup of J in G, then indJ(G) ≥
(t/|J |)|J |.

Proof. Let (Aj : j ∈ V (J)) be a (t, 1/|J |)-blowup of J in G. If I is an induced subgraph of J , a
copy ϕ of I is good if ϕ(i) ∈ Ai for each i ∈ I.

(1) Let I be an induced subgraph of J , and suppose that ϕ is a good copy of I. Then there are
at least (t/|J |)|J |−|I| good copies of J that extend ϕ.

The proof is by induction on |V (J)| − |V (I)|. If this is zero then the claim is true, so we may
assume that there exists j ∈ V (J) \ V (I). Let I ′ be the induced subgraph of J with vertex set
V (I) ∪ {j}. For each i ∈ V (I), let us say that v ∈ Aj is i-conforming if either ij ∈ E(J) and
ϕ(i), v are adjacent in G, or ij /∈ E(J) and ϕ(i), v are nonadjacent in G. From the definition of a
(t, q)-blowup, for each i ∈ V (I) there are at most t/|J | vertices in Aj that are not i-conforming; and
so there are at least t− t|I|/|J | ≥ t/|J | vertices v ∈ Aj such that v is i-conforming for each i ∈ V (I).
For each such v, let ϕ′ be the extension of ϕ obtained by mapping j to v; then ϕ′ is a good copy of
I ′. From the inductive hypothesis, there are at least (t/|J |)|J |−|I|−1 good copies of J that extend ϕ′;
and since there are at least t/|J | choices of v and hence of ϕ′, the claim follows. This proves (1).

But then the theorem follows from (1) by setting I to be the null graph. This proves 4.2.

The bulk of the proof of 2.3 consists of the following lemma:

4.3 For all graphs H, all g ∈ V (H), and all α > 0, there exist β, γ > 0 such that for every graph G
with |G| ≥ 2 and all x with 0 < x ≤ 1/(8|H|), either:

• there exists A ⊆ V (G) with |A| ≥ xβ|G| such that indH\{g}(G[A]) < xα|A||H|−1; or

• indH(G) ≥ xγ |G||H|; or

• there are disjoint subsets A,B ⊆ V (G) with |A| ≥ xβ|G| and |B| ≥ |G|/(2|H|), such that B is
x-sparse to A in one of G,G.

Proof. We may assume that |H| ≥ 2, because otherwise the theorem holds taking γ = 1. It suffices
to prove the result assuming that 1/x is an integer. Indeed, suppose that H, g, α are given, and
setting β = β′ and γ = γ′ satisfies the theorem for all G and x with 1/x an integer. Then setting
β = 2β′ and γ = 2γ′ satisfies the theorem for all G and x. To see this, let 0 < x ≤ 1/(8|H|), and let

x′ = 1/ (⌈1/x⌉). Then 1/x′ is an integer, and 1/x′ = ⌈1/x⌉ ≤ 8|H|+1
8|H|x , and so

x2 ≤ x

8|H|
≤ 8|H|x

8|H|+ 1
≤ x′ ≤ x.

8



Consequently (x′)β
′ ≥ (x2)β

′
= xβ and similarly (x′)γ

′ ≥ xγ and hence, whichever bullet of the
theorem holds for x′, β′, γ′, the same bullet holds for x, 2β′, 2γ′. So to prove the theorem, we just
need to exhibit values of β, γ that work when 1/x is an integer.

By increasing α if necessary, we may assume that α is an integer and α ≥ |H|(|H| + 1). Define
r|H| = 0, and inductively for i = |H| − 1, . . . , 1 define

ri := α+ 2|H|+ 1 + (|H|+ 1)ri+1.

Let β := r1+3 and γ := 2r1+β|H|. We claim that β, γ satisfy the theorem (when 1/x is an integer).
Thus, let G be a graph with |G| ≥ 2, and let x > 0 such that 0 < x ≤ 1/(8|H|), where 1/x is

an integer. If xβ|G| ≤ 1, the third bullet is true taking |A| = 1 (unless |G| − 1 < |G|/|H|, which is
impossible since |G|, |H| ≥ 2), so we may assume that xβ|G| > 1. We assume the first two bullets of
the theorem are false, and we will show that the third holds.

Let t := ⌊xβ−1|G|⌋; thus t ≥ xβ|G|, because xβ−1|G| ≥ 1 and x ≤ 1/2. Let ti := x−rit and
qi := xri/|H| for 1 ≤ i ≤ |H|. Thus t1, . . . , t|H| are integers.

Since γ/|H| ≥ β + 1, it follows that

t ≥ xβ|G| ≥ (1/x)xγ/|H||G| ≥ |H|xγ/|H||G|,

and consequently (t/|H|)|H| ≥ xγ |G||H|. Hence by 4.2, there is no (t, 1/|H|)-blowup (that is, no
(t|H|, q|H|)-blowup) of H in G. Let J be a maximal induced subgraph of H such that there is a
(t|J |, q|J |)-blowup (Aj : j ∈ V (J)) of J in G, and let k := |J |.

Thus J ̸= H; let h ∈ V (H) \ V (J), and L :=
⋃
j∈V (J)Aj . For each j ∈ V (J), let Mj be the set

of vertices v ∈ V (G) \ L such that

• if hj ∈ E(H), then v has at most x|Aj | neighbours in Aj ;

• if hj /∈ E(H), then v has at most x|Aj | non-neighbours in Aj .

For each j ∈ V (J), since tk ≥ t ≥ xβ|G|, we may assume that |Mj | < |G|/(2|H|), since otherwise the
third bullet of the theorem holds. Since

|L| = ktk ≤ kxβ−1−rk |G| ≤ x2|H| · |G| ≤ |G|/(2|H|),

it follows that the union of L and the setsMj (j ∈ V (J)) has cardinality at most |G|/2. Let Z be the
set of vertices of G that do not belong to L or to any of the sets Mj (j ∈ V (J)). Thus |Z| ≥ |G|/2;
and for each j ∈ V (J), if hj /∈ E(H) then Z is (1 − x)-sparse to Aj , and if hj ∈ E(H) then Z is
(1− x)-sparse to Aj in G. Let s := xrk−rk+1 . Thus tk+1 = tk and qk+1 = qk/s.

(1) Let j ∈ V (J), and let Y ⊆ Z with |Y | ≥ |Z|sk−1. Then there exist C ⊆ Aj with |C| = 2tk+1, and
X ⊆ Y with |X| ≥ s|Y |, such that X is 1

2qk+1-sparse to C in G if hj /∈ E(H), and X is 1
2qk+1-sparse

to C in G if hj ∈ E(H).

By taking complements if necessary, we may assume that hj /∈ E(H), and so Y is (1 − x)-sparse
to Aj . We will apply 2.4 with b, c, A,B replaced by α, rk+1 + 1, Y, Aj ; note that the expression
b+ (1 + c)|H| of 2.4 becomes α+ (rk+1 + 2)|H| = rk − rk+1 − 1. By 2.4, we deduce that either:

• there exists A′ ⊆ Aj with |A′| ≥ x|Aj | such that indH\{g}H(G[A′]) < xα|A′||H|−1; or
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• indH(G) ≥ xrk−rk+1−1|Y | · |Aj ||H|−1; or

• there exist A′ ⊆ Aj and D ⊆ Y with |A′| ≥ xrk−rk+1−1|Aj | and |D| ≥ xrk−rk+1−1|Y | such that
the number of edges between A′, D is at most 2xrk+1+1|A′| · |D|.

If the first bullet above holds, then the first bullet of the theorem holds, since |A′| ≥ x|Aj | =
xt|J | = x1−r|J|t ≥ t ≥ xβ|G| (because |J | < |H| and so r|J | ≥ 1), a contradiction. If the second holds,
then the second bullet of the theorem holds, also a contradiction, since

xrk |Y | · |Aj ||H|−1 ≥ xrk+r1+β|H||G||H| ≥ x2r1+β|H||G||H| = xγ |G||H|

(because
|Aj ||H|−1 ≥ t|H|−1 ≥ xβ(|H|−1)|G||H|−1 ≥ xβ|H||G||H|−1.

and |Y | ≥ |Z|sk−1 ≥ x(k−1)rk |G| ≥ xr1 |G|.)
Thus the third bullet above holds. Let A′, D be the corresponding subsets. Since

|A′| ≥ xrk−rk+1−1tk = xrk−rk+1−1x−rkt = tk+1/x ≥ 2tk+1,

it follows by averaging that we may choose C ⊆ A′ with |C| = 2tk+1 such that the number of edges
between C,D is at most 2xrk+1+1|C| · |D|. By 4.1, there exists X ⊆ D with

|X| ≥ |D|
2

≥ 1

2
xrk−rk+1−1|Y | ≥ s|Y |

such that X is 4xrk+1+1-sparse to C, and hence 1
2qk+1-sparse to C, since 4xrk+1+1 ≤ 1

2|H|x
rk+1

(because x ≤ 1/(8|H|)). This proves (1).

Starting with Y = Z, and applying (1) recursively to each j ∈ V (J), we obtain a subset X ⊆ Z
with |X| ≥ |Z|sk, and a subset Cj ⊆ Aj with |Cj | = 2tk+1 for each j ∈ V (J), such that for each
j ∈ V (J), X is 1

2qk+1-sparse to Cj in G if hj /∈ E(H), and X is 1
2qk+1-sparse to Cj in G if hj ∈ E(H).

Since (from the choice of β)

|X| ≥ sk|Z| ≥ 1

2
xkrk−krk+1 |G| ≥ xβ−1−rk+1 |G| ≥ tx−rk+1 = tk+1

we may choose Dh ⊆ X with |Dh| = tk+1. By 4.1, for each j ∈ V (J) there exists Dj ⊆ Cj with
|Dj | = tk+1 such that Dj , Dh are qk+1-sparse to each other in G if hj /∈ E(H), and Dj , Dh are
qk+1-sparse to each other in G if hj ∈ E(H). Let i, j ∈ V (J) be distinct. We assume that ij /∈ E(H)
(the other case is the same in the complement). Since (Aj : j ∈ V (J)) is a (tk, qk)-blowup of J , it
follows that Ai is qk-sparse to Aj . Since |Dj | = tk+1 = x−rk+1t = s|Aj |, this implies that Ai (and
hence Di) is (qk/s)-sparse to Dj , that is, qk+1-sparse to Dj . Consequently (Dj : j ∈ V (J ′)) is a
(tk+1, qk+1)-blowup of J ′, where J ′ is the induced subgraph of H with vertex set V (J)∪{h}, contrary
to the maximality of J . This proves 4.3.

Now we use 4.3 to prove 2.3, which we restate, slightly strengthened:

4.4 For all H, there exist k1, k2 > 0 such that for every non-null graph G and every x with 0 < x ≤
1

8|H| , if indH(G) < xk1 |G||H|, there is an x-restricted blockade in G with length at least 2 log(1/x)

and width at least ⌊xk2 |G|⌋. Consequently, for all such G, x, there is a blockade in G with length at
least log(1/x) and width at least ⌊xk2 |G|⌋ that is x-sparse in one of G,G.
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Proof. The first statement is trivially true when |H| ≤ 1, and we proceed by induction on |H|. So
we may assume that |H| ≥ 2, and g ∈ V (H), and the theorem holds for H \ {g}; let k′1, k′2 be the
corresponding constants (using H \ {g} instead of H). Let d := log(2|H|). Choose β, γ satisfying
4.3, taking α = k′1. Let k1 := γ + 2d|H| and k2 := k′2 + β + 2d. We will show that k1, k2 satisfy the
theorem.

Thus, let G be a graph and x with 0 < x ≤ 1
8|H| such that indH(G) < xk1 |G||H|. Choose an x-

restricted blockade B = (B1, . . . , Bk) in G with k maximum such that B1, . . . , Bk−1 have cardinality
at least xk2 |G| and |Bk| ≥ (2|H|)1−k|G|.

(1) We may assume that |Bk| > x2d|G|.

We may assume that k − 1 < 2 log(1/x) and so

|Bk| ≥ (2|H|)1−k|G| = 2(1−k)d|G| > 2−2d log(1/x)|G| = x2d|G|.

This proves (1).

If xk2 |G| < 1, the result holds trivially (because ⌊xk2 |G|⌋ = 0 and blockades may contain empty
blocks), so we may assume that |G| ≥ x−k2 . By (1), |Bk| ≥ x2d|G| ≥ x2d−k2 > 1 and so |Bk| ≥ 2.
Let us apply 4.3 to G[Bk], taking α = k′1. We deduce that either:

• there exists A ⊆ Bk with |A| ≥ xβ|Bk| such that indH\{g}(G[A]) < xα|A||H|−1; or

• indH(G[Bk]) ≥ xγ |Bk||H|; or

• there are disjoint subsets A,B ⊆ Bk with |A| ≥ xβ|Bk| and |B| ≥ |Bk|/(2|H|), such that B is
x-sparse to A in one of G,G.

The second is impossible, since by (1), xγ |Bk||H| ≥ xγx2d|H||G||H| = xk1 |G||H|. Also, the third is
impossible, from the maximality of k, because xβ|Bk| ≥ xβx2d|G| ≥ xk2 |G|. Thus the first holds.
Let A be the corresponding subset. Since |A| ≥ xβ|Bk| ≥ xβ+d|G|, the inductive hypothesis gives
an x-restricted blockade in G[A] with length at least 2 log(1/x) and width at least ⌊xk′2 |A|⌋ ≥
⌊xk′2xβ+d|G|⌋ = ⌊xk2 |G|⌋. This proves the first statement of the theorem.

For the second statement, let G, x be as before, and let (B1, . . . , Bk) be an x-restricted blockade
in G with length at least 2 log(1/x) and width at least ⌊xk2 |G|⌋. Let I be the set of i ∈ {1, . . . , k} such
that Bi+1 ∪ · · · ∪Bk is x-sparse to Bi in G, and J = {1, . . . , k} \ I; then for all i ∈ J , Bi+1 ∪ · · · ∪Bk
is x-sparse to Bi in G. So the blockade (Bi : i ∈ I) is x-sparse in G, and (Bi : i ∈ J) is x-sparse in
G, and one of them has length at least k/2 ≥ log(1/x). This proves 4.4.

5 Deriving the main theorem

It remains to show that 2.3 implies 1.8, and that 1.8 implies 1.3, and we do so in this section. 2.3
says that graphs that do not contain many copies of H admit blockades with certain properties, but
the length of this blockade is critical. 2.3 gives blockades of length log(1/x), but one might hope that
for some graphs H, we could obtain a version of 2.3 that gave longer blockades; and then there would
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be corresponding improvements in 1.8 and 1.3. With that in mind, we have written the argument of
this section in greater generality than is needed for this paper. (We will use this generality in [8, 9],
for instance.) Let us say the edge-density of a nonnull graph J is the number of edges of J divided
by

(|J |
2

)
.

A function ℓ : (0, 12) → R+ is subreciprocal if it is non-increasing and 1 < ℓ(x) ≤ 1/x for all
x ∈ (0, 12). (To prove 1.8 we will only need the subreciprocal function ℓ(x) := log(1/x).) If ℓ is a
subreciprocal function, a graph H is ℓ-divisive if there exist c ∈ (0, 12) and d > 1 such that for every

x ∈ (0, c) and every graph G with indH(G) ≤ xd|G||H|, there is a blockade (B1, . . . , Bk) in G with
length at least ℓ(x) and width at least ⌊xd|G|⌋, that is x-sparse in one of G,G.

Erdős and Hajnal [6] proved that every graph is ℓ-divisive where ℓ(x) = 2 for x ∈ (0, 1/2); and
2.3 implies the following:

5.1 Every graph is ℓ-divisive where ℓ(x) := log(1/x) for 0 < x < 1/2.

The next theorem implies our main result 1.8, by defining ℓ as in 5.1. The proof is an adaptation
of an argument of Fox and Sudakov [7].

5.2 Let H be an ℓ-divisive graph for some subreciprocal function ℓ. Then there exists C > 0 such
that, if ε ∈ (0, 12) and

δ = 2−C log2(1/ε)/ log(ℓ(ε)),

then for every graph G with indH(G) ≤ (δ|G|)|H|, there exists S ⊆ V (G) with |S| ≥ δ|G| such that
one of G[S], G[S] has edge-density at most ε.

Proof. Let c ∈ (0, 12) and d > 1, as in the definition of ℓ-divisive. Let z := ℓ(c)−1/2 ∈ (0, 1), and let
b > 2 be such that 22−b = 1− z. We will first show that setting C = 20bd satisfies the theorem when
ε ∈ (0, c), and then at the end of the proof, give a value of C that works in general.

Thus, let ε ∈ (0, c), and choose δ such that

log(1/δ) =
20bd log2(1/ε)

log(ℓ(ε))
.

Let x := 1−z
2 ε = 21−bε, and let p := ℓ(x)z; then p2 ≥ ℓ(x) > 1 since ℓ(x) ≥ ℓ(ε) ≥ ℓ(c) = z−2.

Let t be the least integer such that pt ≥ ε−2; then since ℓ(ε) ≤ min(ℓ(x), 1/ε) ≤ min(p2, 1/ε), we
obtain

1 ≤ t =

⌈
2 log(1/ε)

log p

⌉
≤

⌈
4 log(1/ε)

log(ℓ(ε))

⌉
≤ 5 log(1/ε)

log(ℓ(ε))
.

Let η := 1
4x

d; then x = 21−bε > εb since ε < 1
2 , and so

xdηt = 4−txd+dt > ε2tεbd(t+1) > ε4bdt = 2−4bdt log(1/ε) ≥ δ

since t ≤ 5 log(1/ε)
log(ℓ(ε)) .

Now, let h := |H|, and let G be such that indH(G) ≤ (δ|G|)h. We will show that there exists S as
in the theorem. If δ|G| ≤ 1 then we are done, so we may assume δ|G| > 1, and hence |G| > δ−1 > η−t.
For all ε1, ε2 ≥ ε and every integer s with 0 ≤ s ≤ t, let βs(ε1, ε2) be the maximum β > 0 such that
for every induced subgraph F of G with |F | ≥ ηs|G|, there exists T ⊆ V (F ) such that |T | ≥ β|F |
and F [T ] has edge-density either at most ε1 or at least 1 − ε2. Since δ ≤ xdηt, it suffices to show

12



that β0(ε, ε) ≥ xdηt. We claim the following.

(1) For every integer s with 1 ≤ s ≤ t, and for all ε1, ε2 ≥ ε, we have

βs−1(ε1, ε2) ≥ η ·min(βs(pε1, ε2), βs(ε1, pε2)).

Put γ1 := βs(pε1, ε2) and γ2 := βs(ε1, pε2), and let γ = min(γ1, γ2). Let F be an induced subgraph
of G with |F | ≥ ηs−1|G|; we will prove that there exists T ⊆ V (F ) such that |T | ≥ ηγ|F | and
F [T ] has edge-density either at most ε1 or at least 1 − ε2. Since |F | ≥ ηs−1|G|, it follows that
|F | ≥ ηs−1−t ≥ η−1, since |G| ≥ η−t. Since

indH(F ) ≤ indH(G) ≤ (δ|G|)h ≤ (η−(s−1)δ|F |)h = (ηt−(s−1)xd|F |)h ≤ (xd|F |)h ≤ xd|F |h,

there is a blockade (B1, . . . , Bk) in F , x-sparse in one of F, F , of length k ≥ ℓ(x) and width at least

⌊xd|F |⌋ = ⌊4η|F |⌋ ≥ 2η|F |

(since |F | ≥ η−1). By the symmetry, we may assume that (B1, . . . , Bk) is x-sparse in F . Let
m := ⌈ηγ1|F |⌉.

Inductively for i = k, k − 1, . . . , 1, we choose Ci ⊆ Bi with |Ci| = m, as follows. Assume
Ck, Ck−1, . . . , Ci+1 have been defined, and let Di be their union. Thus Di is x-sparse to Bi, and so
by 4.1 there exists B′

i ⊆ Bi with |B′
i| ≥ 1

2 |Bi| such that B′
i is 2x-sparse to Di; and in particular

|B′
i| ≥

1

2
|Bi| ≥ η|F | ≥ ηs|G|.

Thus, by the definition of βs, there exists Ci ⊆ B′
i with |Ci| ≥ γ1|B′

i| ≥ ηγ1|F | such that F [Ci] has
edge-density either at most pε1 or at least 1− ε2. If its edge-density is at least 1− ε2 then we may
set T = Ci and be done; so we may assume that F [Ci] has edge-density at most pε1. By averaging,
we may assume |Ci| = ⌈ηγ1|F |⌉ = m. This completes the inductive definition of Ck, Ck−1, . . . , C1.

For 1 ≤ i ≤ k, Ci is 2x-sparse to Di = Ck ∪Ck−1 ∪ · · · ∪Ci+1, and so there are at most 2xm2
(
k
2

)
edges between C1, . . . , Ck. Therefore, setting T :=

⋃k
i=1Ci, we have

|T | = km ≥ m ≥ ηγ1|F | ≥ ηγ|F |;

and since k ≥ ℓ(x) ≥ p/z and 2x = (1− z)ε ≤ (1− z)ε1, the number of edges of G[T ] is at most

kpε1

(
m

2

)
+ 2xm2

(
k

2

)
≤ zε1k

2

(
m

2

)
+ (1− z)ε1m

2

(
k

2

)
≤ ε1

(
km

2

)
= ε1

(
|T |
2

)
.

So T is a subset of V (F ) with the desired property. This proves (1).

By applying (1) for s = 1, 2, . . . , t, we obtain

β0(ε, ε) ≥ ηt · min
0≤i≤t

βt(p
iε, pt−iε).

Since ptε2 ≥ 1 by the choice of t, and so max
(
piε, pt−iε

)
≥ 1 if 0 ≤ i ≤ t, we deduce that

βt(p
iε, pt−iε) = 1 for all i with 0 ≤ i ≤ t; and hence β0(ε, ε) ≥ ηt ≥ δ, as claimed. Thus, setting

C = 20bd satisfies the theorem for all ε ∈ (0, c).
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Let a > 1 be such that 2−a = c; we will prove that setting C = 20a2bd works for all ε ∈ (0, 12).
Thus, let ε ∈ (0, 12), let

log(1/δ) =
20a2bd log2(1/ε)

log(ℓ(ε))
,

and let G be a graph with indH(G) ≤ (δ|G|)|H|. Let ε′ := εa, and let

log(1/δ′) =
20bd log2(1/ε′)

log(ℓ(ε′))
;

then ε′ ≤ ε, and so δ′ ≥ δ since ℓ is non-increasing. Consequently indH(G) ≤ (δ′|G|)|H|. But
ε′ < 2−a = c, so by what we already proved, there exists S ⊆ V (G) with |S| ≥ δ′|G| ≥ δ|G| such
that one of G[S], G[S] has edge-density at most ε′ ≤ ε. This proves 5.2.

Finally, let us deduce 1.3, which we restate. Recall that µ(G) the largest t such that some t-vertex
induced subgraph of G is a cograph.

5.3 For every graph H there exists c > 0 such that µ(G) ≥ 2c
√

log |G| log log |G| for every H-free graph
G with |G| ≥ 2.

Proof. Let c be as in 1.8, and let d = 1/(8c)1/2. Choose n0 such that for all n ≥ n0,

1

4
log log n+

1

2
log log log n ≥ log(1/d), and

n1/2 ≥ 2d
√
logn log logn ≥ 4.

Choose c′ ≤ d/2 with c′ > 0, such that nc
′
0 ≤ 2. We will show that µ(G) ≥ 2c

′
√

log |G| log log |G| for
every H-free graph G with |G| ≥ 2.

Thus, let G be H-free. If |G| ≤ n0, then |G|c′ ≤ nc
′
0 ≤ 2, and so µ(G) ≥ |G|c′ . Hence we may

assume that |G| > n0. Let ε = 2−d
√

log |G| log log |G|, and let δ = 2−c(log
1
ε
)2/ log log 1

ε ; then

log δ = −
c(log 1

ε )
2

log log 1
ε

= −cd
2 log|G| log log|G|

log log 1
ε

.

Since

log log
1

ε
=

1

2
log log |G|+ 1

2
log log log |G| − log(1/d) ≥ 1

4
log log |G|

(because 1
4 log log |G|+

1
2 log log log |G| ≥ log(1/d)), it follows that

log δ ≥ −cd
2 log |G| log log |G|

1
4 log log |G|

= −4cd2 log |G| = −1

2
log|G|,

and so δ ≥ |G|−1/2. By 1.8 and the choice of c, there exists S ⊆ V (G) with |S| ≥ |G|1/2 such that
one of G[S], G[S] has edge-density at most ε. Since |G| ≥ n0 it follows that |S| > 1/ε. By Turán’s
theorem, G[S] has a clique or stable set of size at least

|S|
1 + ε|S|

≥ 1

2ε
=

1

2
2d
√

log |G| log log |G| ≥ 2(d/2)
√

log |G| log log |G| ≥ 2c
′
√

log |G| log log |G|.

This proves 1.3.
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6 Ordered graphs

An influential paper of Alon, Pach and Solymosi [1] showed that the Erdős-Hajnal conjecture admits
equivalent formulations for ordered graphs and for tournaments. In this section we observe that our
result 1.3 also extends to ordered graphs and tournaments. An ordered graph is a pair (G,<), where
G is a graph and < is a linear order of its vertex set. If (G,<) and (H,<′) are ordered graphs, we
say (G,<) is (H,<′)-free if no induced subgraph of G (made into an ordered graph with the order
inherited from < in the natural way) is isomorphic to (H,<′). Alon, Pach and Solymosi [1] showed
that the Erdős-Hajnal conjecture 1.1 is equivalent to the following analogous conjecture for ordered
graphs:

6.1 Conjecture: For every ordered graph (H,<′) there exists τ > 0 such that κ(G) ≥ |G|τ for
every (H,<′)-free ordered graph (G,<).

Our theorem 1.3 translates to:

6.2 For every ordered graph (H,<′) there exists c > 0 such that κ(G) ≥ 2c
√

log |G| log log |G| for every
(H,<′)-free ordered graph (G,<) with |G| ≥ 2.

To prove this, we use a theorem of Rödl and Winkler [13], that says:

6.3 For every ordered graph (H,<′), there exists a graph P such that, for every linear ordering of
V (P ), the resulting ordered graph is not (H,<′)-free.

Proof of 6.2. Let (H,<′) be an ordered graph, and choose P as in 6.3. Choose c satisfying 1.3
with H replaced by P . Now let (G,<) be an (H,<′)-free ordered graph. It follows from the property

of P that G is P -free, and so by 1.3, κ(G) ≥ 2c
√

log |G| log log |G|. This proves 6.2.

These results also have analogues for tournaments. If G is a tournament, define κ(G) to be the
size of the largest transitive subset of V (G). Our result becomes:

6.4 For every tournament H there exists c > 0 such that κ(G) ≥ 2c
√

log |G| log log |G| for every H-free
tournament G with |G| ≥ 2.

Proof. Fix a linear order <′ of V (H), and let H ′ be the graph with vertex set V (H), in which uv
is an edge if u is earlier than v in the linear order <′ and v is adjacent from u in H. Thus (H ′, <′) is
an ordered graph. Choose c as in 6.2 (with H replaced by H ′). Now let G be an H-free tournament.
Derive an ordered graph (G′, <) from G similarly. Since G is H-free, we deduce that (G′, <) is
(H ′, <′)-free, and the result follows from 6.2, since every clique or stable set of G′ is a transitive set
of G. This proves 6.4.
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[6] P. Erdős and A. Hajnal, “Ramsey-type theorems”, Discrete Applied Mathematics 25 (1989),
37–52.

[7] J. Fox and B. Sudakov, “Induced Ramsey-type theorems”, Advances in Mathematics 219 (2008),
1771–1800.

[8] T. Nguyen, A. Scott and P. Seymour, “Induced subgraph density. IV. New graphs with the
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