Monochromatic cycles in 2-coloured graphs

F. S. BENEVIDES ${ }^{1} \dagger$ T. $\mathrm{EUCZAK}^{2 \ddagger}$ A. SCOTT ${ }^{3 \S}$,
J. SKOKAN ${ }^{4}$ and M. WHITE ${ }^{3}$,
${ }^{1}$ Departamento de Matemática
Universidade Federal do Ceará, Fortaleza, Ceará, Brazil, 60455-760
(e-mail: fabricio@mat.ufc.br)
2 Department of Discrete Mathematics Adam Mickiewicz University, 61-614 Poznań, Poland
(e-mail: tomasz@amu.edu.pl)
${ }^{3}$ Mathematical Institute
24-29 St Giles', Oxford, OX1 3LB, United Kingdom
(e-mail: scott@maths.ox.ac.uk; white@maths.ox.ac.uk)
${ }^{4}$ Department of Mathematics
London School of Economics and Political Science Houghton Street, London WC2A 2AE, United Kingdom (e-mail: jozef@member.ams.org)

Li, Nikiforov and Schelp [12] conjectured that any 2-edge coloured graph G with order n and minimum degree $\delta(G)>3 n / 4$ contains a monochromatic cycle of length ℓ, for all $\ell \in[4,\lceil n / 2\rceil]$. We prove this conjecture for sufficiently large n and also find all 2-edge coloured graphs with $\delta(G)=3 n / 4$ that do not contain all such cycles. Finally, we show that, for all $\delta>0$ and $n>n_{0}(\delta)$, if G is a 2-edge coloured graph of order n with $\delta(G) \geq 3 n / 4$, then one colour class either contains a monochromatic cycle of length at least $(2 / 3+\delta / 2) n$, or contains monochromatic cycles of all lengths $\ell \in[3,(2 / 3-\delta) n]$.

1. Introduction

A well-known theorem of Dirac [8] states that a graph with order $n \geq 3$ and minimum degree at least $n / 2$ contains a cycle C_{n} on n vertices.

[^0]Theorem 1.1 (Dirac [8]). Let G be a graph of order $n \geq 3$. If $\delta(G) \geq n / 2$, then G is hamiltonian.

In fact, as noted by Bondy [5], an immediate corollary of the following theorem is that such a graph will contain cycles of all lengths $\ell \in[3, n]$. We call such a graph pancyclic.

Theorem 1.2 (Bondy [5]). If G is a hamiltonian graph of order n such that $|E(G)| \geq$ $n^{2} / 4$, then either G is pancyclic or n is even and G is isomorphic to $K_{n / 2, n / 2}$.

Corollary 1.3. Let G be a graph of order $n \geq 3$. If $\delta(G) \geq n / 2$, then either G is pancyclic or n is even and G is isomorphic to $K_{n / 2, n / 2}$. In particular, if $\delta(G)>n / 2$, then G is pancyclic.

Given a graph G with edge set $E(G)$, a 2-edge colouring of G is a partition $E(G)=$ $E(R) \cup E(B)$, where R and B are spanning subgraphs of G. We define a k-edge colouring of G similarly. In a recent paper [12], Li, Nikiforov and Schelp made the following conjecture, which would give an analogue of Corollary 1.3 for 2-edge coloured graphs.

Conjecture 1.4 (Li, Nikiforov and Schelp [12]). Let $n \geq 4$ and let G be a graph of order n with $\delta(G)>3 n / 4$. If $E(G)=E(R) \cup E(B)$ is a 2-edge colouring of G, then for each $\ell \in[4,\lceil n / 2\rceil]$, either $C_{\ell} \subseteq R$ or $C_{\ell} \subseteq B$.

Note that we may only ask for ℓ in this range. For example, take the 2 -colouring of K_{5} consisting of a red and a blue C_{5} and blow it up, that is, replace each vertex of K_{5} with an independent set of p vertices and each edge with the complete monochromatic bipartite graph $K_{p, p}$ of the same colour. The resulting graph G has minimum degree $\delta(G)=4|G| / 5$ but no monochromatic C_{3}. Similarly letting R be the complete bipartite graph with vertex classes of order $\lfloor n / 2\rfloor$ and $\lceil n / 2\rceil$, and letting B be the complement, we obtain a 2 -colouring of the complete graph K_{n} with no monochromatic odd cycle C_{ℓ} with $\ell>\lceil n / 2\rceil$. Li, Nikiforov and Schelp [12] proved the following partial result.

Theorem 1.5 (Li, Nikiforov and Schelp [12]). Let $\epsilon>0$, let G be a graph of sufficiently large order n, with $\delta(G)>3 n / 4$. If $E(G)=E(R) \cup E(B)$ is a 2-edge colouring of G, then for all $\ell \in[4,\lfloor(1 / 8-\epsilon) n\rfloor]$, either $C_{\ell} \subseteq R$ or $C_{\ell} \subseteq B$.

We will prove Conjecture 1.4 for sufficiently large n, but first we will define a set of 2-edge coloured graphs showing that the degree bound $3 n / 4$ is tight.

Definition. Let $n=4 p$ and let G be a graph isomorphic to $K_{p, p, p, p}$. A 2-bipartite 2-edge colouring of G is a 2-edge colouring $E(G)=E(R) \cup E(B)$ such that both R and B are bipartite.

If $G \cong K_{p, p, p, p}$ and $E(G)=E(R) \cup E(B)$ is a 2-bipartite 2-edge colouring of G, let $V_{1} \cup V_{2}$ be the bipartition of R and $W_{1} \cup W_{2}$ be the bipartition of B. Let $U_{i, j}=V_{i} \cap W_{j}$
for all $i, j \in\{1,2\}$. Then the $U_{i, j}$ are four independent sets of G covering all vertices, and so must be the four independent sets of order p. So, a 2-bipartite 2-edge colouring of $K_{p, p, p, p}$ forces a labelling of the independent sets $\left\{U_{i, j}: i, j \in\{1,2\}\right\}$ such that:

- all edges between $U_{1,1}$ and $U_{1,2}$ and between $U_{2,1}$ and $U_{2,2}$ are blue;
- all edges between $U_{1,1}$ and $U_{2,1}$ and between $U_{1,2}$ and $U_{2,2}$ are red;
- edges between $U_{1,1}$ and $U_{2,2}$ and between $U_{2,1}$ and $U_{1,2}$ can be either colour.

If 4 divides n, then the graph $K_{n / 4, n / 4, n / 4, n / 4}$ with a 2-bipartite 2-edge colouring has minimal degree $3 n / 4$ and no monochromatic odd cycles. Note that for a fixed labelling of this graph, there are $2^{n^{2} / 8} 2$-bipartite 2-edge colourings of $K_{n / 4, n / 4, n / 4, n / 4}$. However, $K_{n / 4, n / 4, n / 4, n / 4}$ has $24((n / 4)!)^{4}=2^{O(n \log n)}$ automorphisms and so there are $2^{n^{2} / 8+O(n \log n)}$ distinct 2-bipartite 2-edge colourings of $K_{n / 4, n / 4, n / 4, n / 4}$. In fact we will prove that $K_{n / 4, n / 4, n / 4, n / 4}$ is the only extremal graph; although any 2-bipartite 2-edge colouring of $K_{n / 4, n / 4, n / 4, n / 4}$ is extremal. We state our main result now.

Theorem 1.6. There exists a positive integer n_{0} with the following property. Let G be a graph of order $n>n_{0}$ with $\delta(G) \geq 3 n / 4$. Suppose that $E(G)=E\left(R_{G}\right) \cup E\left(B_{G}\right)$ is a 2 -edge colouring of G. Then either $C_{\ell} \subseteq R$ or $C_{\ell} \subseteq B$ for all $\ell \in[4,\lceil n / 2\rceil]$, or $n=4 p$, $G \cong K_{p, p, p, p}$ and the colouring is a 2-bipartite 2-edge colouring.

We define the monochromatic circumference of a k-edge coloured graph to be the length of its longest monochromatic cycle. Li, Nikiforov and Schelp [12] also posed the following question.

Question 1.7. Let $0<c<1$ and n be sufficiently large integer. If G is a 2 -coloured graph of order n with $\delta(G)>c n$, what is the minimum possible monochromatic circumference of G ?

For graphs G with $\delta(G) \geq 3 n / 4$ we show that the monochromatic circumference is at least $(2 / 3+o(1)) n$. In fact, we show the following result.

Theorem 1.8. For every $0<\delta \leq 1 / 180$, there exists an integer $n_{0}=n_{0}(\delta)$ such that the following holds. Let G be a graph of order $n>n_{0}$ with $\delta(G) \geq 3 n / 4$. Suppose that $E(G)=E\left(R_{G}\right) \cup E\left(B_{G}\right)$ is a 2-edge colouring of G. Then either G has monochromatic circumference at least $(2 / 3+\delta / 2) n$, or one of R_{G} and B_{G} contains cycles of all lengths $\ell \in[3,(2 / 3-\delta) n]$.

Note that the last statement requires monochromatic cycles of all lengths in some prescribed set of integers, as in Theorem 1.6. However, here these cycles are required to be of the same colour. Also, the upper bound on δ is of a technical nature, and we are only interested in small δ. There are similar technical bounds throughout this paper.

For integers $s \leq t$, we define the following 2-edge coloured graph $F_{s, t}$, which with $t=2 s$ shows that Theorem 1.8 is asymptotically sharp.

Definition. For $s \leq t$, let $F_{s, t}$ be the 2-edge coloured complete graph on $s+t$ vertices in which the blue edges form the complete bipartite graph $K_{s, t}$ and all the other edges are red.

The longest cycle in the red subgraph of $F_{s, t}$ has length t. The blue subgraph is bipartite and has circumference $2 s$. Thus the monochromatic circumference of $F_{s, t}$ is $\max \{t, 2 s\}$.

Let $n=3 s$. Then $\left|F_{s, 2 s}\right|=n, \delta\left(F_{s, 2 s}\right)=n-1$, and $F_{s, 2 s}$ has monochromatic circumference $2 s=2 n / 3$. Hence Theorem 1.8 is asymptotically sharp.

We shall show that the linear dependence between the two occurrences of δ in Theorem 1.8 is correct. Fix $\delta>0$. Suppose that $n>1 / 2 \delta$, and let $G \cong F_{n-\lceil(2 / 3-\delta) n\rceil,\lceil(2 / 3-\delta) n\rceil}$. Then the monochromatic circumference of G is $2\lfloor(1 / 3+\delta) n\rfloor \geq(2 / 3+\delta) n$. However, G contains no monochromatic cycle of odd length $\ell \in\{\lceil(2 / 3-\delta) n\rceil+1,\lceil(2 / 3-\delta) n\rceil+2\}$.

In Section 2, we will introduce some theorems that will be used in our proofs. We will then prove Theorem 1.6 in two parts. Section 3 will deal with short (up to constant length) cycles and Section 4 will deal with long cycles. This will rely on a number of lemmas, whose proofs are postponed to Sections 5 and 6. In Section 7 we will look at the length of the longest monochromatic cycle, and in particular prove Theorem 1.8. We conclude in Section 8 with some open problems.

2. Results used in the proof

In the proof of Theorem 1.6, we shall use well-known extremal graph theory results and the regularity method to find long cycles. Before introducing these, we make some preliminary definitions and notation.

For a graph G, we denote by $e(G)$ its number of edges. Let X and Y be disjoint subsets of $V(G)$. We denote by $G[X]$ the subgraph of G induced by the vertices of X. We also denote by $E(X, Y)$ the set of edges joining X and Y, set $e(X, Y):=|E(X, Y)|$, and let $G[X, Y]$ be the bipartite subgraph of G with partite sets X and Y and edge set $E(X, Y)$. For a set of vertices S, we denote by $\Gamma_{G}(S)$ the set of all vertices adjacent to some vertex in S. We drop the subscript when there is no danger of confusion. We also write $\Gamma_{G}(v)$ instead of $\Gamma_{G}(\{v\})$, and set $d_{G}(v):=\left|\Gamma_{G}(v)\right|$.

Definition. Let G be a graph and X and Y be disjoint subsets of $V(G)$. The density of the pair (X, Y) is the value

$$
d(X, Y):=\frac{e(X, Y)}{|X||Y|}
$$

We define a regular pair to be one where the density between not-too-small subsets of X and Y is close to the density between X and Y.

Definition. Let $\epsilon>0$. Let G be a graph and X and Y be disjoint subsets of $V(G)$. We call (X, Y) an ϵ-regular pair for G if, for all $X^{\prime} \subseteq X$ and $Y^{\prime} \subseteq Y$ satisfying $\left|X^{\prime}\right| \geq \epsilon|X|$ and $\left|Y^{\prime}\right| \geq \epsilon|Y|$, we have

$$
\left|d(X, Y)-d\left(X^{\prime}, Y^{\prime}\right)\right|<\epsilon .
$$

The next fact shows that almost all vertices in any regular pair have large degrees.
Fact 2.1. Let G be a graph and let $\left(V_{1}, V_{2}\right)$ be an ϵ-regular pair for G with density $d:=d\left(V_{1}, V_{2}\right)$. Then all but at most $\epsilon\left|V_{1}\right|$ vertices $v \in V_{1}$ satisfy $\left|\Gamma(v) \cap V_{2}\right| \geq(d-\epsilon)\left|V_{2}\right| . \square$

This is particularly useful when we want to find paths of prescribed length in a regular pair, as shown by the next lemma from [1, Lemma 10].

Lemma 2.2. For every $0<\beta<1$ there is an $m_{0}(\beta)$ such that for every $m>m_{0}(\beta)$ the following holds: Let G be a graph, and let V_{1}, V_{2} be disjoint subsets of $V(G)$ such that $\left|V_{1}\right|,\left|V_{2}\right| \geq m$. Furthermore, suppose that, for some ϵ satisfying $0<\epsilon<\beta / 100$, the pair $\left(V_{1}, V_{2}\right)$ is ϵ-regular for G, with density at least $\beta / 4$.

Then, for every pair of vertices $v_{1} \in V_{1}, v_{2} \in V_{2}$ satisfying $\left|\Gamma\left(v_{1}\right) \cap V_{2}\right|,\left|\Gamma\left(v_{2}\right) \cap V_{1}\right| \geq$ $\beta m / 5$, and for every $i, 1 \leq i \leq m-5 \epsilon m / \beta, G$ contains a $v_{1}-v_{2}$ path of length $2 i+1$.

Combining Lemma 2.2 with Fact 2.1 yields the following straightforward consequence.
Corollary 2.3. For every $0<\epsilon<10^{-5}$ there is an $m_{0}(\epsilon)$ such that for every $m>m_{0}(\epsilon)$ the following holds: Let G be a graph, and let $V_{1}, V_{2}, \ldots, V_{\ell}$ be disjoint subsets of $V(G)$ such that $\left|V_{1}\right|,\left|V_{2}\right|, \ldots,\left|V_{\ell}\right| \geq m$. Suppose that all pairs $\left(V_{1}, V_{2}\right),\left(V_{2}, V_{3}\right), \ldots,\left(V_{\ell-1}, V_{\ell}\right)$, $\left(V_{\ell}, V_{1}\right)$ are ϵ-regular for G, with density at least $\sqrt{\epsilon}$.

Then, $C_{i} \subset G$ for every $i, \ell \leq i \leq(1-5 \sqrt{\epsilon})(\ell-1) m$, of the same parity as ℓ.
We will use the following 2-coloured version of the Szemerédi Regularity Lemma (see, for example, the survey paper of Komlós and Simonovits [11]) that is not hard to deduce from the standard form of the regularity lemma [13].

Theorem 2.4 (Degree form of 2-coloured Regularity Lemma). For every $\epsilon>0$ and positive integer k_{0}, there is an $M=M\left(\epsilon, k_{0}\right)$ such that if $G=(V, E)$ is any 2-edge coloured graph and $d \in[0,1]$ is any real number, then there is $k_{0} \leq k \leq M$, a partition $\left(V_{i}\right)_{i=0}^{k}$ of the vertex set V and a subgraph $G^{\prime} \subseteq G$ with the following properties:
(R1) $\left|V_{0}\right| \leq \epsilon|V|$,
(R2) all clusters $V_{i}, i \in[k]:=\{1,2, \ldots, k\}$, are of the same size $m \leq\lceil\epsilon|V|\rceil$,
(R3) $d_{G^{\prime}}(v)>d_{G}(v)-(2 d+\epsilon)|V|$ for all $v \in V$, (R4) $e\left(G^{\prime}\left[V_{i}\right]\right)=0$ for all $i \in[k]$,
(R5) for all $1 \leq i<j \leq k$, the pair $\left(V_{i}, V_{j}\right)$ is ϵ-regular for $R_{G^{\prime}}$ with a density either 0 or greater than d and ϵ-regular for $B_{G^{\prime}}$ with a density either 0 or greater than d, where $E\left(G^{\prime}\right)=E\left(R_{G^{\prime}}\right) \cup E\left(B_{G^{\prime}}\right)$ is the induced 2-edge colouring of G^{\prime}.

Having applied the above form of the Regularity Lemma to a 2-edge coloured graph G, we make the following definition, based on the clusters $\left\{V_{i}: 1 \leq i \leq k\right\}$. Note that this definition depends on the parameters ϵ and d.

Definition. Given a graph $G=(V, E)$ and a partition $\left(V_{i}\right)_{i=0}^{k}$ of V satisfying conditions
(R1)-(R5) above, we define the (ϵ, d)-reduced 2 -edge coloured graph H on vertex set $\left\{v_{i}: 1 \leq i \leq k\right\}$ as follows: For $1 \leq i<j \leq k$,

- let $\left\{v_{i}, v_{j}\right\}$ be a blue edge of H when $B_{G^{\prime}}\left[V_{i}, V_{j}\right]$ has density at least d;
- let $\left\{v_{i}, v_{j}\right\}$ be a red edge of H when it is not a blue edge and $R_{G^{\prime}}\left[V_{i}, V_{j}\right]$ has density at least d.

Remark. Notice that the definition of the (ϵ, d)-reduced 2-edge coloured graph H is non-symmetric in the following sense: On one hand, if $\left\{v_{i}, v_{j}\right\}$ is a red edge of H, then we know that $R_{G^{\prime}}\left[V_{i}, V_{j}\right]$ has density at least d and $B_{G^{\prime}}\left[V_{i}, V_{j}\right]$ has density less than d. On the other hand, if $\left\{v_{i}, v_{j}\right\}$ is a blue edge of H, then we know that $R_{B^{\prime}}\left[V_{i}, V_{j}\right]$ has density at least d, but we have no information about the density of $R_{G^{\prime}}\left[V_{i}, V_{j}\right]$.

This asymmetry will never cause a problem in our arguments because we only use the facts that a red edge $\left\{v_{i}, v_{j}\right\}$ in H corresponds to $R_{G^{\prime}}\left[V_{i}, V_{j}\right]$ with density at least d and a blue edge $\left\{v_{i}, v_{j}\right\}$ in H corresponds to $B_{G^{\prime}}\left[V_{i}, V_{j}\right]$ with density at least d.

We aim to use matchings in the reduced graph H to find long cycles in G. To do so we will use the following lemma.

Lemma 2.5. Given $0<c<1$ and $0<\delta<1-c$, let $\epsilon>0$ and $d>0$ be sufficiently small real numbers such that $d \geq \epsilon^{1 / 3}$. Let G be a 2 -edge coloured graph of sufficiently large order n with a vertex partition $\left(V_{i}\right)_{i=0}^{k}$ satisfying conditions (R1)-(R5), and let H be the corresponding (ϵ, d)-reduced 2 -edge coloured graph.

Suppose that H has a monochromatic component C that contains a matching on $(c+\delta) k$ vertices. Then
(a) G contains monochromatic cycles of length ℓ for all even $4 k \leq \ell \leq(c+\delta / 2) n$.
(b) If C also contains any odd cycle, then G contains monochromatic cycles of length ℓ for all $4 k \leq \ell \leq(c+\delta / 2) n$.

Furthermore, all cycles in (a) and (b) have the same colour as C.

Lemma 2.5 has by now a very standard proof using Lemma 2.2, which we omit here. The interested reader can easily modify the proof given in [1, Section 5, p.696].

In the proof of Theorem 1.6, we shall frequently show that there is a subset S of V on which one of R_{G} or B_{G} is hamiltonian, and apply Theorem 1.2. To prove hamiltonicity, it will normally be sufficient to use Dirac's Theorem (Theorem 1.1). However, we will also need the following generalisation and one of its consequences.

Theorem 2.6 (Chvátal [7]). Let G be a graph of order $n \geq 3$ with degree sequence $d_{1} \leq d_{2} \leq \cdots \leq d_{n}$ such that

$$
d_{k} \leq k<\frac{n}{2} \Rightarrow d_{n-k} \geq n-k
$$

Then G contains a Hamilton cycle.

Corollary 2.7. Let G be a graph of order $n \geq 3$ with minimum degree $\delta(G) \geq n / 2+2$. Then, for every two vertices u, v, there is a u-v path containing all vertices of G.

In Section 5, we will need to use the following defect version of Tutte's 1-factor Theorem [14], due to Berge [2]. Here $q(G)$ denotes the number of components of a graph G of odd order.

Theorem 2.8 (Berge [2]). A graph G contains a set of independent edges covering all but at most d of the vertices if, and only if,

$$
q(G-S) \leq|S|+d
$$

for all $S \subseteq V$.
The next result of Bollobás [3, p.150] will be used in Section 3, as will be the three following results. Note that by the length of a path or a cycle we mean the number of its edges.

Theorem 2.9 (Bollobás [3]). If G is a graph of order n, with $e(G)>n^{2} / 4$, then G contains C_{k} for all $k \in[3,\lceil n / 2\rceil]$.

Theorem 2.10 (Bondy and Simonovits [6]). Let G be a graph of order n and let k be an integer. If $e(G)>100 k n^{1+1 / k}$, then G contains a cycle of length $2 k$.

Theorem 2.11 (Erdős and Gallai [9]). If G is a graph with order n and circumference at most L, then $e(G) \leq(n-1) L / 2$. If G is a graph with order n and with no paths of length at least $L+1$, then $e(G) \leq n L / 2$.

Theorem 2.12 (Györi, Nikiforov and Schelp [10]). Let k, m be positive integers. There exist $n_{0}=n_{0}(k, m)$ and $c=c(k, m)>0$ such that for every nonbipartite graph G on $n>n_{0}$ vertices with minimum degree

$$
\delta(G)>\frac{n}{2(2 k+1)}+c,
$$

if $C_{2 s+1} \subseteq G$, for some $k \leq s \leq 4 k+1$, then $C_{2 s+2 j+1} \subseteq G$ for every $j \in[m]$.

3. Existence of short cycles

In this section we shall prove that unless we are in the extremal case, we have monochromatic cycles of all lengths $\ell \in[4, K]$ for a given integer K. To prove this we shall use the following claim.

Claim 3.1. Let L be an integer. Let n be sufficiently large and let G be a graph of order n with $\delta(G) \geq 3 n / 4$. Suppose that $E(G)=E(R) \cup E(B)$ is a 2-edge colouring of G. If there is a monochromatic C_{3} or C_{5}, then one of R, B contains C_{ℓ} for all odd $\ell \in[5,2 L+1]$.

The proof of Claim 3.1 follows exactly the method used in [12] to show the existence of short odd cycles. Note that we cannot appeal directly to Theorem 1.5, as the assumption there is that $\delta(G)>3 n / 4$, whereas in Theorem 1.6 we assume only that $\delta(G) \geq 3 n / 4$.

Proof. Suppose first that $\Delta(B)>n / 2+4 L$. Let v be a vertex with $d_{B}(v)=\Delta(B)$, and $U=\Gamma_{B}(v)$. If $B[U]$ contains a path of length $2 L$, then using the vertex v, there is a blue C_{ℓ} for all $\ell \in[3,2 L+1]$. Hence $B[U]$ does not contain a path of length $2 L$, and by Theorem 2.11, we have $e(B[U]) \leq L|U|$. However, any vertex $u \in U$ has at most $n / 4-1$ non-neighbours in U and so at least $|U|-n / 4$ neighbours. Therefore,

$$
\begin{aligned}
e(G[U]) & =\frac{1}{2} \sum_{u \in U} d_{G[U]}(u) \\
& \geq \frac{1}{2}|U|\left(|U|-\frac{n}{4}\right) \\
& >\frac{1}{2}|U|\left(\frac{|U|}{2}+2 L\right) .
\end{aligned}
$$

Hence $e(R[U])=e(G[U])-e(B[U])>|U|^{2} / 4$, and, consequently, by Theorem 2.9, $R[U]$ has cycles of all lengths from 3 to $|U| / 2 \geq 2 L+1$.

So we may assume that $\Delta(B) \leq n / 2+4 L$, and hence

$$
\delta(R) \geq \frac{n}{4}-4 L>\frac{n}{6}+c(1, L)
$$

where $c(1, L)$ is the constant from Theorem 2.12. Similarly we may assume that $\delta(B)>$ $n / 6+c(1, L)$. Suppose that there is a monochromatic C_{3} or C_{5} and assume without loss of generality that it is red. Applying Theorem 2.12 to R with $k=1$ and $m=L$, there is a red C_{ℓ} for all odd $\ell \in[5,2 L+1]$ as required.

Now we prove the main result of this section.

Lemma 3.2. Let K be an integer. Let n be sufficiently large and let G be a graph of order n with $\delta(G) \geq 3 n / 4$. If $E(G)=E(R) \cup E(B)$ is a 2-edge colouring of G, then either $C_{\ell} \subseteq R$ or $C_{\ell} \subseteq B$ for all $\ell \in[4, K]$, or $n=4 p, G \cong K_{p, p, p, p}$ and the colouring of G is a 2-bipartite 2-edge colouring.

Proof. Note that the existence of monochromatic C_{ℓ} for all even $\ell \in[4, K]$ is immediate from Theorem 2.10 because one colour class has at least $e(G) / 2 \geq 3 n^{2} / 16$ edges. Hence, by Claim 3.1, it is sufficient to prove that either there is a monochromatic C_{3} or C_{5}, or $n=4 p, G \cong K_{p, p, p, p}$ and the colouring is a 2-bipartite 2-edge colouring.

Suppose that, in fact, none of these occur. Any 2-edge colouring of K_{5} contains a monochromatic C_{3} or C_{5}. Hence we may assume that $K_{5} \nsubseteq G$. Since $e(G) \geq 3 n^{2} / 8=$ $t_{4}(n)$, by Turán's Theorem, we must therefore have that $G \cong T_{4}(n)$. However, $\delta(G) \geq$ $3 n / 4$ implies that $n=4 p$, and hence $G \cong K_{p, p, p, p}$. Let $U_{i}, 1 \leq i \leq 4$, be the independent sets of G of order p.

We may assume that R is not bipartite. Let $C=v_{1} v_{2} \ldots v_{r}$ be a shortest odd cycle of
R; we may assume that $r \geq 7$. We may properly 4 -vertex colour C by setting $c\left(v_{i}\right)=j$ when $v_{i} \in U_{j}$. As C is an odd cycle, there must be three consecutive vertices with different colours under c. Without loss of generality, assume that $c\left(v_{3}\right)=1, c\left(v_{4}\right)=2$ and $c\left(v_{5}\right)=3$.

We will aim to show that $G[V(C)]$ contains a triangle or 5 -cycle which is edge-disjoint from C. Then we may assume that an edge of the triangle or 5 -cycle is red, else we have a monochromatic C_{3} or C_{5}. But this red edge, together with C, will create a shorter red odd cycle than C, contradicting our assumption that C was minimal. We shall find such a triangle or 5 -cycle by case analysis.

If $c\left(v_{1}\right)$ is 2 or 4 , then G contains the triangle $v_{1} v_{3} v_{5}$, as these vertices lie in different U_{j}. Hence $c\left(v_{1}\right) \in\{1,3\}$, and similarly $c\left(v_{7}\right) \in\{1,3\}$.

If $c\left(v_{6}\right)=4$, then G contains the triangle $v_{1} v_{4} v_{6}$. So we may assume that $c\left(v_{6}\right) \neq 4$ and similarly $c\left(v_{2}\right) \neq 4$. Hence $c\left(v_{2}\right) \in\{2,3\}$ and $c\left(v_{6}\right) \in\{1,2\}$. If $c\left(v_{2}\right)=3$ and $c\left(v_{6}\right)=1$, then G contains the triangle $v_{2} v_{4} v_{6}$. Hence, by symmetry, we may assume that $c\left(v_{2}\right)=2$ and $c\left(v_{6}\right) \in\{1,2\}$.

If $c\left(v_{7}\right)=1$, then G contains the triangle $v_{2} v_{5} v_{7}$. Hence $c\left(v_{7}\right)=3$.
If $|C|=7$, then $v_{1} v_{7} \in E(C)$, and $c\left(v_{1}\right)=1$ because c is a proper colouring of G. But then $v_{1} v_{5} v_{2} v_{7} v_{4}$ is a 5 -cycle in G, not containing any edges of C.

So we may assume that $|C|>7$. If $c\left(v_{1}\right)=1$, then $v_{1} v_{4} v_{7}$ is a triangle in G which is edge-disjoint from C. Hence $c\left(v_{1}\right)=c\left(v_{7}\right)=3$. But now, if $c\left(v_{6}\right)=1$, then G contains the triangle $v_{1} v_{4} v_{6}$, while if $c\left(v_{6}\right)=2$, then G contains the triangle $v_{1} v_{3} v_{6}$, giving a contradiction.

Hence, in fact, our assumption was false, and one of the cases of the lemma holds.

4. Existence of long cycles

In order to find long monochromatic cycles, we will use the regularity method. Recall from Section 2 that having applied the Regularity Lemma to the graph G on n vertices, we define a reduced graph H on k vertices. Note that the Regularity Lemma implies that the minimum degree of the reduced graph H is not too much smaller than $\frac{k}{n}$ times the minimum degree of G.

At this point we use the following lemma, proved in Section 5 using extremal arguments, that shows that either there is a monochromatic component of H containing a large matching, or the reduced graph H has one of two particular forms.

Lemma 4.1. Let $0<\delta<1 / 36$ and let G be a graph of sufficiently large order n with $\delta(G) \geq(3 / 4-\delta) n$. Suppose that we are given a 2-edge colouring $E(G)=E(R) \cup E(B)$. Then one of the following holds.
(i) There is a component of R or B which contains a matching on at least $(2 / 3+\delta) n$ vertices.
(ii) There is a set S of order at least $(2 / 3-\delta / 2) n$ such that either $\Delta(R[S]) \leq 10 \delta n$ or $\Delta(B[S]) \leq 10 \delta n$.
(iii) There is a partition $V(G)=U_{1} \cup \cdots \cup U_{4}$ with $\min _{i}\left|U_{i}\right| \geq(1 / 4-3 \delta) n$ such that there are no red edges from $U_{1} \cup U_{2}$ to $U_{3} \cup U_{4}$ and no blue edges from $U_{1} \cup U_{3}$ to $U_{2} \cup U_{4}$.

In the first case, we will need the following lemma, which is also proved in Section 5.

Lemma 4.2. Let $0<\delta<1 / 36$ and let G be a graph of sufficiently large order n with $\delta(G) \geq(3 / 4-\delta) n$. Suppose that we are given a 2-edge colouring $E(G)=E(R) \cup E(B)$. Suppose that there is a monochromatic component containing a matching on at least $(2 / 3+\delta) n$ vertices. Then there is a monochromatic component C containing a matching on at least $(1 / 2+\delta) n$ vertices such that either C contains an odd cycle, or $|V(C)| \geq$ $(1-5 \delta) n$.

To finish our argument in this case we shall use Lemma 2.5 and the next lemma.
Lemma 4.3. Let n be sufficiently large, and let G be a graph of order n with $\delta(G) \geq$ 3n/4. Suppose that $E(G)=E(R) \cup E(B)$ is a 2-edge colouring of G.
(a) If B has an independent set S with $|S|>n / 2$, then $C_{\ell} \subseteq R$ for all $\ell \in[3,|S|]$.
(b) If B is bipartite, then either $C_{\ell} \subseteq R$ for all $\ell \in[4,\lceil n / 2\rceil]$, or n is divisible by four, $G \cong K_{n / 4, n / 4, n / 4, n / 4}$ and the colouring is a 2-bipartite 2-edge colouring.
Both statements remain valid when we interchange B and R.
By analysing the original graph G, we will use the following two lemmas to show that, in cases (ii) and (iii) of Lemma 4.1, we will have the desired monochromatic cycles.

Lemma 4.4. Given $0<\delta<1 / 144$, let ϵ and d be real numbers such that $0<\epsilon \ll d \ll$ δ, where, as usual, \ll means 'sufficiently smaller than'. Let G be a graph of sufficiently large order n with $\delta(G) \geq 3 n / 4$. Suppose that $E(G)=E\left(R_{G}\right) \cup E\left(B_{G}\right)$ is a 2-edge colouring of $G,\left(V_{i}\right)_{i=0}^{k}$ is a partition of $V(G)$ satisfying conditions (R1)-(R5), and let H be the corresponding (ϵ, d)-reduced 2-edge coloured graph.
(a) If there is a set $S \subseteq V(H)$ of order at least $(2 / 3-\delta / 2) k$ such that $\Delta\left(R_{H}[S]\right) \leq 10 \delta k$, then G contains a blue cycle of length ℓ for all $\ell \in[3,(2 / 3-\delta) n]$.
(b) If there is a set $S \subseteq V(H)$ of order at least $(2 / 3-\delta / 2) k$ such that $\Delta\left(B_{H}[S]\right) \leq 10 \delta k$, then G contains a red cycle of length ℓ for all $\ell \in[3,(2 / 3-\delta) n]$.

Lemma 4.5. Given $0<\delta<1 / 144$, let ϵ and d be real numbers such that $0<\epsilon \ll$ $d \ll \delta$. Let G be a graph of sufficiently large order n with $\delta(G) \geq 3 n / 4$. Suppose that $E(G)=E\left(R_{G}\right) \cup E\left(B_{G}\right)$ is a 2-edge colouring of $G,\left(V_{i}\right)_{i=0}^{k}$ is a partition of $V(G)$ satisfying conditions (R1)-(R5), and let H be the corresponding (ϵ, d)-reduced 2-edge coloured graph.

Suppose that there is a partition $V(H)=U_{1} \cup \cdots \cup U_{4}$ with $\min _{i}\left|U_{i}\right| \geq(1 / 4-3 \delta) k$ such that there are no red edges from $U_{1} \cup U_{2}$ to $U_{3} \cup U_{4}$ and no blue edges from $U_{1} \cup U_{3}$ to $U_{2} \cup U_{4}$. Then G contains a monochromatic cycle of length at least $(1-38 \delta) n$ and monochromatic cycles of length ℓ for all $\ell \in[4,\lceil n / 2\rceil]$.

Lemmas 4.3-4.5 will be proved in Section 6. We now prove Theorem 1.6 as outlined above.

4.1. Proof of Theorem 1.6

Choose $0<\delta<1 / 144$ and $0<\epsilon \ll d \ll \delta$. In particular, we may assume that $d \geq \epsilon^{1 / 3}$. Choose $k_{0}>1 / \epsilon^{2}$ so that one can apply Lemmas 4.1 and 4.2 on any graph with at least k_{0} vertices. From Theorem 2.4, we obtain $M=M\left(\epsilon, k_{0}\right)$ and set $K=6 M$. We take n sufficiently large and let G be a graph of order n with $\delta(G) \geq 3 n / 4$, with 2-edge colouring $E(G)=E\left(R_{G}\right) \cup E\left(B_{G}\right)$.

By Lemma 3.2, we have that either $G \cong K_{n / 4, n / 4, n / 4, n / 4}$ and the colouring is a 2 bipartite 2-edge colouring, or G contains a monochromatic C_{ℓ} for all $\ell \in[4, K]$. Hence it is sufficient to prove that either $G \cong K_{n / 4, n / 4, n / 4, n / 4}$ and the colouring is a 2-bipartite 2-edge colouring, or G contains a monochromatic C_{ℓ} for all $\ell \in[K,\lceil n / 2\rceil]$.

We apply the degree form of the 2-colour Regularity Lemma to G, with parameters d and ϵ. Let $V_{0}, V_{1}, \ldots, V_{k}$ be the partition of $V(G)$ satisfying conditions (R1)-(R5), and G^{\prime} be the subgraph of G defined by Theorem 2.4. Finally, let H be the (ϵ, d)-reduced graph defined from G^{\prime} earlier, with 2-edge colouring $E(H)=E\left(R_{H}\right) \cup E\left(B_{H}\right)$.

We first observe that

$$
\begin{equation*}
\delta(H) \geq\left(\frac{3}{4}-\delta\right) k \tag{4.1}
\end{equation*}
$$

Indeed, by (R3), we have $\delta\left(G^{\prime}\right) \geq(3 / 4-2 d-\epsilon) n$. Suppose that $\delta(H)<(3 / 4-\delta) k$. Then there exists some $i \geq 1$ with $d_{H}\left(v_{i}\right)<(3 / 4-\delta) k$. For a vertex $v \in V_{i}$, its neighbours in G^{\prime} are only in V_{0}, or in V_{j} for those j such that $v_{i} v_{j}$ is an edge of H. Hence

$$
d_{G^{\prime}}(v)<\left(\frac{3}{4}-\delta\right) k m+\left|V_{0}\right| \leq\left(\frac{3}{4}-\delta+\epsilon\right) n
$$

which is a contradiction, as $\delta \gg 2 d+2 \epsilon$.
Applying Lemma 4.1 to H, we have one of the following possibilities.
(i) There is a component of R_{H} or B_{H} which contains a matching on at least $(2 / 3+\delta) k$ vertices.
(ii) There is a set S of order at least $(2 / 3-\delta / 2) k$ such that either $\Delta\left(R_{H}[S]\right) \leq 10 \delta k$ or $\Delta\left(B_{H}[S]\right) \leq 10 \delta k$.
(iii) There is a partition $V(H)=U_{1} \cup \cdots \cup U_{4}$ with $\min _{i}\left|U_{i}\right| \geq(1 / 4-3 \delta) k$ such that there are no blue edges from $U_{1} \cup U_{2}$ to $U_{3} \cup U_{4}$ and no red edges from $U_{1} \cup U_{3}$ to $U_{2} \cup U_{4}$.

If (ii) or (iii) occurs, then we are done immediately by Lemma 4.4 and Lemma 4.5 respectively. Hence we assume that there is a component of R_{H} or B_{H} which contains a matching on at least $(2 / 3+\delta) k$ vertices. By Lemma 4.2, we may assume that there is a monochromatic component C which contains a matching on at least $(1 / 2+\delta) k$ vertices, and that either C contains an odd cycle or $|V(C)| \geq(1-5 \delta) k$.

Assume first that

$$
\begin{equation*}
C=R_{H}^{\prime} \text { is a component of } R_{H} . \tag{4.2}
\end{equation*}
$$

If the component R_{H}^{\prime} of R_{H} contains an odd cycle, then we are done because, by Lemma $2.5(\mathrm{~b}), G$ contains red cycles of any length between $4 k$ and $(1 / 2+\delta / 2) n$ and $4 k<K$.

Suppose now that R_{H}^{\prime} contains no odd cycles and hence $\left|V\left(R_{H}^{\prime}\right)\right| \geq(1-5 \delta) k$. Then R_{H}^{\prime} is bipartite, with classes H_{1} and H_{2}. Applying Lemma 2.5(a), we deduce that $C_{\ell} \subseteq$
R_{G} for all even $\ell \in[4,(1 / 2+\delta / 2) n]$. Hence we are done if we can show that G contains a monochromatic C_{ℓ} for all odd $\ell \in[K,\lceil n / 2\rceil]$. We start with the following claim.

Claim 4.6. There are disjoint sets of vertices X and Y with $|X \cup Y| \geq(1-6 \delta) n$ with the following properties.
(a) Between any vertices $u, v \in X$ (or $u, v \in Y$) there are, in $R_{G}[X \cup Y]$, paths of length ℓ for all even $\ell \in[3 k,(1 / 2+\delta / 2) n]$.
(b) Between any $u \in X$ and any $v \in Y$ there are, in $R_{G}[X \cup Y]$, paths of length ℓ for all odd $\ell \in[3 k-1,(1 / 2+\delta / 2) n]$.

Proof. Take a matching M in R_{H}^{\prime} with a maximal number of vertices. Let $r \geq(1 / 2+$ $\delta) k / 2$ be the number of edges in the matching. Since R_{H}^{\prime} is connected, there exists a spanning tree T that contains all edges of M.

For every vertex $v_{i} \in V\left(R_{H}^{\prime}\right)$, fix an edge $D_{i}=v_{i} v_{\ell_{i}}$ in T. Let V_{i}^{\prime} be the set of all vertices in V_{i} with at least $(d-\epsilon) m$ red neighbours in $V_{\ell_{i}}$. By Fact 2.1, we have that $\left|V_{i}^{\prime}\right| \geq(1-\epsilon)\left|V_{i}\right|$.

Let X be the union of all V_{i}^{\prime} such that $v_{i} \in H_{1}$, and Y be the union of all V_{i}^{\prime} such that $v_{i} \in H_{2}$, so that X and Y are subsets of $V(G)$. Notice that

$$
|X \cup Y| \geq\left|H_{1}\right|(1-\epsilon) m+\left|H_{2}\right|(1-\epsilon) m \geq(1-5 \delta) k(1-\epsilon)^{2} \frac{n}{k}>(1-6 \delta) n
$$

Now we show that (a) holds. Let $u, v \in X$ and suppose that $u \in V_{i}^{\prime}$ and $v \in V_{j}^{\prime}$. We claim there is a walk in R_{H}^{\prime} from v_{i} to v_{j}, starting with edge D_{i}, ending with edge D_{j}, containing all edges of M, and whose number of edges is even and at most $3 k$.

Indeed, one starts at v_{i}, continues to $v_{\ell_{i}}$ (using D_{i}), then walks around T using each edge of T twice (including those in M) until coming back to $v_{\ell_{i}}$, then continues to $v_{\ell_{j}}$ via the unique $v_{\ell_{i}}-v_{\ell_{j}}$ path in T, and finally ends in v_{j} (using D_{j}). This walk has at most $1+2(k-1)+(k-1)+1<3 k$ edges. Furthermore, the number of edges in this walk is even, because R_{H}^{\prime} is bipartite and both endpoints of the walk are from the same partition class.

For convenience, denote the vertices of this walk $v_{t_{1}}, v_{t_{2}}, \ldots, v_{t_{\ell}}$, where $v_{t_{1}}=v_{i}, v_{t_{2}}=$ $v_{\ell_{i}}, v_{t_{\ell-1}}=v_{\ell_{j}}$, and $v_{t_{\ell}}=v_{j}$. Using Fact 2.1 repeatedly, we construct a path $P=$ $w_{1}, w_{2} \ldots, w_{\ell}$ in R_{G} such that $w_{1}=u$, $w_{\ell}=v$, and, for $1<j<\ell, w_{j} \in V_{t_{j}}$ has at least $(d-\epsilon) m$ red neighbours in both $V_{t_{j-1}}$ and $V_{t_{j+1}}$.

Consider the edge $w_{t_{j}} w_{t_{j+1}}$. The bipartite graph

$$
R_{j}=R\left[\left(V_{t_{j}} \backslash P\right) \cup\left\{w_{t_{j}}\right\},\left(V_{t_{j+1}} \backslash P\right) \cup\left\{w_{t_{j+1}}\right\}\right]
$$

is (2 ϵ)-regular with density at least $d-\epsilon>\epsilon^{1 / 3} / 2$, and $w_{t_{j}}, w_{t_{j+1}}$ have both large degree in R_{j}. Using Lemma 2.2 with $\beta=\epsilon^{1 / 3}$, we obtain that R_{j} contains a $w_{t_{j}}-w_{t_{j+1}}$ path of any odd length between 3 and $2\left(1-10 \epsilon^{2 / 3}\right)(m-3 k)$.

Hence, by replacing edge $w_{t_{j}} w_{t_{j+1}}$ in P by a $w_{t_{j}-w_{t_{j+1}}}$ path of appropriate odd length in B_{j} for one occurrence $v_{t_{j}} v_{t_{j+1}}$ of each edge in M, we obtain a red $u-v$ path of any even length between $3 k$ and $2\left(1-10 \epsilon^{2 / 3}\right)(m-3 k) r$. Using $\epsilon \ll d \ll \delta$, a short calculation shows that $2\left(1-10 \epsilon^{2 / 3}\right)(m-3 k) r>(1 / 2+\delta / 2) n$.

The proof of (b) is straightforward: if $u \in X$ and $v \in Y$, take any neighbour $w \in X$ of v and apply part (a) to u, w.

If either X or Y contains an internal red edge $u v$, then, by Claim 4.6(a), we have red cycles of all odd lengths between $3 k+1$ and $(1 / 2+\delta / 2) n$. Hence we may assume that X and Y are independent sets in R_{G}. However, if $|X|>n / 2$ or $|Y|>n / 2$, then we are done by Lemma 4.3. Hence we may assume that $|X|,|Y| \leq n / 2$ and, consequently, $\min \{|X|,|Y|\} \geq(1 / 2-6 \delta) n$.

If any vertex w of $V(G) \backslash(X \cup Y)$ has at least one red neighbour in both X and Y, then using the paths between a red neighbour u of w in X and a red neighbour v of w in Y (see Claim 4.6(b)), we have cycles of all odd lengths between $3 k+1$ and $(1 / 2+\delta / 2) n$. Hence all vertices of $V(G) \backslash(X \cup Y)$ have no red neighbours in at least one of X or Y.

Define disjoint sets X^{\prime} and Y^{\prime} by letting X^{\prime} be the set of vertices of $V(G) \backslash(X \cup Y)$ with at least two red neighbours in Y, and Y^{\prime} be the set of vertices of $V(G) \backslash(X \cup Y)$ with at least two red neighbours in X. Then there are no red edges between X^{\prime} and X or between Y^{\prime} and Y. If there is a red edge $u^{\prime} v^{\prime}$ within X^{\prime}, let u and v be distinct vertices of Y with $u u^{\prime}$ and $v v^{\prime}$ both red edges. Then $u u^{\prime} v^{\prime} v$ is a red path of length three between vertices of Y, with internal vertices in $V \backslash(X \cup Y)$. Using the $u-v$ paths obtained from Claim 4.6(a), we have red cycles of all odd lengths between $3 k+3$ and $(1 / 2+\delta / 2) n$.

So we may assume that $R_{G}\left[X \cup X^{\prime} \cup Y \cup Y^{\prime}\right]$ is bipartite with partite sets $X \cup X^{\prime}$ and $Y \cup Y^{\prime}$. We may assume that both $X \cup X^{\prime}$ and $Y \cup Y^{\prime}$ have order at most $n / 2$, otherwise, we are done by Lemma 4.3.

A vertex not in $X \cup X^{\prime} \cup Y \cup Y^{\prime}$ has at least $(3 / 4-6 \delta) n$ neighbours in $X \cup Y$. Let $X^{\prime \prime}$ be the set of vertices not in $X \cup X^{\prime} \cup Y \cup Y^{\prime}$ with at least $(3 / 8-3 \delta) n$ neighbours in X, and $Y^{\prime \prime}$ be the set of vertices not in $X \cup X^{\prime} \cup Y \cup Y^{\prime}$ with at least $(3 / 8-3 \delta) n$ neighbours in Y. Letting $X_{0}=X \cup X^{\prime} \cup X^{\prime \prime}$ and $Y_{0}=Y \cup Y^{\prime} \cup Y^{\prime \prime}$, we see that $V(G)$ is the (not necessarily disjoint) union of X_{0} and Y_{0}.

Without loss of generality, we may assume that $\left|X_{0}\right| \geq n / 2$. By definition, all vertices in $X^{\prime \prime}$ have at least $(3 / 8-3 \delta) n$ neighbours in X. However vertices in $X^{\prime \prime}$ have at most one red neighbour in X, else they would have been in Y^{\prime}. All vertices in $X \cup X^{\prime}$ have at most $n / 4$ non-neighbours in G and so at least $\left|X_{0}\right|-n / 4$ neighbours in X_{0}. Since there at most $\left|X^{\prime \prime}\right|$ red edges between $X^{\prime \prime}$ and X, the set $X^{\prime \prime \prime}$ of vertices in X with a red neighbour in $X^{\prime \prime}$ has order at most $\left|X^{\prime \prime}\right|$. Vertices in $X \backslash X^{\prime \prime \prime}$ have no red neighbours in X_{0}, while vertices in $X^{\prime} \cup X^{\prime \prime \prime}$ have no red neighbours in $X_{0} \backslash X^{\prime \prime}$. Hence

$$
d_{B\left[X_{0}\right]}(v) \geq \begin{cases}\left|X_{0}\right|-\frac{n}{4} & v \in X \backslash X^{\prime \prime \prime} \tag{4.3}\\ \left|X_{0}\right|-\frac{n}{4}-\left|X^{\prime \prime}\right| & v \in X^{\prime \prime \prime} \cup X^{\prime} \\ \left(\frac{3}{8}-3 \delta\right) n-1 & v \in X^{\prime \prime}\end{cases}
$$

Since $\left|X^{\prime} \cup X^{\prime \prime} \cup X^{\prime \prime \prime}\right| \leq\left|X^{\prime} \cup X^{\prime \prime}\right|+\left|X^{\prime \prime}\right| \leq 12 \delta n$, the conditions of Theorem 2.6 are satisfied on the graph $B_{G}\left[X_{0}\right]$, and so $B_{G}\left[X_{0}\right]$ is hamiltonian.

Furthermore, using (4.3), we have

$$
\begin{aligned}
e\left(B_{G}\left[X_{0}\right]\right) \geq & \frac{1}{2}\left(\left|X_{0}\right|-\frac{n}{4}\right)\left|X \backslash X^{\prime \prime \prime}\right|+\left(\left(\frac{3}{16}-\frac{3 \delta}{2}\right) n-\frac{1}{2}\right)\left|X^{\prime \prime}\right| \\
& \quad+\frac{1}{2}\left(\left|X_{0}\right|-\frac{n}{4}-\left|X^{\prime \prime}\right|\right)\left(\left|X^{\prime \prime \prime}\right|+\left|X^{\prime}\right|\right) \\
= & \frac{1}{2}\left|X_{0}\right|\left(\left|X_{0}\right|-\frac{n}{4}\right) \\
& \quad+\left(\left(\frac{3}{16}-\frac{3 \delta}{2}\right) n-\frac{1}{2}-\frac{1}{2}\left(\left|X_{0}\right|-\frac{n}{4}\right)-\frac{1}{2}\left(\left|X^{\prime \prime \prime}\right|+\left|X^{\prime}\right|\right)\right)\left|X^{\prime \prime}\right| \\
\geq & \frac{1}{4}\left|X_{0}\right|^{2}+\left(\left(\frac{1}{16}-\frac{15 \delta}{2}\right) n-\frac{1}{2}\right)\left|X^{\prime \prime}\right| .
\end{aligned}
$$

Here we have used

$$
\begin{aligned}
\frac{1}{2}\left(\left|X_{0}\right|-\frac{n}{4}\right)+\frac{1}{2}\left(\left|X^{\prime \prime \prime}\right|+\left|X^{\prime}\right|\right) & \leq \frac{1}{2}\left(|X|-\frac{n}{4}\right)+\left|X^{\prime}\right|+\left|X^{\prime \prime}\right| \\
& \leq \frac{n}{8}+|V(G) \backslash(X \cup Y)| \\
& \leq\left(\frac{1}{8}+6 \delta\right) n
\end{aligned}
$$

From Theorem 1.2 we deduce that either $B_{G}\left[X_{0}\right]$ is pancyclic, in which case $C_{\ell} \subseteq B_{G}$ for all $\ell \in\left[3,\left|X_{0}\right|\right]$, or $B_{G}\left[X_{0}\right] \cong K_{\left|X_{0}\right| / 2,\left|X_{0}\right| / 2}$ and $e\left(B_{G}\left[X_{0}\right]\right)=\left|X_{0}\right|^{2} / 4$. In the latter case, this means that $X^{\prime \prime}=\emptyset$. Similarly, if $\left|Y_{0}\right| \geq n / 2$, then either $B_{G}\left[Y_{0}\right]$ is pancyclic, or $Y^{\prime \prime}=\emptyset$. Hence we may assume that $X^{\prime \prime}=Y^{\prime \prime}=\emptyset$ and, therefore, B_{G} is bipartite. Thus, by Lemma 4.3, we are done.

Now we only need to discuss what changes if, instead of (4.2), we assume that the component C is a blue component B_{H}^{\prime} of B_{H}.

If the component B_{H}^{\prime} contains an odd cycle, then we are again done by Lemma 2.5(b). Otherwise, B_{H}^{\prime} is bipartite and $\left|V\left(B_{H}^{\prime}\right)\right| \geq(1-5 \delta) k$. Applying Lemma 2.5(a), we again deduce that $C_{\ell} \subseteq B_{G}$ for all even $\ell \in[4,(1 / 2+\delta / 2) n]$. By following the proof of Claim 4.6 with colours red and blue swapped, we realize that the following holds.

Claim 4.7. There are disjoint sets of vertices X and Y with $|X \cup Y| \geq(1-6 \delta) n$ with the following properties.
(a) Between any vertices $u, v \in X$ (or $u, v \in Y$) there are, in $B_{G}[X \cup Y]$, paths of length ℓ for all even $\ell \in[3 k,(1 / 2+\delta / 2) n]$.
(b) Between any $u \in X$ and any $v \in Y$ there are, in $B_{G}[X \cup Y]$, paths of length ℓ for all odd $\ell \in[3 k-1,(1 / 2+\delta / 2) n]$.

Notice that the asymmetry in the definition of the colouring of H is not an issue here: In the proof of Claim 4.6, we only use the fact that the red edges in H correspond to ϵ-regular pairs in G^{\prime} whose density of red edges is at least d. Hence, in the proof of Claim 4.7, we only need the fact that the blue edges in H correspond to ϵ-regular pairs in G^{\prime} whose density of blue edges is at least d.

Having Claim 4.7, we follow the lines of the proof after Claim 4.6 with colours red and blue interchanged. This completes the proof of Theorem 1.6.

5. Proof of Lemmas 4.1 and 4.2

In this section and in Section 6 we shall prove the lemmas used in the proof of Theorem 1.6. More precisely, we give the proofs of Lemma 4.1 and Lemma 4.2 here and leave the proofs of Lemmas 4.3-4.5 to the next section.

Throughout both proofs we shall assume that for a given 2-edge colouring $E(G)=$ $E(R) \cup E(B)$ of a graph G, R^{\prime} is a largest component of R, and that B^{\prime} is a largest component of B.

We will need the following claim about the component structure.
Lemma 5.1. Let $0<\delta<1 / 36$ and let G be a graph of sufficiently large order n with $\delta(G) \geq(3 / 4-\delta) n$. Suppose that we are given a 2-edge colouring $E(G)=E(R) \cup E(B)$. Then one of the following holds.
(a) One of R or B is connected.
(b) For a largest component R^{\prime} of R, and a largest component B^{\prime} of B, we have that $V(G)=V\left(R^{\prime}\right) \cup V\left(B^{\prime}\right)$ and both R^{\prime} and B^{\prime} have order at least $(3 / 4-\delta) n$.
(c) There is a partition $V(G)=U_{1} \cup \cdots \cup U_{4}$ with $\min _{i}\left|U_{i}\right| \geq(1 / 4-3 \delta) n$ such that there are no red edges from $U_{1} \cup U_{2}$ to $U_{3} \cup U_{4}$ and no blue edges from $U_{1} \cup U_{3}$ to $U_{2} \cup U_{4}$.

Proof. Assume that (a) does not hold, that is, both R and B are disconnected. Suppose first that $\left|V\left(R^{\prime}\right)\right| \leq(5 / 12-\delta) n$. Then $\Delta(R)<(5 / 12-\delta) n$ and hence $\delta(B) \geq \delta(G)-$ $\Delta(R)>n / 3$. Since B is disconnected, we see that B has exactly two components $B_{1}=B^{\prime}$ and B_{2} with $n / 3<\left|V\left(B_{2}\right)\right| \leq\left|V\left(B_{1}\right)\right|<2 n / 3$. Set $W_{i}=V\left(B_{i}\right) \cap V\left(R^{\prime}\right)$, for $i \in\{1,2\}$.

Suppose that $W_{i} \neq \emptyset$, for some $i \in\{1,2\}$. Let $v \in W_{i}$. Then v has no neighbours outside $R^{\prime} \cup B_{i}$, and so $\Gamma_{G}(v) \subseteq R^{\prime} \cup B_{i}$. Hence, as $W_{3-i}=V\left(R^{\prime}\right) \backslash V\left(B_{i}\right)$,

$$
\left|W_{3-i}\right| \geq\left|\Gamma_{G}(v)\right|-\left|V\left(B_{i}\right)\right|>\left(\frac{1}{12}-\delta\right) n
$$

In particular $W_{3-i} \neq \emptyset$, and so W_{1} is non-empty if and only if W_{2} is non-empty. As $V\left(R^{\prime}\right)=W_{1} \cup W_{2}$, we see that both W_{1} and W_{2} are therefore non-empty. But then

$$
\begin{aligned}
\left|V\left(R^{\prime}\right)\right|=\left|W_{1}\right|+\left|W_{2}\right| & \geq\left(\frac{3}{4}-\delta\right) n-\left|V\left(B_{1}\right)\right|+\left(\frac{3}{4}-\delta\right) n-\left|V\left(B_{2}\right)\right| \\
& =\left(\frac{1}{2}-2 \delta\right) n
\end{aligned}
$$

This contradicts our assumption that $\left|V\left(R^{\prime}\right)\right| \leq(5 / 12-\delta) n$.
We may thus assume that $\left|V\left(R^{\prime}\right)\right|>(5 / 12-\delta) n$, and similarly $\left|V\left(B^{\prime}\right)\right|>(5 / 12-\delta) n$. Let $W_{1}=V\left(B^{\prime}\right) \cap V\left(R^{\prime}\right), W_{2}=V\left(R^{\prime}\right) \backslash V\left(B^{\prime}\right), W_{3}=V\left(B^{\prime}\right) \backslash V\left(R^{\prime}\right)$ and $W_{4}=V(G)-$ $\left(W_{1} \cup W_{2} \cup W_{3}\right)$. Note that there are no edges (of either colour) between W_{1} and W_{4} or between W_{2} and W_{3}.

If $W_{4}=\emptyset$, then $V(G)=V\left(R^{\prime}\right) \cup V\left(B^{\prime}\right)$. As neither R nor B is connected, we must
have that both W_{2} and W_{3} are non-empty. Let $v \in W_{2}$. Since $\Gamma_{G}(v) \cap W_{3}=\emptyset$, we see that $\left|W_{3}\right| \leq(1 / 4+\delta) n$ and so $\left|V\left(R^{\prime}\right)\right|=\left|W_{1}\right|+\left|W_{2}\right|=n-\left|W_{3}\right| \geq(3 / 4-\delta) n$. We may similarly show that $\left|V\left(B^{\prime}\right)\right| \geq(3 / 4-\delta) n$. Hence, (b) holds.

If, however, $W_{4} \neq \emptyset$, choose any $x \in W_{4}$. As $\Gamma_{G}(x) \cap W_{1}=\emptyset$, we have $\left|W_{1}\right| \leq$ $(1 / 4+\delta) n$. However both R^{\prime} and B^{\prime} have order at least $(5 / 12-\delta) n$ and hence both W_{2} and W_{3} are non-empty. Thus, arguing as for W_{4}, we see that both W_{2} and W_{3} have order at most $(1 / 4+\delta) n$ and so W_{1} is also non-empty. This in turn implies that W_{4} has order at most $(1 / 4+\delta) n$. Hence each W_{i} has order at least $(1 / 4-3 \delta) n$. Furthermore, there is no red edge between $W_{1} \cup W_{2}=V\left(R^{\prime}\right)$ and $W_{3} \cup W_{4}=V(G) \backslash V\left(R^{\prime}\right)$ and no blue edge between $W_{1} \cup W_{3}=V\left(B^{\prime}\right)$ and $W_{2} \cup W_{4}=V(G) \backslash V\left(B^{\prime}\right)$. Hence, (c) holds.

5.1. Proof of Lemma 4.1

Let $0<\delta<1 / 36$. We assume throughout that n is sufficiently large. Suppose that G is a graph of order n with $\delta(G) \geq(3 / 4-\delta) n$ and that we are given a 2-edge colouring $E(G)=E(R) \cup E(B)$ such that the conclusions (i) and (iii) do not hold. Since (i) is not true, we assume that
neither R^{\prime} nor B^{\prime} contains a matching on at least $\left(\frac{2}{3}+\delta\right) n$ vertices.
We are aiming to show that (ii) holds, that is, that there is a large set on which one of the colours has a very low density. We first show that the orders of B^{\prime} and R^{\prime} cannot take certain values.

Claim 5.2. Either $\left|V\left(B^{\prime}\right)\right|<(1 / 3+\delta / 2) n$ or $\left|V\left(B^{\prime}\right)\right|>(2 / 3-\delta / 2) n$.

Proof. Suppose that $(1 / 3+\delta / 2) n \leq\left|V\left(B^{\prime}\right)\right| \leq(2 / 3-\delta / 2) n$. We apply Lemma 5.1: (c) cannot be true because (iii) does not hold, (b) fails because $\left|V\left(B^{\prime}\right)\right|<(3 / 4-\delta) n$, and so (a) must be true. Since B is disconnected, we conclude that R is connected.

Let V_{1} be the smaller of $V\left(B^{\prime}\right)$ and $V \backslash V\left(B^{\prime}\right)$. Let $V_{2}=V \backslash V_{1}$ and $F=G\left[V_{1}, V_{2}\right]$ be the bipartite graph between V_{1} and V_{2}. There are no blue edges between V_{1} and V_{2} and so all edges of F are red. For a subset S of V_{1} we shall find a lower bound on $\left|\Gamma_{F}(S)\right|$ by splitting into the cases that $|S|>(1 / 4+\delta) n$ and $|S| \leq(1 / 4+\delta) n$.

For $S \subseteq V_{1}$ with $|S|>(1 / 4+\delta) n$, consider a vertex $v \in V_{2}$. Then, as $d_{G}(v) \geq$ $(3 / 4-\delta) n, v$ must have a neighbour in S. Hence $\Gamma_{F}(S)=V_{2}$, and so $\left|\Gamma_{F}(S)\right|=\left|V_{2}\right| \geq$ $\left|V_{1}\right| \geq|S|$.

If $S \subseteq V_{1}$ and $|S| \leq(1 / 4+\delta) n$, then every vertex in S has at least $\left|V_{2}\right|-(1 / 4+\delta) n$ neighbours in V_{2}. Hence

$$
\begin{aligned}
\left|\Gamma_{F}(S)\right| & \geq\left|V_{2}\right|-\left(\frac{1}{4}+\delta\right) n \\
& =|S|-\left(\left(\frac{1}{4}+\delta\right) n+|S|-\left|V_{2}\right|\right) \\
& \geq|S|-\left(\left(\frac{1}{2}+2 \delta\right) n-\left|V_{2}\right|\right)
\end{aligned}
$$

Thus by the defect form of Hall's Theorem, F contains a matching with at least

$$
\left|V_{1}\right|-\max \left\{0,\left(\frac{1}{2}+2 \delta\right) n-\left|V_{2}\right|\right\}=\min \left\{\left|V_{1}\right|,\left|V_{1}\right|+\left|V_{2}\right|-\left(\frac{1}{2}+2 \delta\right) n\right\}
$$

edges. As $\left|V_{1}\right|+\left|V_{2}\right|=n$ and $\left|V_{1}\right| \geq(1 / 3+\delta / 2) n$, this matching contains at least $(2 / 3+\delta) n$ vertices. As R is connected, this contradicts (5.1). Hence Claim 5.2 holds.

Let $X_{R}=V(G) \backslash V\left(R^{\prime}\right)$ and $X_{B}=V(G) \backslash V\left(B^{\prime}\right)$. We define the following sets when R^{\prime} or B^{\prime} is large.

Definition. Suppose that $\left|V\left(R^{\prime}\right)\right| \geq(2 / 3+\delta) n$.

- Let $S_{R} \subseteq V\left(R^{\prime}\right)$ be a set such that

$$
q\left(R\left[V\left(R^{\prime}\right)-S_{R}\right]\right)>\left|S_{R}\right|+\left|V\left(R^{\prime}\right)\right|-\left(\frac{2}{3}+\delta\right) n
$$

Note that, in view of (5.1), such a set exists by Theorem 2.8 applied with $d=\left|V\left(R^{\prime}\right)\right|-$ $(2 / 3+\delta) n$.

- For $1 \leq i \leq n$, let $T_{R, i}$ be the set of vertices which lie in components of $R\left[V\left(R^{\prime}\right)-S_{R}\right]$ of order i.
- Let $T_{R}=\bigcup_{1 \leq i \leq t} T_{R, i}$, where $t=\left\lceil\delta^{-1}\right\rceil$.

If $\left|V\left(B^{\prime}\right)\right| \geq(2 / 3+\delta) n$, we define $S_{B}, T_{B, i}$ and T_{B} similarly.

We shall use the following result throughout. Note that, as with Claim 5.2, we may exchange the roles of R and B to obtain a symmetrical version of this result.

Claim 5.3. Suppose that $\left|V\left(R^{\prime}\right)\right| \geq(2 / 3+\delta) n$. Then $\left|S_{R}\right|<(1 / 3+\delta / 2) n$ and

$$
\left|X_{R} \cup T_{R}\right|>\left|S_{R}\right|+\left(\frac{1}{3}-2 \delta\right) n .
$$

Further, if C_{B} is a component of B with $\left|V\left(C_{B}\right)\right| \leq(5 / 12-2 \delta) n$, then $V\left(C_{B}\right) \subseteq S_{R}$.

Proof. All vertices of $V\left(R^{\prime}\right)$ lie in S_{R} or some component of $R\left[V\left(R^{\prime}\right)-S_{R}\right]$. Hence

$$
\begin{aligned}
\left|V\left(R^{\prime}\right)\right| & \geq\left|S_{R}\right|+q\left(R\left[V\left(R^{\prime}\right)-S_{R}\right]\right) \\
& >2\left|S_{R}\right|+\left|V\left(R^{\prime}\right)\right|-\left(\frac{2}{3}+\delta\right) n .
\end{aligned}
$$

This implies that $\left|S_{R}\right|<(1 / 3+\delta / 2) n$.
There are at most $\left|T_{R}\right|$ components of $R\left[V\left(R^{\prime}\right)-S_{R}\right]$ of order at most t. However, there are at most $n / t \leq \delta n$ components of $R\left[V\left(R^{\prime}\right)-S_{R}\right]$ of order at least t. Hence
$\left|T_{R}\right| \geq q\left(R\left[V\left(R^{\prime}\right)-S_{R}\right]\right)-\delta n$. As X_{R} and T_{R} are disjoint, we have

$$
\begin{aligned}
\left|X_{R} \cup T_{R}\right| & \geq n-\left|V\left(R^{\prime}\right)\right|+q\left(R\left[V\left(R^{\prime}\right)-S_{R}\right]\right)-\delta n \\
& >(1-\delta) n-\left|V\left(R^{\prime}\right)\right|+\left|S_{R}\right|+\left|V\left(R^{\prime}\right)\right|-\left(\frac{2}{3}+\delta\right) n \\
& =\left|S_{R}\right|+\left(\frac{1}{3}-2 \delta\right) n .
\end{aligned}
$$

Finally, suppose that C_{B} is a component of B with $\left|V\left(C_{B}\right)\right| \leq(5 / 12-2 \delta) n$. A vertex in C_{B} has blue degree at most $\left|V\left(C_{B}\right)\right|-1$. Hence any vertex in C_{B} must have red degree at least

$$
\begin{align*}
\delta(G)-\left|V\left(C_{B}\right)\right|+1 & \geq\left(\frac{3}{4}-\delta\right) n-\left(\frac{5}{12}-2 \delta\right) n+1 \\
& =\left(\frac{1}{3}+\delta\right) n+1 \tag{5.2}
\end{align*}
$$

A vertex in X_{R} has red degree at most

$$
\left|X_{R}\right|-1=n-\left|V\left(R^{\prime}\right)\right|-1 \leq\left(\frac{1}{3}-\delta\right) n-1
$$

However, a vertex in T_{R} is in a component of $R\left[V\left(R^{\prime}\right)-S_{R}\right]$ of order at most t. Hence, for all $v \in T_{R}$,

$$
\begin{aligned}
d_{R}(v) & \leq t+\left|S_{R}\right| \\
& <\left(\frac{1}{3}+\frac{1}{2} \delta\right) n+t .
\end{aligned}
$$

Hence (5.2) and $n \gg 1 / \delta$ imply that $V\left(C_{B}\right) \cap\left(X_{R} \cup T_{R}\right)=\emptyset$.
Suppose that there exists $v \in V\left(C_{B}\right) \backslash S_{R}$. All blue neighbours of v lie in C_{B}, and so v has no blue neighbours in $X_{R} \cup T_{R}$. However, $V\left(C_{B}\right) \subseteq V\left(R^{\prime}\right)$ because $V\left(C_{B}\right) \cap X_{R}=\emptyset$, and so v has no red neighbours in X_{R}. The only vertices with red neighbours in T_{R} are those in $S_{R} \cup T_{R}$, and so we see that v also has no red neighbours in T_{R}. Hence v has no neighbours in $X_{R} \cup T_{R}$, and so

$$
d_{G}(v) \leq n-\left|X_{R} \cup T_{R}\right|<\left(\frac{2}{3}+2 \delta\right) n
$$

This contradicts $\delta(G) \geq(3 / 4-\delta) n$, and so $V\left(C_{B}\right) \subseteq S_{R}$.

We may thus assume that S_{R} is not much bigger than $n / 3$. The following result shows that if R^{\prime} is very large and S_{R} has order approaching $n / 3$, then $S=V(G) \backslash S_{R}$ is the set we are looking for in (ii).

Claim 5.4. Suppose that $\left|V\left(R^{\prime}\right)\right| \geq(1-5 \delta / 2) n$ and that $\left|S_{R}\right| \geq(1 / 3-2 \delta) n$. Then $R\left[V(G) \backslash S_{R}\right]$ is a graph on at least $(2 / 3-\delta / 2) n$ vertices with maximum degree at most $10 \delta n$.

Proof. That $R\left[V(G) \backslash S_{R}\right]$ is a graph of order at least $(2 / 3-\delta / 2) n$ follows immediately from Claim 5.3.

For all $1 \leq i \leq n$, there are exactly $\left|T_{R, i}\right| / i$ components of order i in $R\left[V\left(R^{\prime}\right) \backslash S_{R}\right]$. Hence

$$
\begin{aligned}
\sum_{i \geq 1} \frac{1}{2 i-1}\left|T_{R, 2 i-1}\right| & =q\left(R\left[V\left(R^{\prime}\right) \backslash S_{R}\right]\right) \\
& >\left|S_{R}\right|+\left|V\left(R^{\prime}\right)\right|-\left(\frac{2}{3}+\delta\right) n
\end{aligned}
$$

However,

$$
\begin{aligned}
\sum_{i \geq 1} \frac{1}{2 i-1}\left|T_{R, 2 i-1}\right| & \leq\left|T_{R, 1}\right|+\frac{1}{3} \sum_{i \geq 2}\left|T_{R, 2 i-1}\right| \\
& \leq\left|T_{R, 1}\right|+\frac{1}{3}\left(\left|V\left(R^{\prime}\right)\right|-\left|S_{R}\right|-\left|T_{R, 1}\right|\right)
\end{aligned}
$$

Combining these inequalities, and using the bounds on $\left|V\left(R^{\prime}\right)\right|$ and $\left|S_{R}\right|$, we have

$$
\begin{aligned}
\frac{2}{3}\left|T_{R, 1}\right| & >\frac{4}{3}\left|S_{R}\right|+\frac{2}{3}\left|V\left(R^{\prime}\right)\right|-\left(\frac{2}{3}+\delta\right) n \\
& \geq \frac{4}{3}\left(\frac{1}{3}-2 \delta\right) n+\frac{2}{3}\left(1-\frac{5 \delta}{2}\right) n-\left(\frac{2}{3}+\delta\right) n \\
& =\left(\frac{4}{9}-\frac{16 \delta}{3}\right) n .
\end{aligned}
$$

Hence $\left|T_{R, 1}\right|>(2 / 3-8 \delta) n$.
However, $T_{R, 1}$ is a set of isolated vertices in $R\left[V(G) \backslash S_{R}\right]$. As $\left|V(G) \backslash S_{R}\right| \leq(2 / 3+2 \delta) n$, we see that $R\left[V(G) \backslash S_{R}\right]$ has maximum degree at most $10 \delta n$.

We may now complete the proof of Lemma 4.1, using the preceding claims. Since (iii) does not hold, by Lemma 5.1, we may assume that
either one of R or B is connected, or $V(G)=V\left(R^{\prime}\right) \cup V\left(B^{\prime}\right)$ and $\min \left\{\left|V\left(R^{\prime}\right)\right|,\left|V\left(B^{\prime}\right)\right|\right\} \geq(3 / 4-\delta) n$.
In either case, there will be a monochromatic component of order at least $(3 / 4-\delta) n>$ $(2 / 3+\delta) n$. We may without loss of generality assume that this component is R^{\prime}. We consider several cases depending on the order of B^{\prime}.

If $\left|V\left(B^{\prime}\right)\right|<(1 / 3+\delta / 2) n$, then every component of B has order at most $(1 / 3+\delta / 2) n$. By Claim 5.3, $\left|S_{R}\right|<(1 / 3+\delta / 2) n$ and S_{R} contains all blue components of order at most $(5 / 12-2 \delta) n$. Since $(5 / 12-2 \delta) n>(1 / 3+\delta / 2) n, S_{R}$ contains all components of B, and hence has order n, a contradiction.

We cannot have $(1 / 3+\delta / 2) n \leq\left|V\left(B^{\prime}\right)\right| \leq(2 / 3-\delta / 2) n$ by Claim 5.2.
If $(2 / 3-\delta / 2) n<\left|V\left(B^{\prime}\right)\right|<(2 / 3+\delta) n$, then, by (5.3), R is connected. Also, all components of B other than B^{\prime} have order at most $(1 / 3+\delta / 2) n$. Hence, by Claim 5.3, S_{R} contains $X_{B}=V(G) \backslash V\left(B^{\prime}\right)$ and so $\left|S_{R}\right|>(1 / 3-\delta) n$. Thus we are done by Claim 5.4.

Finally, suppose that $\left|V\left(B^{\prime}\right)\right| \geq(2 / 3+\delta) n$. In this case, sets $S_{B} \subseteq V\left(B^{\prime}\right)$ and T_{B} are defined, and, in particular, we have that

$$
q\left(B\left[V\left(B^{\prime}\right)-S_{B}\right]\right)>\left|S_{B}\right|+\left|V\left(B^{\prime}\right)\right|-\left(\frac{2}{3}+\delta\right) n .
$$

By Claim 5.3, we see that $X_{R} \subseteq S_{B}$ and $X_{B} \subseteq S_{R}$.
Suppose that there is a vertex $v \in T_{R} \cap T_{B}$. Then v has at most $\left|S_{R}\right|+t$ red neighbours and at most $\left|S_{B}\right|+t$ blue neighbours. As $\left|S_{R}\right|$ and $\left|S_{B}\right|$ both have order at most $(1 / 3+\delta / 2) n$ and $n \gg 1 / \delta$, this contradicts $d_{G}(v) \geq \delta(G) \geq(3 / 4-\delta) n$. Hence $T_{R} \cap T_{B}=\emptyset$.

Suppose that $T_{B} \backslash S_{R}$ is non-empty, and let $v \in T_{B} \backslash S_{R}$. As $X_{R} \subseteq S_{B}$, we have $T_{B} \subseteq$ $V\left(R^{\prime}\right)$. Hence v has no red neighbours in X_{R}. Vertices in T_{R} only have red neighbours in $T_{R} \cup S_{R}$. However, $T_{B} \cap T_{R}=\emptyset$ and so $v \notin T_{R} \cup S_{R}$. In particular, v has no red neighbours in $X_{R} \cup T_{R}$.

Hence, v has at least $\left|X_{R} \cup T_{R}\right|-(1 / 4+\delta) n$ blue neighbours in $X_{R} \cup T_{R}$, as v has at most $(1 / 4+\delta) n$ non-neighbours. However $v \in T_{B}$ and so all but t of its blue neighbours are in S_{B}. Hence

$$
\left|S_{B}\right| \geq\left|X_{R} \cup T_{R}\right|-\left(\frac{1}{4}+\delta\right) n-t>\left|S_{R}\right|+\left(\frac{1}{12}-3 \delta\right) n-t
$$

where the second inequality uses Claim 5.3.
Similarly, if $T_{R} \backslash S_{B}$ is non-empty, then

$$
\left|S_{R}\right|>\left|S_{B}\right|+\left(\frac{1}{12}-3 \delta\right) n-t
$$

As these cannot both occur, one of $T_{R} \backslash S_{B}$ or $T_{B} \backslash S_{R}$ is empty.
We assume without loss of generality that $T_{B} \subseteq S_{R}$. Then S_{R} contains the disjoint sets T_{B} and X_{B}. Hence, using Claim 5.3, again

$$
\left|S_{R}\right| \geq\left|T_{B} \cup X_{B}\right|>\left|S_{B}\right|+\left(\frac{1}{3}-2 \delta\right) n
$$

Thus $\left|S_{R}\right| \geq(1 / 3-2 \delta) n$. As $\left|S_{R}\right|<(1 / 3+\delta / 2) n$, we must have $\left|S_{B}\right| \leq 5 \delta n / 2$. Since $X_{R} \subseteq S_{B}$, we see that $\left|V\left(R^{\prime}\right)\right| \geq(1-5 \delta / 2) n$. Hence, by Claim 5.4, we are done.

This concludes the proof Lemma 4.1. We now prove Lemma 4.2, using similar methods to those used in the proof of Lemma 4.1.

5.2. Proof of Lemma 4.2

Let $0<\delta<1 / 36$. We assume throughout that n is sufficiently large. Suppose that G is a graph of order n with $\delta(G) \geq(3 / 4-\delta) n$ and that we are given a 2-edge colouring $E(G)=E(R) \cup E(B)$.

Suppose that R^{\prime} contains a matching on at least $(2 / 3+\delta) n$ vertices. We may assume that $\left|V\left(R^{\prime}\right)\right|<(1-5 \delta) n$ and R^{\prime} is bipartite with classes Y_{R} and Z_{R}, otherwise we are done. Without loss of generality, we assume that $\left|Z_{R}\right| \geq\left|Y_{R}\right|$ and so $\left|Y_{R}\right| \leq\left|V\left(R^{\prime}\right)\right| / 2<$ $(1 / 2-5 \delta / 2) n$. As each edge of the matching contains one vertex from Z_{R} and one from
Y_{R}, we have

$$
\begin{equation*}
\left(\frac{1}{3}+\frac{\delta}{2}\right) n \leq\left|Y_{R}\right| \leq\left|Z_{R}\right|<\left(\frac{2}{3}-\frac{11 \delta}{2}\right) n \tag{5.4}
\end{equation*}
$$

As in the proof of Lemma 4.1, we let $X_{R}=V(G) \backslash V\left(R^{\prime}\right)$ and $X_{B}=V(G) \backslash V\left(B^{\prime}\right)$. Note that $5 \delta n<\left|X_{R}\right| \leq(1 / 3-\delta) n$. We apply Lemma 5.1. Since $\left|V\left(R^{\prime}\right)\right| \geq(2 / 3+\delta) n$, we are not in case (c) of this lemma because, in that case, each monochromatic component has at most $(1 / 2+6 \delta) n$ vertices. Hence, either B is connected by (a), or, by (b), both R^{\prime} and B^{\prime} have order at least $(3 / 4-\delta) n$. Consequently, $\left|X_{B}\right| \leq(1 / 4+\delta) n$ and $\left|V\left(R^{\prime}\right) \cap V\left(B^{\prime}\right)\right| \geq$ $(1 / 2-2 \delta) n$. Thus, every vertex in $X_{B} \cap X_{R}$ must have a neighbour in $V\left(R^{\prime}\right) \cap V\left(B^{\prime}\right)$, which is a contradiction. So, we must have $X_{B} \cap X_{R}=\emptyset$.

Claim 5.5. $\quad B^{\prime}$ contains a matching on at least $(1 / 2+\delta) n$ vertices.

Proof. Suppose not; then by Theorem 2.8 there is a set $S \subseteq V\left(B^{\prime}\right)$ such that

$$
q\left(B\left[V\left(B^{\prime}\right)-S\right]\right)>|S|+\left|V\left(B^{\prime}\right)\right|-\left(\frac{1}{2}+\delta\right) n
$$

We will apply the same arguments as used in Claim 5.3 to the set S. All vertices of $V\left(B^{\prime}\right)$ lie in S or some component of $B\left[V\left(B^{\prime}\right)-S\right]$. Hence

$$
\begin{aligned}
\left|V\left(B^{\prime}\right)\right| & \geq|S|+q\left(B\left[V\left(B^{\prime}\right)-S\right]\right) \\
& >2|S|+\left|V\left(B^{\prime}\right)\right|-\left(\frac{1}{2}+\delta\right) n
\end{aligned}
$$

This implies that $|S|<(1 / 4+\delta / 2) n$.
We let T_{B} be the set of vertices in components of $B\left[V\left(B^{\prime}\right)-S\right]$ with order at most $t=\left\lceil\delta^{-1}\right\rceil$. Then, as in the proof of Claim 5.3, $\left|T_{B}\right| \geq q\left(B\left[V\left(B^{\prime}\right)-S\right]\right)-\delta n$.

Any vertex in T has blue degree at most

$$
|S|+t-1 \leq\left(\frac{1}{4}+\frac{\delta}{2}\right) n+t-1
$$

and any vertex in X_{B} has blue degree at most

$$
\left|X_{B}\right|-1 \leq\left(\frac{1}{4}+\delta\right) n-1
$$

Also any vertex in X_{R} has red degree at most

$$
\left|X_{R}\right|-1=n-\left|V\left(R^{\prime}\right)\right|-1 \leq\left(\frac{1}{3}-\delta\right) n-1
$$

and any vertex in Z_{R} has red degree at most

$$
\left|Y_{R}\right|<\left(\frac{1}{2}-\frac{5 \delta}{2}\right) n
$$

Hence, any vertex in the intersection of $T_{B} \cup X_{B}$ and $Z_{R} \cup X_{R}$ has degree at most
$(3 / 4-3 \delta / 2) n-1$. Since $\delta(G) \geq(3 / 4-\delta) n$, we deduce that $T_{B} \cup X_{B}$ does not intersect $Z_{R} \cup X_{R}$.

Hence $T_{B} \cup X_{B} \subseteq Y_{R}$. However, T_{B} and X_{B} are disjoint sets, and so

$$
\begin{aligned}
\left|Y_{R}\right| & \geq\left|T_{B} \cup X_{B}\right| \\
& \geq q\left(B\left[V\left(B^{\prime}\right)-S\right]\right)-\delta n+n-\left|V\left(B^{\prime}\right)\right| \\
& >|S|+\left|V\left(B^{\prime}\right)\right|-\left(\frac{1}{2}+\delta\right) n+(1-\delta) n-\left|V\left(B^{\prime}\right)\right| \\
& \geq\left(\frac{1}{2}-2 \delta\right) n,
\end{aligned}
$$

a contradiction with $\left|Y_{R}\right| \leq(1 / 2-5 \delta / 2)$. So B^{\prime} contains a matching on at least $(1 / 2+\delta) n$ vertices.

We will show that B^{\prime} contains all vertices in $X_{R} \cup Z_{R}$. All vertices of G have at most $(1 / 4+\delta) n$ non-neighbours, and so any two vertices have at least $(1 / 2-2 \delta) n$ common neighbours. As $\left|Y_{R}\right| \leq(1 / 2-5 \delta / 2) n$, every pair of vertices in Z_{R} have a common neighbour in $V(G) \backslash Y_{R}$. Since all vertices in Z_{R} have no red neighbours in $V(G) \backslash Y_{R}$, any two vertices in Z_{R} have a common blue neighbour. Hence all vertices of Z_{R} lie in the same blue component. Similarly, if $\left|Z_{R}\right|<(1 / 2-2 \delta) n$ all vertices of Y_{R} lie in a single blue component.

Every vertex in X_{R} has at most $(1 / 4+\delta) n$ non-neighbours in both Y_{R} and Z_{R}. Thus, by (5.4), every vertex in X_{R} has at least one neighbour in both Z_{R} and Y_{R}, which is necessarily blue. Hence $X_{R} \cup Z_{R}$ lies within one component of B. If $\left|Z_{R}\right|<(1 / 2-2 \delta) n$, then B is connected and $B^{\prime}=B$. If B is not connected, then the component of B containing $X_{R} \cup Z_{R}$ has order at least $n-\left|Y_{R}\right| \geq(1 / 2+5 \delta / 2) n$, and hence this component is B^{\prime}.

If $\left|V\left(B^{\prime}\right)\right| \geq(1-5 \delta) n$ or if B^{\prime} is not bipartite, then, in view of Claim 5.5, we are done. So, suppose now that $\left|V\left(B^{\prime}\right)\right|<(1-5 \delta) n$ and B^{\prime} is bipartite, with classes Z_{B} and Y_{B}.

Both $Z_{B} \cap Z_{R}$ and $Y_{B} \cap Z_{R}$ are independent sets of G, and hence have order at most $(1 / 4+\delta) n$. If $\left|Z_{R}\right|<(1 / 2-2 \delta) n$, then, by the above argument, B is connected -a contradiction. So we may assume that $\left|Z_{R}\right| \geq(1 / 2-2 \delta) n$. Hence, as $Z_{R} \subseteq V\left(B^{\prime}\right)=$ $Y_{B} \cup Z_{B}$, both $Z_{B} \cap Z_{R}$ and $Y_{B} \cap Z_{R}$ have order at least $(1 / 4-3 \delta) n$.

Let $v \in X_{R}$. Since $X_{R} \cap X_{B}=\emptyset$, we see that $v \in Z_{B} \cup Y_{B}$. We may assume without loss of generality that $v \in Z_{B}$. Then v has no blue neighbours in Z_{B}, and no red neighbours in Z_{R}. In particular, v has no neighbours of either colour in $Z_{B} \cap Z_{R}$, which is a set of order at least $(1 / 4-3 \delta) n$. As v has at most $(1 / 4+\delta) n$ non-neighbours, it thus has at most $4 \delta n$ non-neighbours in $Y_{R} \subseteq V(G) \backslash\left(Z_{R} \cap Z_{B}\right)$. However, all edges from v to Y_{R} are blue. Thus all but at most $4 \delta n$ vertices in Y_{R} lie in the same blue component as v. However, $v \in V\left(B^{\prime}\right)$, and $X_{R} \cup Z_{R} \subseteq V\left(B^{\prime}\right)$. Hence B^{\prime} contains all but $4 \delta n$ vertices, contradicting our assumption that $\left|V\left(B^{\prime}\right)\right|<(1-5 \delta) n$, and concluding the proof of Lemma 4.2.

6. Proof of Lemmas 4.3-4.5

We shall now prove Lemmas 4.3-4.5, which deal with particular cases arising from the reduced graph. In the proof of Lemma 4.5, we shall be using the graph $G^{\prime} \subseteq G$ defined by the Regularity Lemma.

Proof of Lemma 4.3. Suppose that B has an independent set S with $|S| \geq n / 2$. All vertices in S have at most $n / 4-1$ non-neighbours in G, and so

$$
\delta(R[S]) \geq(|S|-1)-\left(\frac{n}{4}-1\right) \geq \frac{|S|}{2}
$$

By Corollary 1.3, either $R[S]$ is pancyclic, or $R[S] \cong K_{|S| / 2,|S| / 2}$. In the latter case, $\delta(R[S])=|S| / 2$, and so $|S|=n / 2$. Hence, if $|S|>n / 2$, then $C_{\ell} \subseteq R_{G}$ for all $\ell \in[3,|S|]$. This completes the proof of part (a).

In order to see (b), suppose that B is bipartite with classes S_{1} and S_{2}, chosen so that $\left|S_{1}\right| \geq\left|S_{2}\right|$. If $\left|S_{1}\right|>n / 2$, then $C_{\ell} \subseteq R$ for all $\ell \in\left[3,\left|S_{1}\right|\right]$ by part (a), and we are done. Hence we may assume that n is even and $\left|S_{1}\right|=\left|S_{2}\right|=n / 2$. But by the proof of (a) above, we must have either that $C_{\ell} \subseteq R$ for all $\ell \in[3, n / 2]$, or both $R\left[S_{1}\right]$ and $R\left[S_{2}\right]$ are isomorphic to $K_{n / 4, n / 4}$. This implies that n is divisible by four. Also, both $B\left[S_{1}\right]$ and $B\left[S_{2}\right]$ are isomorphic to the empty graph and so $G \cong K_{n / 4, n / 4, n / 4, n / 4}$.

For $i \in\{1,2\}$, let $S_{i, 1}$ and $S_{i, 2}$ be the independent sets of G partitioning S_{i}. Then if R is not bipartite, without loss of generality, there are red edges between $S_{1,1}$ and both $S_{2,1}$ and $S_{2,2}$. Hence there is a red path of length either two or four between a vertex of $S_{2,1}$ and a vertex of $S_{2,2}$, with all internal vertices in S_{1}. As R is complete between $S_{2,1}$ and $S_{2,2}, R$ contains C_{ℓ} for all $\ell \in[4,\lceil n / 2\rceil]$. If, however, R is bipartite then the colouring is a 2-bipartite 2-edge colouring.

Proof of Lemma 4.4. We shall prove part (a) first. Suppose that $S \subset V(H)$ is such that $|S| \geq(2 / 3-\delta / 2) k$ and $\Delta\left(R_{H}[S]\right) \leq 10 \delta k$. We know that $\delta(H) \geq(3 / 4-(2 d+\epsilon)) k$. Hence,

$$
\delta\left(B_{H}[S]\right)>\left(\frac{3}{4}-(2 d+\epsilon)\right) k-10 \delta k>\frac{k}{2} \geq \frac{|S|}{2}
$$

By Corollary 1.3, the graph $B_{H}[S]$ is pancyclic. We repeatedly apply Corollary 2.3 with $\ell=3, \ldots,|S|$ and conclude that B_{G} contains a monochromatic cycle of every length between 3 and $(1-5 \sqrt{\epsilon})(|S|-2) m$. As $m \geq(1-\epsilon) n / k,|S| \geq(2 / 3-\delta / 2) k$ and $\delta \gg$ $\epsilon \gg 1 / k$, we see that

$$
(1-5 \sqrt{\epsilon})(|S|-2) m>(1-5 \sqrt{\epsilon})(1-\epsilon)^{2}\left(\frac{2}{3}-\frac{\delta}{2}\right) n>\left(\frac{2}{3}-\delta\right) n
$$

The proof of (b) follows the same lines, with colours red and blue interchanged.
Notice that the asymmetry of H is not a problem in both proofs because we only use the fact that a red (blue, respectively) edge of H corresponds to an ϵ-regular pair of density at least d in $R_{G^{\prime}}$ (in $B_{G^{\prime}}$, respectively).

6.1. Proof of Lemma 4.5

Our main tools to prove the lemma will be the following two claims. The first excludes a particular structure in a given graph.

Claim 6.1. Let G be a graph on n vertices such that $\delta(G) \geq 3 n / 4$. Then there is no set S of order at most three such that $V(G) \backslash S$ can be partitioned into non-empty sets X_{1}, \ldots, X_{4} such that, for $i=1, \ldots, 4 G$ has no edges between X_{i} and X_{5-i}.

Proof. Suppose that there is such a set S. Then $\sum_{i=1}^{4}\left|X_{i}\right| \geq n-3$, and so, for some $1 \leq i \leq 4$, we have $\left|X_{i}\right| \geq(n-3) / 4$. As $X_{5-i} \neq \emptyset$, we may consider a vertex $v \in X_{5-i}$. Then v has no neighbours in X_{5-i} and is also not adjacent to itself. Hence $d_{G}(v) \leq$ $n-\left(\left|X_{i}\right|+1\right)<3 n / 4$, contradicting the minimal degree of G.

The second claim gives us long monochromatic paths in bipartite subgraphs with large minimum degree. We first need one definition.

Definition. Let G be a graph and U and W be two disjoint subsets of vertices. We say that the bipartite graph $G[U, W]$ is t-complete if every vertex in U has at least $|W|-t$ neighbours in W and every vertex in W has at least $|U|-t$ neighbours in U.

Claim 6.2. Let G be a graph and U and W be two disjoint subsets of vertices. If $G[U, W]$ is t-complete, then the following holds.
(a) For any two vertices $u, w \in U$, the graph $G[U, W]$ contains a $u-w$ path of length ℓ for all even $2 \leq \ell \leq 2 \min \{|U|,|W|-2 t\}$. If $G[U]$ or $G[W]$ contains an edge other than uw, then G also contains a $u-w$ path of length ℓ for every odd $7 \leq \ell \leq 2 \min \{|U|,|W|-$ $2 t\}-1$.
(b) For any two vertices $u \in U$ and $w \in W$, the graph $G[U, W]$ contains a u-w path of length ℓ for all odd $3 \leq \ell \leq 2 \min \{|U|,|W|-2 t\}-1$. If $G[U]$ or $G[W]$ contains an edge, then G also contains a u-w path of length ℓ for every even $6 \leq \ell \leq 2 \min \{|U|,|W|-$ $2 t\}-2$.
(c) The graph G contains cycles of all even lengths between 4 and $2 \min \{|U|,|W|-2 t\}$. If $G[U]$ is non-empty, then G also contains cycles of all odd lengths between 3 and $2 \min \{|U|,|W|-2 t\}-1$.

Proof. Suppose that u, w are two vertices in U, and let $1 \leq r \leq \min \{|U|,|W|-2 t\}$ be given. Consider any sequence $v_{1}, v_{2}, \ldots v_{r}, v_{r+1}$ of distinct vertices in U such that $v_{1}=u$ and $v_{r+1}=w$. Clearly, any two vertices in U have at least $|W|-2 t$ common neigbours. Hence, there are distinct vertices $w_{1}, \ldots, w_{r} \in W$ such that, for all $1 \leq i \leq r, w_{i}$ is a common neighbour of v_{i} and v_{i+1}. Hence,

$$
v_{1} w_{1} v_{2} w_{2} \ldots v_{r} w_{r} v_{r+1}
$$

is a $u-w$ path of length $2 r$.

Let $x y \neq u w$ be an edge in $G[U]$ such that $\{x, y\} \cap\{u, w\}=\emptyset$. Then in the proof above for $r \geq 3$ we take $v_{1}=u, v_{2}=x, v_{3}=y$, and $v_{r+1}=w$, and find distinct common neighbours w_{i} of v_{i} and v_{i+1} for all $1 \leq i \leq r, i \neq 2$. Hence,

$$
v_{1} w_{1} v_{2} v_{3} w_{3} \ldots v_{r} w_{r} v_{r+1}
$$

is a u - w path of length $2 r-1$.
Let $x y \neq u w$ be an edge in $G[U]$ such that $x=u$. In this case, we take $v_{1}=u, v_{2}=y$, and $v_{r+1}=w$, and find distinct common neighbours w_{i} of v_{i} and v_{i+1} for all $2 \leq i \leq r$. Hence,

$$
v_{1} v_{2} w_{2} v_{3} w_{3} \ldots v_{r} w_{r} v_{r+1}
$$

is a $u-w$ path of length $2 r-1, r \geq 3$.
Finally, let $x y$ be an edge in $G[W]$. Then in the proof above we take $v_{1}=u, v_{2}$ to be any neighbour of $w_{2}=x, v_{4}$ to be any neighbour of $w_{3}=y$, and $v_{r+1}=w$. We again find distinct common neighbours w_{i} of v_{i} and v_{i+1} for all $1 \leq i \leq r, i \neq 2,3$. Hence,

$$
v_{1} w_{1} v_{2} w_{2} w_{3} v_{4} \ldots v_{r} w_{r} v_{r+1}
$$

is a $u-w$ path of length $2 r-1, r \geq 4$.
To see (b), take any $u \in U$ and $w \in W$, and let $2 \leq r \leq \min \{|U|,|W|-2 t\}$. We again consider any sequence $v_{1}, v_{2}, \ldots v_{r}$ of distinct vertices in U such that $v_{1}=u$ and $v_{r} \neq u$ is any neighbour of w. For all $1 \leq i \leq r, v_{i}$ and v_{i+1} have $|W|-2 t-1$ common neigbours other than w. Hence, there are distinct vertices $w_{1}, \ldots, w_{r-1} \in W$ such that, for all $1 \leq i \leq r, w_{i} \neq w$ is a common neighbour of v_{i} and v_{i+1}. Hence,

$$
v_{1} w_{1} v_{2} w_{2} \ldots v_{r-1} w_{r-1} v_{r} w
$$

is a $u-w$ path of length $2 r-1$. The proof of the second part of (b) is similar to (a).
The first part of (c) follows from (b) by taking an edge $u w$ in $G[U, W]$. For the second part, take an edge $u w \in G[U]$ and apply part (a).

Proof of Lemma 4.5. We shall first prove that there exists a partition $V(G)=$ $W_{0} \cup W_{1} \cup W_{2} \cup W_{3} \cup W_{4}$ such that
(i) $\left|W_{0}\right| \leq \delta n$ and $\min _{i}\left|W_{i}\right| \geq(1 / 4-4 \delta) n$.
(ii) The graphs $G^{\prime}\left[W_{1}^{i}, W_{4}\right]$ and $G^{\prime}\left[W_{2}, W_{3}\right]$ are empty.
(iii) There are no blue edges from $W_{1} \cup W_{3}$ to $W_{2} \cup W_{4}$ in G^{\prime}.

For $1 \leq i \leq 4$, let $W_{i} \subseteq V(G)$ be the union of the clusters in U_{i}, so that $\left|W_{i}\right| \geq$ $(1 / 4-3 \delta)(1-\epsilon) n$. Note that in G^{\prime} there are no blue edges from $W_{1} \cup W_{3}$ to $W_{2} \cup W_{4}$. Since there are no edges between U_{1} and U_{4} and between U_{2} and U_{3} in H, it follows there are no edges in $G^{\prime}\left[W_{1}, W_{4}\right]$ and $G^{\prime}\left[W_{2}, W_{3}\right]$. Furthermore, as $\epsilon \ll \delta$, we have that

$$
\left|W_{i}\right| \geq\left(\frac{1}{4}-3 \delta\right)(1-\epsilon) n \geq\left(\frac{1}{4}-4 \delta\right)
$$

The set W_{0} contains the vertices from V_{0}, so $\left|W_{0}\right| \leq \epsilon n<\delta n$. Notice that if we later move a constant number of vertices to W_{0}, then (i)-(iii) will still hold.

Recall that $\delta\left(G^{\prime}\right) \geq(3 / 4-\delta) n$ and hence vertices in $W_{1} \cup \cdots \cup W_{4}$ have at most $(1 / 4+\delta) n$ non-neighbours in G^{\prime}. For a vertex in W_{1}, at least $(1 / 4-4 \delta) n$ of these nonneighbours are in W_{4}. Hence vertices in W_{1} are adjacent in G^{\prime} (and hence in G) to all but at most $5 \delta n$ vertices in $W_{1} \cup W_{2} \cup W_{3}$. Similar results hold for W_{2}, W_{3} and W_{4}. Hence,
(iv) $\delta\left(G\left[W_{i}\right]\right) \geq\left|W_{i}\right|-5 \delta n-1$ for all $1 \leq i \leq 4$.
(v) The graphs $R_{G}\left[W_{1}, W_{2}\right]$ and $R_{G}\left[W_{3}, W_{4}\right]$ are $5 \delta n$-complete.

If there is a red edge $u v$ in W_{1} or W_{3}, then, by Claim $6.2, G$ contains red cycles of length ℓ for all $\ell \in[3,(1 / 2-19 \delta) n]$. Otherwise, all edges in $G\left[W_{1}\right]$ and $G\left[W_{3}\right]$ are blue. Since $\left|W_{1}\right|>10 \delta n+2$, we have that $\delta\left(G\left[W_{1}\right]\right)>\left|W_{1}\right| / 2$. By Corollary 1.3, G contains blue cycles of length ℓ for all $\ell \in\left[3,\left|W_{1}\right|\right]$. But there are also two vertex disjoint blue edges between W_{1} and W_{3} because there was a blue edge between U_{1} and U_{3} in H. By (iv), we can join greedily their endpoints in $W_{i}, i \in\{1,3\}$, by a blue path of any length between 2 and $\left|W_{i}\right|-10 \delta n-2$. By concatenating these two paths and two edges, we get a cycle of any length between $\left|W_{1}\right|$ and $\left|W_{1}\right|+\left|W_{3}\right|-20 \delta-4>(1 / 2-29 \delta) n$.

To complete the proof, we need to show that G contains a monochromatic cycle of length ℓ for all $\ell \in[(1 / 2-29 \delta) n,\lceil n / 2\rceil]$, and a monochromatic cycle of length at least $(1-38 \delta) n$. We distinguish two cases.

Case 1: there are two red edges in $G\left[W_{i}\right]$ for some $i \in\{1,2,3,4\}$.
Without loss of generality assume that $G\left[W_{1}\right]$ contain two red edges. Suppose that there are two disjoint paths P_{1} and P_{2} from $W_{1} \cup W_{2}$ to $W_{3} \cup W_{4}$ in R_{G}. Let P_{1} have endpoints u in $W_{1} \cup W_{2}$ and u^{\prime} in $W_{3} \cup W_{4}$ and let P_{2} have endpoints w in $W_{1} \cup W_{2}$ and w^{\prime} in $W_{3} \cup W_{4}$. By restricting to a smaller path if necessary, we may assume that all internal vertices of P_{1} and P_{2} are in W_{0}. Note that this also includes the case when there are two vertex disjoint red edges between $W_{1} \cup W_{2}$ and $W_{3} \cup W_{4}$.

We now use Claim 6.2 to find $u-w$ paths of length ℓ for all $\ell \in[6,(1 / 2-19 \delta) n]$ in $R\left[W_{1}, W_{2}\right]$. However, Claim 6.2 also implies that $R_{G}\left[W_{3}, W_{4}\right]$ contains $u^{\prime}-w^{\prime}$ paths of length ℓ for all $\ell \in[6,(1 / 2-19 \delta) n]$ of a given parity. By concatenating these paths with P_{1} and P_{2} we see that in this case we have monochromatic cycles of length ℓ for all $\ell \in[14,(1-38 \delta) n]$.

So, we may assume that there are no two vertex disjoint red paths from $W_{1} \cup W_{2}$ to $W_{3} \cup W_{4}$ in R_{G}. By a corollary of Menger's Theorem, there is a vertex v_{R} such that there are no red paths from $W_{1} \cup W_{2}$ to $W_{3} \cup W_{4}$ in $G-\left\{v_{R}\right\}$. Hence, the set W_{0} spilts into sets W_{12}, W_{34} such that there are no red edges between $W_{1} \cup W_{2} \cup W_{12}$ and $W_{3} \cup W_{4} \cup W_{34}$ in $G-\left\{v_{R}\right\}$. If there is also a vertex v_{B} such that there are no blue paths from $W_{1} \cup W_{3}$ to $W_{2} \cup W_{4}$ in $G-\left\{v_{B}\right\}$, then we can split W_{12} into $W_{1}^{\prime}, W_{2}^{\prime}$ and W_{34} into $W_{3}^{\prime}, W_{4}^{\prime}$ so that there are no edges between $X_{i}:=W_{i} \cup W_{i}^{\prime}$ and $X_{5-i}=W_{5-i} \cup W_{5-i}^{\prime}$. Taking $S=\left\{v_{R}, v_{B}\right\}$, we have a contradiction to Claim 6.1. Hence we may assume that there are two disjoint blue paths between $W_{1} \cup W_{3}$ and $W_{2} \cup W_{4}$. Similarly to the above, applying Claim 6.2 to the ends of these paths in $B_{G}\left[W_{1}, W_{3}\right]$ and $B_{G}\left[W_{2}, W_{4}\right]$, there is a blue cycle of length at least $(1-38 \delta) n$. Moreover, if there are two blue edges in $G\left[W_{i}\right]$ for some i, then we get blue cycles of length ℓ for all $\ell \in[14,(1-38 \delta) n]$.

So, by moving at most eight vertices to W_{0}, we may assume that all edges of each $G\left[W_{i}\right]$ are red. To complete the proof in Case 1, we need to show that G contains a monochromatic cycle of length ℓ for all $\ell \in[(1 / 2-29 \delta) n,\lceil n / 2]]$.

Suppose that some vertex $v \in W_{0}$ has at least $(1 / 2+8 \delta) n+3$ blue neighbours. Then it must have at least two blue neighbours in at least three of the sets W_{i}. If there is no blue path P from $W_{1} \cup W_{3}$ to $W_{2} \cup W_{4}$ in $G-\{v\}$, then, as above, we would have a contradiction with Claim 6.1 applied with $S=\left\{v, v_{R}\right\}$. Hence, let P be a blue path from $W_{1} \cup W_{3}$ to $W_{2} \cup W_{4}$ in $G-\{v\}$. Without loss of generality, we may assume that P has endpoints $u_{1} \in W_{1}$ and $u_{2} \in W_{2}$ and all internal vertices of P are in W_{0}. Again, this includes the case of a single edge between $W_{1} \cup W_{3}$ an $W_{2} \cup W_{4}$. Suppose that v has at least two blue neighbours in each of W_{1}, W_{2} and W_{3}, the other cases being similar. We may find $w_{1} \in W_{1}, w_{2} \in W_{2}$ and $w_{3} \in W_{3}$ with $\left\{u_{1}, u_{2}\right\} \cap\left\{w_{1}, w_{2}, w_{3}\right\}=\emptyset$ such that each of w_{1}, w_{2} and w_{3} are blue neighbours of v.

By Claim 6.2 we have the following paths:

- for all even $\ell \in[6,(1 / 2-19 \delta) n], B_{G}\left[W_{2}, W_{4}\right]$ contains a $u_{2}-w_{2}$ path P_{ℓ} of length ℓ;
- for all even $\ell^{\prime} \in[6,(1 / 2-19 \delta) n], B_{G}\left[W_{1}, W_{3}\right]$ contains a $u_{1}-w_{1}$ path $P_{\ell^{\prime}}^{\prime}$ of length ℓ^{\prime};
- for all odd $\ell^{\prime \prime} \in[7,(1 / 2-19 \delta) n], B_{G}\left[W_{1}, W_{3}\right]$ contains a $u_{1}-w_{3}$ path $P_{\ell^{\prime \prime}}^{\prime \prime}$ of length $\ell^{\prime \prime}$.

Then, for all even $\ell, \ell^{\prime} \in[6,(1 / 2-19 \delta) n]$, the path

$$
u_{2} P_{\ell} w_{2} v w_{1} P_{\ell^{\prime}}^{\prime} u_{1}
$$

is a blue $u_{1}-u_{2}$ path of length $2+\ell+\ell^{\prime}$ which is internally disjoint from P. Similarly, for all even $\ell \in[6,(1 / 2-19 \delta) n]$ and odd $\ell^{\prime \prime} \in[6,(1 / 2-19 \delta) n]$, the path

$$
u_{2} P_{\ell} w_{2} v w_{3} P_{\ell^{\prime \prime}}^{\prime \prime} u_{1}
$$

is a blue $u_{1}-u_{2}$ path of length $2+\ell+\ell^{\prime \prime}$ which is internally disjoint from P.
Hence, for all $L \in[14,(1-38 \delta) n]$, there is a blue $u_{1}-u_{2}$ path of length L which is internally disjoint from P. Since $|P| \leq\left|W_{0}\right|+2 \leq 2 \delta n$, this gives blue cycles of length L for all $L \in[2 \delta n+14,(1-38 \delta) n]$. Since $2 \delta n+14<(1 / 2-29 \delta) n$, we are done.

Thus, we may assume that each vertex in W_{0} has blue degree at most $(1 / 2+8 \delta) n+3$, and so red degree at least $(1 / 4-8 \delta) n-3$. Let C_{1} be the red component of $G-\left\{v_{R}\right\}$ containing $W_{1} \cup W_{2}$ and C_{2} be the red component of $G-\left\{v_{R}\right\}$ containing $W_{3} \cup W_{4}$. We know that $R_{G}\left[W_{1} \cup W_{2}\right]$ and $R_{G}\left[W_{3} \cup W_{4}\right]$ are connected, and the minimal red degree condition on W_{0} ensures that there are at most two components in $R_{G}\left[V-\left\{v_{R}\right\}\right]$. As v_{R} has red degree at least $(1 / 4-8 \delta) n-3$, it has at least $(1 / 8-5 \delta) n$ red neighbours in at least one of C_{1} or C_{2}. Let C_{i}^{\prime} be the set C_{i}, with v_{R} added if it has at least $(1 / 8-5 \delta) n$ red neighbours in C_{i}.

Then $\left|C_{1}^{\prime}\right|+\left|C_{2}^{\prime}\right| \geq n$ and so we may assume without loss of generality that $\left|C_{1}^{\prime}\right| \geq\lceil n / 2\rceil$. All vertices in C_{1}^{\prime} have degree in $R_{G}\left[C_{1}^{\prime}\right]$ at least $(1 / 8-5 \delta) n$. Further, all vertices in $C_{1}^{\prime} \backslash\left|W_{0}\right|$ have degree in $R_{G}\left[C_{1}^{\prime}\right]$ at least $\left|C_{1}^{\prime}\right|-6 \delta n$. As $\left|C_{1}^{\prime}\right| \leq(1 / 2+8 \delta) n$ and $\left|W_{0}\right| \leq \delta n$, the condition of Theorem 2.6 holds on $R_{G}\left[C_{1}^{\prime}\right]$ and so $R_{G}\left[C_{1}^{\prime}\right]$ is hamiltonian. But we also
have

$$
\begin{aligned}
e\left(R_{G}\left[C_{1}^{\prime}\right]\right) & \geq \frac{1}{2}\left(\left|C_{1}^{\prime}\right|-6 \delta n\right)\left(\left|C_{1}^{\prime}\right|-\left|V_{0}\right|\right) \\
& >\frac{1}{4}\left|C_{1}^{\prime}\right|^{2} .
\end{aligned}
$$

Hence, by Theorem 1.2, $R_{G}\left[C_{1}^{\prime}\right]$ is pancyclic and we are done with Case 1.
Case 2: for every $i=1,2,3,4$, there is at most one red edge in $G\left[W_{i}\right]$.
By moving at most four vertices attached to a red edge in $G\left[W_{i}\right]$ to W_{0}, we may assume that all edges of $G\left[W_{i}\right]$ are blue for all $i=1,2,3,4$.

By (iv) and Corollary 1.3, G contains blue cycles of length ℓ for all $\ell \in\left[3,\left|W_{1}\right|\right]$. But there are also two vertex disjoint blue edges between W_{1} and W_{3} because there was a blue edge between U_{1} and U_{3} in H. Using (iv), we can join greedily their endpoints in $W_{i}, i \in\{1,3\}$, by a blue path of any length between 2 and $\left|W_{i}\right|-10 \delta n-2$. By concatenating these two paths and two edges, we get a cycle of any length between $\left|W_{1}\right|$ and $\left|W_{1}\right|+\left|W_{3}\right|-20 \delta-4>(1 / 2-29 \delta) n$. Hence, G contains blue cycles of all lengths between 3 and $\left|W_{1}\right|+\left|W_{3}\right|-20 \delta n$. Moreover, the same argument gives that for any two vertices u, w in $W_{1} \cup W_{3}$, there are blue $u-w$ paths of every length between 8 and $\left|W_{1}\right|+\left|W_{3}\right|-20 \delta n$. The same is true in $B_{G}\left[W_{2} \cup W_{4}\right]$.

Consequently, there are no two internally disjoint paths between $W_{1} \cup W_{3}$ and $W_{2} \cup W_{4}$ in B_{G}. Hence, there exists a vertex v_{B} such that, in $G-v_{B}$, there are no blue paths from $W_{1} \cup W_{3}$ to $W_{2} \cup W_{4}$.

Now we essentially follow the proof in Case 1, with colours red and blue interchanged: There must exist two internally disjoint red paths from $W_{1} \cup W_{2}$ to $W_{3} \cup W_{4}$, otherwise we would get a contradiction with Claim 6.1. Consequently, we join their endpoints by red paths in $R_{G}\left[W_{1} \cup W_{2}\right]$ and $R_{G}\left[W_{3} \cup W_{4}\right]$ to get a red cycle of length at least $(1-38 \delta) n$.

If there is a vertex in W_{0} with at least $(1 / 2+8 \delta) n+3$ red neighbours, then we are done as in Case 1. Hence, we may assume that every vertex of W_{0} has at least $(1 / 4-8 \delta) n-3$ blue neighbours. Hence, we may partition W_{0} into sets $W_{1}^{\prime}, \ldots, W_{4}^{\prime}$, so that each vertex in W_{i}^{\prime} has at least $(1 / 16-3 \delta) n$ blue neighbours in W_{i}. It follows that either $\left|W_{1} \cup W_{1}^{\prime} \cup W_{3} \cup W_{3}^{\prime}\right| \geq\lceil n / 2\rceil$ or $\left|W_{2} \cup W_{2}^{\prime} \cup W_{4} \cup W_{4}^{\prime}\right| \geq\lceil n / 2\rceil$.

Without loss of generality, suppose that $\left|W_{1} \cup W_{1}^{\prime} \cup W_{3} \cup W_{3}^{\prime}\right| \geq\lceil n / 2\rceil$. By removing vertices, if necessary, we may assume that $\left|W_{1} \cup W_{1}^{\prime} \cup W_{3} \cup W_{3}^{\prime}\right|=\lceil n / 2\rceil$. We construct a blue cycle on $\lceil n / 2\rceil$ vertices as follows. Take two vertex disjoint blue edges $u_{1} u_{3}$, $v_{1} v_{3}$ such that $u_{1}, v_{1} \in W_{1}$ and $u_{3}, v_{3} \in W_{3}$. Take any two vertices $w_{1} \in W_{1}$ and $w_{3} \in W_{3}$ distinct from $u_{1}, v_{1}, u_{3}, v_{3}$. By (iv) and by the definition of W_{i}^{\prime}, one can greedily construct blue $u_{i}-w_{i}$ path P_{i} containing all the vertices of W_{i}^{\prime}, avoiding v_{i}, and not having more than $3 \delta n$ vertices. Then, by (iv), the induced sub-graph $B_{G}\left[\left(W_{i} \backslash V\left(P_{i}\right)\right) \cup\left\{w_{i}\right\}\right]$ satisfies the assumptions of Corollary 2.7, and so it must contain a blue $v_{i}-w_{i}$ path P_{i}^{\prime}. By concatenating paths $P_{1}, P_{1}^{\prime}, P_{3}, P_{3}^{\prime}$ and edges $u_{1} u_{3}, v_{1} v_{3}$, we obtain a blue cycle on $\lceil n / 2\rceil$ vertices. Clearly, by omitting some vertices from $W_{1}^{\prime}, W_{3}^{\prime}$ and W_{1}, we can obtain a blue cycle of any length between $(1 / 2-29 \delta) n$ and $\lceil n / 2\rceil$.

7. Monochromatic circumference

In this section we shall look at the monochromatic circumference of a graph. We begin by proving Theorem 1.8.

Proof of Theorem 1.8. As in the proof of Theorem 1.6, we consider the reduced graph H, which has order k and minimal degree at least $(3 / 4-\delta) k$. Applying Lemma 4.1 to H, we have one of the following.
(i) There is a component of R_{H} or B_{H} which contains a matching on at least $(2 / 3+\delta) k$ vertices.
(ii) There is a set S of order at least $(2 / 3-\delta / 2) k$ such that either $\Delta\left(R_{H}[S]\right) \leq 10 \delta k$ or $\Delta\left(B_{H}[S]\right) \leq 10 \delta k$.
(iii) There is a partition $V(H)=U_{1} \cup \cdots \cup U_{4}$ with $\min _{i}\left|U_{i}\right| \geq(1 / 4-3 \delta) k$ such that there are no blue edges from $U_{1} \cup U_{2}$ to $U_{3} \cup U_{4}$ and no red edges from $U_{1} \cup U_{3}$ to $U_{2} \cup U_{4}$.
In the first case, we use Lemma 2.5(a) to find a monochromatic cycle of length at least $(2 / 3+\delta / 2) n$. In the second case, assume without loss of generality that $\Delta\left(R_{H}[S]\right) \leq$ $10 \delta k$. Then, by Lemma 4.4, G contains a blue cycle of length ℓ for all $\ell \in[3,(2 / 3-\delta) n]$. In the third case, Lemma 4.5 implies that G contains a monochromatic cycle of length at least $(1-38 \delta) n \geq(2 / 3+\delta) n$.

We will make the following definition.
Definition. For $0<c<1$, let $\Phi=\Phi_{c}$ be the supremum of values ϕ such that any graph G of sufficiently large order n with $\delta(G)>c n$ and a 2-colouring $E(G)=E(R) \cup E(B)$ has monochromatic circumference at least ϕn.

For $c \geq 3 / 4$, Theorem 1.8 implies that $\Phi_{c} \geq 2 / 3$. However, the example given after Theorem 1.8 shows that $\Phi_{c} \leq 2 / 3$ for all c. We can also find upper and lower bounds for Φ_{c} when $c<3 / 4$, and we collect them into the following theorem.

Theorem 7.1. For all $c \geq 3 / 4$, we have $\Phi_{c}=2 / 3$. For all $c \in(0,1)$, we have $\Phi_{c} \geq c / 2$. Also, there are the following upper bounds on Φ_{c}.

$$
\Phi_{c} \leq \begin{cases}\frac{1}{2} & c \in\left[\frac{3}{5}, \frac{3}{4}\right) \\ \frac{2}{5} & c \in\left[\frac{5}{9}, \frac{3}{5}\right) \\ \frac{1}{r} & c<\frac{2 r-1}{r^{2}} \text { for all } r \geq 3\end{cases}
$$

Note that, as $c \rightarrow 0$, we may use the last upper bound to show that $\Phi_{c} /(c / 2) \rightarrow 1$. Hence, asymptotically, as $c \rightarrow 0$, the upper and lower bounds on Φ_{c} agree.

Proof of Theorem 7.1. For $c \in(0,1)$, every 2-edge coloured graph with $\delta(G)>c n$ has at least $\mathrm{cn}^{2} / 2$ edges. Hence, there are at least $\mathrm{cn}^{2} / 4$ edges of one colour. We may deduce from Theorem 2.11 that, in that colour, there is a cycle of length at least $\mathrm{cn} / 2$. Hence $\Phi_{c} \geq c / 2$ for all $c \in(0,1)$. Next, we prove the upper bounds on Φ_{c}.

For $c \in[5 / 9,3 / 5)$, let t be an integer such that $t>1 /(3-5 c)$ and let $n=5 t$. We define a graph G_{t}^{\prime} as follows. Let S_{1} and S_{2} be sets of order $2 t$ and T be a set of order t. Let R be the union of the complete graph on S_{1} and the complete graph on S_{2}. Then R has circumference $2 t$. Let B be the union of the complete graph on T and the complete bipartite graph between T and $S_{1} \cup S_{2}$. Then, any two consecutive vertices of a cycle in B must contain a vertex of T and hence B has circumference at most $2 t$. Let G_{t}^{\prime} be the union of R and B. Therefore $\delta(G)=3 t-1>5 t c=c\left|G_{t}^{\prime}\right|$ and so $\Phi_{c} \leq 2 / 5$.

Figure 1. The graph $G_{t}^{(3)}$

Assume now that $c \in\left(0, \frac{2 r-1}{r^{2}}\right)$ for a given $r \geq 2$. We aim to show that $\Phi_{c} \leq 1 / r$. Note that when $r=2$ this gives the bound $\Phi_{c} \leq 1 / 2$ for $c<3 / 4$. Let t be an integer such that $t>1 /\left(2 r-1-r^{2} c\right)$ and let $n=t r^{2}$. Define a family $\left\{A_{i, j}: 1 \leq i \leq r, 1 \leq j \leq r\right\}$ of sets of order t. We define the following graphs on vertex set $\bigcup_{i, j} A_{i, j}$:

$$
\begin{aligned}
& E(B)=\left\{u v: u \in A_{i, j}, v \in A_{i, j^{\prime}} \text { for some } 1 \leq i \leq r \text { and } j \neq j^{\prime}\right\} \\
& E(R)=\left\{u v: u \in A_{i, j}, v \in A_{i^{\prime}, j} \text { for some } 1 \leq j \leq r .\right\}
\end{aligned}
$$

Let $G_{t}^{(r)}$ be the union of the graphs R and B, as illustrated in Figure 1, for the case $r=3$. Then $\delta\left(G_{r, t}^{\prime \prime}\right)=(2 r-1) t-1>c t r^{2}=c\left|G_{t}^{(r)}\right|$. However, as all monochromatic components have order $r t$, there are no monochromatic cycles of length greater than n / r. Hence $\Phi_{c} \leq 1 / r$.

8. Conclusion

Theorem 1.6 is a 2 -colour version of the uncoloured (or 1-coloured) result of Bondy that all graphs with order $n \geq 3$ and minimum degree at least $n / 2$ are either pancyclic or isomorphic to $K_{n / 2, n / 2}$. We may hope to generalise to k colours. In this case, we let $E(G)=\bigcup_{i=1}^{k} E\left(G_{i}\right)$ be an edge colouring, where each G_{i} is a spanning subgraph of G, representing the edges coloured i. Our extremal graph was found by letting both R and B be subgraphs of the extremal graph in the uncoloured case, and we again use this method to find k-coloured graphs with high minimum degree but no odd cycles.

Definition. Let $n=2^{k} p$ and let G be isomorphic to the 2^{k}-partite graph with classes all of order p. A k-bipartite k-edge colouring of G is a k-edge colouring $E(G)=\bigcup_{i=1}^{k} E\left(G_{i}\right)$ such that each G_{i} is bipartite.

As in the 2-coloured case, we can deduce that a k-bipartite k-edge colouring of the 2^{k} partite graph with classes all of order p induces a labelling $U_{\alpha}, \alpha \in\{1,2\}^{k}$, of the classes such that, for all i, the graph G_{i} is bipartite with classes

$$
\bigcup_{\alpha: \alpha_{i}=1} U_{\alpha}
$$

and

$$
\bigcup_{\alpha: \alpha_{i}=2} U_{\alpha}
$$

Note that this implies that, if α and β in $\{1,2\}^{k}$ differ only in the i th place, then all edges between U_{α} and U_{β} are coloured with i. As this graph has minimum degree $\left(1-2^{-k}\right) n$, we make the following conjecture.

Conjecture 8.1. Let $n \geq 3$, and k be an integer. Let G be a graph of order n with $\delta(G) \geq\left(1-2^{-k}\right) n$. If $E(G)=\bigcup_{i=1}^{k} E\left(G_{i}\right)$ is a k-edge colouring, then either:

- for all $\ell \in\left[\min \left\{2^{k}, 3\right\},\left\lceil n / 2^{k-1}\right\rceil\right]$ there is some $1 \leq i \leq k$ such that $C_{\ell} \subseteq G_{i}$, or;
- $n=2^{k} p, G$ is the complete 2^{k}-partite graph with classes of order p, and the colouring is a k-biparitite k-edge colouring.

Note that the case when $k=1$ is Bondy's Theorem, and Theorem 1.6 is the case $k=2$ for large n. We pose the following problem about the monochromatic circumference.

Problem 8.2. What is the value of Φ_{c} for $c<3 / 4$?

Note that Theorem 7.1 shows that $\Phi_{c}=2 / 3$ for all $c \geq 3 / 4$. In this case, we make the following conjecture with an exact bound on the monochromatic circumference.

Conjecture 8.3. Let G be a graph of order n with $\delta(G) \geq 3 n / 4$. Let $n=3 t+r$, where $r \in\{0,1,2\}$. If $E(G)=E\left(R_{G}\right) \cup E\left(B_{G}\right)$ is a 2-edge colouring, then G has monochromatic circumference at least $2 t+r$.

Note that Theorem 1.8 is an asymptotic version of this conjecture. By considering the graph $F_{t, 2 t+r}$ as defined in Section 1, we see that this conjecture is best possible. For the latest progress on Conjecture 8.3, the reader should consult [4].

9. Acknowledgment

The authors would like to thank the referee for the thorough review and helpful comments and suggestions.

References

[1] F. Benevides and J. Skokan. The 3-colored Ramsey number of even cycles. J. Comb. Theory, Ser. B, 99:690-708, 2009.
[2] C. Berge. Sur le couplage maximum d'un graphe. C.R. Acad. Sci. Paris, 247:258-259, 1958. (in French).
[3] B. Bollobás. Extremal Graph Theory. Academic Press Inc., 1978.
[4] B. Bollobás, F. Benevides, T. Łuczak, and J. Skokan. Graphs with large minimum degrees arrow even cycles. manuscript, 2011.
[5] J. Bondy. Pancyclic graphs I. J. Comb. Theory, Ser. B, 11:80-84, 1971.
[6] J. Bondy and M. Simonovits. Cycles of even lengths in graphs. J. Comb. Theory, Ser. B, 16:97-105, 1974.
[7] V. Chvátal. On Hamilton's ideals. J. Comb. Theory, Ser. B, 12:163-168, 1972.
[8] G. Dirac. Some theorems on abstract graphs. Proc. London Math. Soc., 2:69-81, 1952.
[9] P. Erdős and T. Gallai. On maximal paths and circuits of graphs. Acta Math. Acad. Sci. Hungar., 10:337-356, 1959.
[10] E. Györi, V. Nikiforov, and R. Schelp. Nearly bipartite graphs. Disc. Math., 272:187-196, 2003.
[11] J. Komlós and M. Simonovits. Szemerdi's regularity lemma and its applications in graph theory. Bolyai Society Mathematical Studies 2, Combinatorics, Paul Erds is Eighty, 2:295352, 1996.
[12] H. Li, V. Nikiforov, and R. Schelp. A new type of Ramsey-Turán problems. Disc. Math., 310:3579-3583, 2010.
[13] E. Szemerédi. Regular Partitions of Graphs. Colloques Internationaux C.N.R.S - Problèmes Combinatoires et Théorie des Graphes, 260:399-401, 1976.
[14] W. Tutte. A factorization of linear graphs. J. London Math. Soc., 22:107-111, 1947.

[^0]: \dagger Partially supported by CNPq.
 \ddagger Partially supported by the Foundation for Polish Science.
 § Corresponding author.

