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Abstract

A theorem of Rödl says that for every graph H, and every ε > 0, there exists δ > 0 such that if G is
a graph that has no induced subgraph isomorphic to H, then there exists X ⊆ V (G) with |X| ≥ δ|G|
such that one of G[X], G[X] has at most ε

(|X|
2

)
edges. But for fixed H, how does δ depends on ε?

If the dependence is polynomial, then H satisfies the Erdős-Hajnal conjecture; and Fox and
Sudakov conjectured that the dependence is polynomial for every graph H. This conjecture is
substantially stronger than the Erdős-Hajnal conjecture itself, and until recently it was not known
to be true for any non-trivial graphs H. The preceding paper of this series showed that it is true for
P4, and all graphs obtainable from P4 by vertex-substitution.

Here we will show that the Fox-Sudakov conjecture is true for all the graphs H that are currently
known to satisfy the Erdős-Hajnal conjecture. In other words, we will show that it is true for the
bull, and the 5-cycle, and induced subgraphs of them, and all graphs that can be obtained from these
by vertex-substitution.

There is a strengthening of Rödl’s theorem due to Nikiforov, that replaces the hypothesis that G
has no induced subgraph isomorphic to H, with the weaker hypothesis that the density of induced
copies of H in G is small. We will prove the corresponding “polynomial” strengthening of Nikiforov’s
theorem for the same class of graphs H.



1 Introduction

Some terminology and notation: G[X] denotes the induced subgraph with vertex set X of a graph
G; |G| denotes the number of vertices of G; G is the complement graph of G; and a graph is H-free
if it has no induced subgraph isomorphic to H. The edge-density of a graph G is its number of edges
divided by

(|G|
2

)
.

An important theorem of Rödl [15] says:

1.1 For every graph H and every ε > 0, there exists δ > 0 such that for every H-free graph G, there
exists X ⊆ V (G) with |X| ≥ δ|G| such that one of G[X], G[X] has edge-density at most ε.

How does δ depend on ε, for a given graph H? Fox and Sudakov [10] studied this, and proposed
the conjecture (conjecture 7.1 in their paper) that the dependence is polynomial, or more exactly:

1.2 Conjecture: For every graph H there exists c > 0 such that for every ε with 0 < ε ≤ 1/2
and every H-free graph G, there exists X ⊆ V (G) with |X| ≥ εc|G| such that one of G[X], G[X] has
edge-density at most ε.

With Jacob Fox, we showed in [11] that 1.2 holds for all graphs H that can be obtained by vertex-
substitution starting from graphs with at most four vertices. But which other graphs H satisfy 1.2?
This is closely connected with the Erdős-Hajnal conjecture [8, 9], that:

1.3 Conjecture: For every graph H there exists c > 0 such that for every H-free graph G, there
exist a clique or stable set X of G with with |X| ≥ |G|c.

Fox and Sudakov showed that every graph H satisfying their conjecture 1.2 also satisfies the Erdős-
Hajnal conjecture 1.3, but what about the converse? Can we show that all graphs H that satisfy 1.3
also satisfy 1.2? In general, no, we have no idea how to do this. But for all the graphs H that are
currently known to satisfy 1.3, we will show that they also satisfy 1.2.

We need to define “vertex-substitution” before we go on. Let H1, H2 be graphs, let v ∈ V (H1),
and let N be the set of all neighbours of v in H1. Let H be obtained from the disjoint union of
H1 \ {v} and H2 by making every vertex of H2 adjacent to every vertex in N . Then H is obtained
by substituting H2 for the vertex v of H1, and this operation is called vertex-substitution.

Until very recently, the only graphs that were known to satisfy 1.3 were the bull [4] (that is, the
graph obtained from a four-vertex path by adding a fifth vertex adjacent to the two middle vertices
of the path); the five-vertex cycle C5 [5]; all induced subgraphs of these two; and all graphs that
can be obtained from these by repeated vertex-substitution [2]. We will show that all these graphs
satisfy 1.2, that is:

1.4 If H can be constructed from induced subgraphs of the bull and C5 by repeated vertex-substitution,
then H satisfies 1.2.

It is no longer true that the graphs of 1.4 are the only graphs known to satisfy the Erdős-Hajnal
conjecture. In a forthcoming paper [12], we will give infinitely more graphs that are “prime” (that is,
cannot be obtained by vertex-substitution from smaller graphs), and that satisfy 1.3. But we show
in that paper that these new graphs also satisfy 1.2.

There is a proof given in [5] that shows that both the bull and C5 satisfy 1.3, and we will modify
it to show that they satisfy 1.2. To finish the proof of 1.4, it would then be enough to show that the
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class of graphs that satisfy 1.2 is closed under vertex-substitution. We do not know how to do that,
but all is not lost: we will prove that the graphs in 1.4 have a property even stronger stronger than
1.2, which is closed under vertex-substitution. Let us explain.

A copy of H in G is an isomorphism from H to an induced subgraph of G. Let indH G be the
number of copies of H in G. There is a theorem of Nikiforov [14], strengthening Rödl’s theorem:

1.5 For every graph H and all ε > 0, there exists δ > 0 such that for every graph G, if indH(G) ≤
δ|G||H|, then there exists S ⊆ V (G) with |S| ≥ δ|G| such that one of G[S], G[S] has edge-density at
most ε.

Again, one could ask how δ depends on ε. Let us say that H is viral if there exists d > 0 such that
for every graph G and every ε with 0 < ε ≤ 1/2, either

• there exists X ⊆ V (G) with |X| ≥ εd|G| such that one of G[X], G[X] has edge-density at most
ε; or

• indH(G) ≥ εd|G||H|.

Thus, the dependence of δ on ε in 1.5 is polynomial, if and only if H is viral. So, now we are
considering three successively stronger properties of a graph H:

• H satisfies the Erdős-Hajnal conjecture;

• H satisfies the Fox-Sudakov conjecture;

• H is viral.

The third implies the second, and the second implies the first, but we do not know either of the
converse implications. To appreciate the relative strength of these conjectures, it is instructive to
think about the case when H is the four-vertex path P4. Proving that P4 satisfies the Erdős-Hajnal
conjecture is easy; but proving that it satisfies the Fox-Sudakov conjecture is non-trivial, and this was
proved in [11]. Proving that P4 is viral is highly non-trivial. In [11] it was proved via a “polynomial
removal lemma” for P4, proved by Alon and Fox [1]. (It also is a special case of the results of this
paper.)

On the other hand, perhaps all graphs H have all three of the properties above. In this paper
we show that any graph currently known to have any one of these properties has all three (pace the
results of [12]):

1.6 If H can be constructed from induced subgraphs of the bull and C5 by repeated vertex-substitution,
then H is viral.

There are two advantages of proving 1.6 rather than 1.4: we prove something stronger, but more
importantly, viral graphs are closed under vertex-substitution, and all their induced subgraphs are
also viral. The following was proved in [11]:

1.7 If H1, H2 are viral and H is obtained by substituting H2 for a vertex of H1, then H is viral.

So to prove 1.6 and hence 1.4, it suffices to show the following two results:

1.8 The bull and C5 are viral.
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1.9 If H is viral then so are all its induced subgraphs.

1.9 is a special case of 2.1, proved in section 2. The proof of 1.8 occupies most of the paper. We
will approach it as follows. Let us say a set H of graphs is viral if there exists d > 0 such that for
every x with 0 < x ≤ 1/2, and for every graph G with indH(G) ≤ xd|G||H| for each H ∈ H, there
exists S ⊆ V (G) with |S| ≥ xd|G| such that one of G[S], G[S] has edge-density at most x.

Let Ĉ5 be the graph obtained from C5 by adding a new vertex of degree two, adjacent to two
adjacent vertices of C5. We will prove that:

1.10 The set {Ĉ5, Ĉ5} is viral.

Since both of Ĉ5, Ĉ5 contain both the bull and C5 as induced subgraphs, this will imply 1.8. We will
give a sketch of the proof of 1.10 in section 3.

For k ≥ 3, Ck denotes the k-vertex cycle. It was shown in [5] that for k = 6, 7 there exists c > 0
such that for every graph G that is both Ck-free and Ck-free, there exists a clique or stable set X
of G with with |X| ≥ |G|c. When k = 6, this can be strengthened: the proof of 1.10 with minor
modifications shows that:

1.11 {C6, C6} is viral.

We sketch the proof at the end of section 10. We have not yet been able to show that {C7, C7} is
viral; but in a forthcoming paper [13], we shall prove that {Ck, C`} is “near-viral” (that is, δ can be

chosen as 2(log
1
ε
)1+o(1) in 1.5) for any two integers k, ` ≥ 3.

2 Viral sets

For every finite set H of non-null graphs, every x > 0, and every graph G, define

µH(x,G) := max
H∈H

indH(G)

(x|G|)|H|
.

We say H is viral if there exist d > 0 such that for every x with 0 < x ≤ 1/2, and for every graph
G with µH(xd, G) ≤ 1 there exists S ⊆ V (G) with |S| ≥ xd|G| such that one of G[S], G[S] has
edge-density at most x. It is easy to check that a graph H is viral if and only if {H} is viral. We
call d a viral exponent for H. Here is a useful lemma for manipulating viral sets.

2.1 Let H,J be finite sets of non-null graphs, and suppose that each member of J has an induced
subgraph isomorphic to a member of H. If J is viral then H is viral.

Proof. Let d be a viral exponent for J . Choose p such that each J ∈ J has an induced subgraph
isomorphic to some H ∈ H with |J | ≤ p|H|. We will show that d′ = pd is a viral exponent for
H. Let G be a graph and let 0 < x ≤ 1/2 such that indH(G) ≤ (xd

′ |G|)H| for each H ∈ H. Thus
indH(G) ≤ xd′|H||G||H| for each H ∈ H.

Let J ∈ J . Then there exists H ∈ H isomorphic to an induced subgraph of J . Each copy of J in
G is an extension of a copy of H in G, and each copy of H in G extends to at most |G||J |−|H| copies
of J ; so

indJ(G) ≤ |G||J |−|H| indH(G) ≤ |G||J |−|H|xd′|H||G||H| = xpd|H||G||J | ≤ xd|J ||G||J |.

Since d is a viral exponent for J , there exists S ⊆ V (G) with |S| ≥ xd|G| ≥ xd′ |G| such that one of
G[S], G[S] has edge-density at most x. This proves 2.1.
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3 Blockades, and a sketch of the main proof

If A,B ⊆ V (G) are disjoint, and 0 ≤ x ≤ 1, we say that B is x-sparse to A if every vertex in B
has at most x|A| neighbours in A; and B is x-dense to A if every vertex in B has at least x|A|
neighbours in A. Let us say a blockade in G is a sequence B = (B1, . . . , Bk) of pairwise disjoint
subsets of V (G), and we call B1, . . . , Bk its blocks. (In some earlier papers, the blocks of a blockade
must be nonempty, but here it is convenient to allow empty blocks.) The length of the blockade
B = (B1, . . . , Bk) is k, and its width is the minimum of the cardinalities of its blocks. If its length is
at least ` and width at least w we call it an (`, w)-blockade. For ε > 0, the blockade B = (B1, . . . , Bk)
is ε-sparse if Bi+1∪ · · · ∪Bk is ε-sparse to Bi for all i with 1 ≤ i ≤ k; and similarly B is (1− ε)-dense
if Bi+1 ∪ · · · ∪Bk is (1− ε)-dense to Bi for all i with 1 ≤ i ≤ k.

Using blockades is critical to our approach; let us give here a sketch of the remainder of the paper.

We need to prove that H = {Ĉ5, Ĉ5} is viral; so we have a graph G in which there are only a small

number of copies of Ĉ5 and Ĉ5 (at most x6d|G|6 of each, say, where we can choose d for convenience,
though it must be independent of x and G), and we need to prove that there is a subset S with
|S| ≥ xd|G| that has edge-density, or edge-density in the complement, at most x. The next section
proves a crucial result: that we can replace finding our target set S with finding a long and wide
blockade that is either sparse or dense. There is a tradeoff between length and width: we accept
length two if the width is large enough. So, more exactly, it is enough if for some d independent of
G, x, we can prove that there is an x-sparse or (1−x)-dense blockade of length some k between 2 and
1/x, and width at least b|G|/kdc. This reduction, from finding a large set with small edge-density,
in G or G, to finding a sparse blockade in G or G, works for any set H; there is nothing special

about Ĉ5, Ĉ5 here. There is a further, easier, reduction, a simple application of Nikiforov’s theorem:
it suffices to find such a blockade in a graph G with maximum degree at most |G|/d.

Now our goal is to prove that for some d, and all 0 < x ≤ 1/d, if G is a graph in which there are

only x6d|G|6 copies of each of Ĉ5 and Ĉ5, and with maximum degree at most |G|/d, then there is an
x-sparse or (1−x)-dense blockade of length some k between 2 and 1/x, and width at least b|G|/kdc.
Assume there is no such blockade. If we can halve the maximum degree by deleting only a small set
of vertices, do so, and repeat. If this succeeds in driving down the maximum degree to at most x|G′|
where G′ is the graph that remains, while still |G′| ≥ |G|/2, then our task is easy: any blockade in
G′ of the required length and width is x-sparse. So we may assume that this process stops quite
soon: the graph is still large, but now T is large, where T is the set of vertices with degree at least
half the maximum. For v ∈ T , let A(v) be the neighbour set of v, and let B(v) be the vertices in the
remainder of the graph with many neighbours in A(v) (at least x|A(v)| such neighbours). There are
two kinds of vertices v ∈ T : |B(v)| may be large or small. We can get rid of all v ∈ T with |B(v)|
small; because if v is such a vertex, delete v,A(v) and B(v), and repeat. This cannot happen many
times, since the sequence of A(v)’s we produce is an x-sparse blockade. So we end up with a graph,
G′ say, still large, with many vertices with degree close to the maximum, and they all have B(v)
large. (This is the content of 6.1.) How can we use that?

So far we have not used any special properties of Ĉ5 and Ĉ5; the proof so far works for any set
of graphs. But now we will. It turns out that whenever |B(v)| is large, and there is no long, wide,

x-sparse or (1−x)-dense blockade in G, there are poly(x)|G|5 copies of Ĉ5 or Ĉ5 containing v (where
poly(x) means some polynomial in x), or poly(x)|G|6 of them within A(v). If we can prove that, we
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are done, because it will contradicts that there are not many copies of Ĉ5 or Ĉ5 in total.
Proving this is the topic of section 7, 8, 9, 10, but here is a summary. Fix a vertex v with degree

at least half the maximum degree, and with |B(v)| large. First, certain helpful subgraphs (with two,
three or six vertices) of G[A(v)] will, together with some of their neighbours in B(v), supply many

copies of Ĉ5 or Ĉ5, either using v or within A(v); and so we may assume such subgraphs are rare.
(This is in sections 8 and 10.) Consequently we may find a large subset A′ of A(v) including none of
these helpful subgraphs, and still covering a great deal, say B′, of B(v). (This is a result of section
9.) Now we need the “comb” theorem of [5], which says, roughly, that in these circumstances one
can find a1, . . . , ak ∈ A′, and subsets B1, . . . , Bk of B′, such that each ai is adjacent to all members
of Bi and to no members of Bj when j 6= i; and k is large, and the sets Bi are all large (again, there

is a tradeoff; we accept small k if the sets are very large). Since G[A′] is Ĉ5-free and Ĉ5-free (because
we counted copies of these as among the “helpful” subgraphs), A′ includes a clique or stable set A′′

of size polynomial in |A′| (this was a theorem of [5]). So let us focus on A′′. For ai ∈ A′′, we can
find a large subset Ci of Bi (a “core”) such that however it is divided into two large parts, there are
many edges between the two parts; because if this were not the case, we could find a long, wide,
x-sparse blockade, all within Bi, a contradiction. (This is in section 8.)

Now we look for “rainbow” copies of P4: copies of P4 with each vertex in a different set Ci where
ai ∈ A′′. For each choice of a1, . . . , a4 ∈ A′′, we can prove that there are not many rainbow copies
of P4 within the four sets C1, . . . , C4, since {a1, . . . , a4} includes none of our helpful subgraphs and
C1, . . . , C4 are cores. Finally, we use a theorem that says that, given a long wide blockade with not
many rainbow P4’s, we can find a long, wide x-sparse or x-dense blockade; and that is the content
of section 7.

4 Sparse blockades and sparse subsets

We begin with an important lemma, that says that if every large induced subgraph of G admits a
sufficiently long and wide blockade that is sufficiently sparse or dense, then there is a large induced
subgraph that has either small edge-density or small edge-density in the complement graph.

4.1 Let G be a graph, and let ε ∈ (0, 12) and d ≥ 1. Let x = ε12d. Suppose that for every induced
subgraph F of G with |F | ≥ ε4d|G|, there is an x-sparse or (1 − x)-dense blockade in F of length k
and width at least |F |/kd, for some k ∈ [2, 1/x]. Then there exists S ⊆ V (G) with |S| ≥ xd+1|G|
such that one of G[S], G[S] has edge-density at most ε.

Proof. We may assume that |G| > x−d−1, since otherwise we may take |S| ≤ 1 to satisfy the
theorem. Let J be a cograph, and for each j ∈ V (J) let Aj ⊆ V (G), pairwise disjoint. We call
L = (J, (Aj : j ∈ V (J))) a layout. A pair {u, v} of distinct vertices of G is undecided for a layout
(J, (Aj : j ∈ V (J))) if there exists j ∈ V (J) with u, v ∈ Aj ; and decided otherwise. A decided pair
{u, v} is wrong for (J, (Aj : j ∈ V (J))) if there are distinct i, j ∈ V (J) such that u ∈ Ai, v ∈ Aj , and
either

• u, v are adjacent in G and i, j are nonadjacent in J ; or

• u, v are nonadjacent in G, and i, j are adjacent in J .
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We are interested in layouts in which the number of wrong pairs is only a small fraction of the
number of decided pairs. Choose a layout L = (J, (Aj : j ∈ V (J))) satisfying the following:

• |Aj | ≥ ε6d|G| for each j ∈ V (J);

•
∑

j∈V (J) |Aj |1/d ≥ |G|1/d;

• the number of wrong pairs is at most x times the number of decided pairs; and

• subject to these three conditions, |J | is maximum.

(This is possible since we may take |J | = 1 and A1 = G to satisfy the first three conditions.)

(1) We may assume that |J | ≤ 4ε−2.

Suppose that |J | ≥ 4ε−2. Since J is a cograph, it has a clique or stable set I of size at least
|J |1/2 ≥ 2/ε, and by taking complements if necessary, we may assume that I is a stable set. For
each i ∈ I, choose Bi ⊆ Ai with size dε6d|G|e, and let S =

⋃
i∈I Bi. Thus |S| ≥ (2ε−1)ε6d|G|. We

claim that G[S] has edge-density at most ε. There are at most |I|−1
(|S|

2

)
edges uv of G[S] such that

u, v ∈ Bi for some i ∈ I; and the number of edges uv of G[S] such that u ∈ Bi and v ∈ Bj for some
distinct i, j ∈ I is at most the number of wrong pairs of L, and hence at most

x

(
|G|
2

)
≤ x|G|2/2 ≤ x(ε1−6d|S|/2)2/2 = xε2−12d|S|2/8 ≤ xε2−12d

(
|S|
2

)
/2.

Hence the number of edges of G[S] is at most (|I|−1 + xε2−12d/2)
(|S|

2

)
≤ ε
(|S|

2

)
since |I|−1 ≤ ε/2 and

xε2−12d/2 ≤ ε/2. Moreover,
|S| ≥ ε6d|G| ≥ xd+1|G|,

and so the theorem is satisfied. This proves (1).

We may assume that |A1| ≥ |Aj | for all j ∈ V (J). Since
∑

j∈V (J) |Aj |1/d ≥ |G|1/d, and |J | ≤ 4ε−2

by (1), it follows that |A1|1/d ≥ (ε2/4)|G|1/d, that is,

|A1| ≥ ε2d2−2d|G| ≥ ε4d|G|.

By applying the hypothesis to G[A1], we deduce that there an x-sparse or (1−x)-dense blockade
(B1, . . . , Bk) in G[A1] where k ∈ [2, 1/x], with width at least |A1|/kd. By taking complements, we
may assume that (B1, . . . , Bk) is x-sparse.

(2) k ≥ 2/ε.

Suppose that k ≤ 2/ε ≤ ε−2. Then each of the sets B1, . . . , Bk has size at least |A1|/kd ≥ ε2d|A1|.
By substituting a k-vertex stable set for the vertex 1 in J , and replacing A1 by B1, . . . , Bn, we obtain
a new layout L′ = (J ′, (A′j : j ∈ V (J ′))) say, where |J ′| > |J |. We claim that this violates the choice
of L; and so we must verify that L′ satisfies the first three bullets in the definition of L. Each Bj
satisfies

|Bj | ≥ ε2d|A1| ≥ ε6d|G|,
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and so the first bullet is satisfied. For the second bullet, since B1, . . . , Bk all have size at least |A1|/kd,
it follows that

|B1|1/d + · · ·+ |Bk|1/d ≥ |A1|1/d,

and so
∑

j∈V (J) |A′j |1/d ≥ |G|1/d. For the third bullet, let P be the set of all decided pairs for L,

and Q ⊆ P the set of wrong pairs for L, and define P ′, Q′ similarly for L′. Then |Q| ≤ x|P |. Let R
be the set of all pairs {u, v} with u, v ∈ A1 such that u, v belong to different blocks of (B1, . . . , Bk).
Then R ⊆ P ′ \ P ; and Q′ \ Q ⊆ R; and |Q′ \ Q| ≤ x|R| since (B1, . . . , Bk) is x-sparse. Hence
|Q′ \Q| ≤ x|P ′ \ P |, and so

|Q′| ≤ |Q|+ |Q′ \Q| ≤ x|P |+ x|P ′ \ P | = x|P ′|

since P ⊆ P ′. This contradicts the choice of L, and so proves (2).

Let n = d2/εe. For 1 ≤ i ≤ n, choose Ci ⊆ Bi with size w := d|A1|/kde, uniformly at random.

The probability that an edge between Bi, Bj has ends in Ci and Cj is w2

|Bi|·|Bj | , and since there are

at most x|Bi| · |Bj | edges between Bi, Bj , the expected number of edges between Ci, Cj is at most
xw2. Consequently the probability that there are more than xn2w2/2 such edges is less than 2/n2.
It follows that the probability that for all distinct i, j ∈ {1, . . . , n}, there are at most xn2w2/2 edges
between Ci, Cj is positive, and so there is a choice of C1, . . . , Cn such that for all distinct i, j there
are at most xn2w2/2 edges between Ci, Cj . Let S = C1 ∪ · · · ∪ Cn. The number of edges of G[S]

with ends in the same Ci is at most (1/n)
(|S|

2

)
; and the number of edges of G[S] with ends in distinct

blocks Ci, Cj is at most (xn2w2/2)(n2/2) = xn2|S|2/4 ≤ xn2
(|S|

2

)
. Consequently G[S] has at most

(1/n+ xn2)
(|S|

2

)
≤ ε
(|S|

2

)
edges, since 1/n ≤ ε/2 and xn2 ≤ x(4/ε)2 ≤ ε/2. Moreover,

|S| ≥ w ≥ |A1|/kd ≥ ε4d|G|/kd ≥ ε4dxd|G| ≥ xd+1|G|,

and hence S satisfies the theorem. This proves 4.1.

5 Divisive sets

We recall that if H is a set of graphs, x > 0, and G is a graph, then

µH(x,G) := max
H∈H

indH(G)

(x|G|)|H|
.

Thus µH(·, G) is nonincreasing for every G, and µH(x, F ) ≤ µH(xy,G) for all x, y > 0 and every
induced subgraph F of G with |F | ≥ y|G|. We say that a finite set H of graphs is divisive if there
exists d > 2 such that for every x ∈ (0, d−1) and every graph G with µH(xd, G) ≤ 1, there exists
k ∈ [2, 1/x] such that there is an x-sparse or (1 − x)-dense blockade in G of length at least k and
width at least b|G|/kdc. We say such a number d is an exponent for the divisiveness of F . Note
that if d is such an exponent, then so is every larger number, say f ; because if x ∈ (0, f−1) and
µH(xf , G) ≤ x, then x ≤ f−1 ≤ d−1, and µH(xd, G) ≤ µH(xf , G) ≤ x.

The next result is a variant of a theorem in [3]:

5.1 If H is divisive then it is viral.
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Proof. Let d > 1 be an exponent for the divisiveness of H, and let c := 12(d + 1)(d + 2). We
claim that c is a viral exponent for H. To show this, let ε ∈ (0, 1/2) and let G be a graph with
µH(εc, G) ≤ 1. We must show that there exists S ⊆ V (G) with |S| ≥ εc|G| such that one of G[S], G[S]
has edge-density at most ε. We may assume that |G| > ε−c, since otherwise we may take |S| ≤ 1 to
satisfy the theorem. Let d′ = d+ 1, and x = ε12d

′
. We claim that:

(1) For every induced subgraph F of G with |F | ≥ ε4d
′ |G|, there is an x-sparse or (1 − x)-dense

blockade in F of length k and width at least |F |/kd′, for some k ∈ [2, 1/x].

We observe that xdε4d
′

= ε12dd
′+4d′ ≥ εc, and so xd|F | ≥ εc|G|. It follows that

µ(xd, F ) ≤ µ(εc, G) ≤ 1.

Since d is an exponent for the divisiveness of H, there exists k ∈ [2, 1/x] such that there is an x-sparse
or (1− x)-dense blockade in F of length at least k and width at least b|F |/kdc. But

|F |/kd ≥ xd|F | ≥ εc|G| > 1,

and so
b|F |/kdc ≥ |F |/(2kd) ≥ |F |/kd+1 = |F |/kd′ .

This proves (1).

From 4.1, with d replaced by d′, we deduce that there exists S ⊆ V (G) with |S| ≥ xd′+1|G| = εc|G|
such that one of G[S], G[S] has edge-density at most ε. This proves that H is viral, and so proves
5.1.

Actually, we only need the hypothesis of 5.1 to hold in sparse graphs G. More exactly:

5.2 Let H be a set of graphs, closed under taking complements, and let d > 0, such that for every
x ∈ (0, d−1) and every graph G with µH(xd, G) ≤ 1 and maximum degree at most |G|/d, there is an
x-sparse or (1−x)-dense blockade in G of length k and width at least b|G|/kdc for some k ∈ [2, 1/x].
Then H is viral.

Proof. By Nikiforov’s theorem 1.5, there exists c > 0 such that for every graph G with µH(c,G) ≤ 1,
there exists S ⊆ V (G) with |S| ≥ c|G| such that one of G[S], G[S] has maximum degree at most
|S|/d. Let f := d+ log(c−1). We claim:

(1) For every x ∈ (0, f−1) and every graph G with µH(xf , G) ≤ 1, there exists k ∈ [2, 1/x] such
that G contains an x-sparse or (1−x)-dense blockade of length at least k and width at least b|G|/kfc.

Let 0 < x < 1/f and let G be such that µH(xf , G) ≤ 1; then µH(c,G) ≤ µH(xf , G) ≤ 1, and
so there exists S ⊆ V (G) with |S| ≥ c|G| such that one of G[S], G[S] has maximum degree at
most |S|/d. Since H is closed under taking complements, we can replace G by its complement if
necessary; so we may assume that G[S] has maximum degree at most |S|/d. Since |S| ≥ c|G| and
f = d+ log(1/c), it follows that

µH(xd, G[S]) ≤ µH(xdc,G) ≤ µH(xf , G) ≤ 1.
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Consequently, the hypothesis implies that there is an x-sparse or (1−x)-dense (k, b|S|/kdc)-blockade
in G[S] (and hence in G) for some integer k ∈ [2, 1/x]. Since |S|/kd ≥ |G|/kd+log(1/c) = |G|/kf , it
follows that G contains an x-sparse or (1− x)-dense (k, b|G|/kfc)-blockade. This proves (1).

From (1) and 5.1, it follows that H is viral. This proves 5.2.

6 Reducing the maximum degree

As we just saw, to show 1.10 it is enough to show that H = {Ĉ5, Ĉ5} has the property of 5.2, and we
will prove this in the remainder of the paper. Thus our focus now is a graph G, with maximum degree
at most some small constant times |G|, in which there is no long, wide blockade that is x-sparse or

(1−x)-dense; and we want to prove that the graph contains poly(x)|G|6 copies of one of Ĉ5, Ĉ5. We
will do so by means of the “comb” lemma of [5]. That will tell us that if v ∈ V (G) is nice enough,

then either it belongs to poly(x)|G|5 copies of Ĉ5 or Ĉ5, or there are poly(x)|G|5 copies of Ĉ5 or Ĉ5

within its neighbour set (and if the second ever happens, we are done). But we need poly(x)|G|6
copies, not just poly(x)|G|5; so we will need poly(x)|G| “nice enough” vertices. What that means is,
we need there to be many vertices with degree at least half the maximum degree, that have many
second neighbours that are at least x-dense to the first neighbours. That is the purpose of the next
result.

6.1 Let q > 0; then for all sufficiently large d, the following holds. Let x ∈ (0, d−1), and let G have
maximum degree at most |G|/d, such that there is no x-sparse or (1−x)-dense (k, b|G|/kdc)-blockade
in G with k ∈ [2, 1/x]. Then there is a number D with 2x3|G| ≤ D ≤ |G|/d, and an induced subgraph
G′ of G such that, denoting by T the set of vertices in G′ that have degree at least D/2:

• |G′| ≥ |G|/2, and G′ has maximum degree at most D;

• |T | ≥ x2|G|; and

• for every vertex v ∈ T , with neighbour set A in G′ say, there are at least q(D|G|)1/2 vertices
in V (G′) \A that have at least x|A| neighbours in A.

Proof. Let

K := max

(
21/3

21/3 − 1
,

21/3

1− 2−2/3
,
q · 21/3

1− 2−1/6

)
,

and choose c > 0 such that c ≤ 1/8 and K(2c2/3 + c1/6) < 1/4. We claim that d := 1/c satisfies
the theorem. Let x ∈ (0, c), ` := b1/xc and m := blog(x−2)c. Consequently ` ≥ 1/(2x), and so
x ≥ 1/(2`) ≥ 1/`2.

Let G be a graph with maximum degree at most c|G|, that does not contain an x-sparse or
(1− x)-dense (k, b|G|/kdc)-blockade with k ∈ [2, 1/x]. Then |G| ≥ `d, since otherwise we could take
k = ` and choose a blockade with k empty blocks to satisfy the theorem.

The idea of the proof is, if we can delete a few vertices to halve the maximum degree, we do so,
and repeat until either the graph becomes very sparse (which will contradict our assumption about
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blockades) or the process stops. At that stage, we try to find the desired blockade directly. We must
failx; and at that point we have the properties of the theorem.

For 0 ≤ s ≤ m, define:

Ns := c−1/32(s+1)/3 + 2(1−2s)/3c2/3|G|+ 2(2−s)/6c1/6q|G|.

We need:

(1)
∑

0≤s≤m−1(Ns + x2|G|) ≤ |G|/2.

Observe that, by the definition of m,

m−1∑
s=0

2(s+1)/3 = 21/3
2m/3 − 1

21/3 − 1
≤ K2m/3 ≤ Kx−2/3,

m−1∑
s=0

2−2s/3 ≤ 1

1− 2−2/3
≤ K2−1/3,

m−1∑
s=0

2−s/6 ≤ 1

1− 2−1/6
≤ K(21/3q)−1.

Therefore, since m ≤ log(1/x2) ≤ 2/x, we have:∑
0≤i≤m−1

(Ns + x2|G|)

≤ c−1/3
m−1∑
s=0

2(s+1)/3 + 21/3c2/3|G|
m−1∑
s=0

2−2s/3 + 21/3c1/6q|G|
m−1∑
s=0

2−s/6 +m · x2|G|

≤ Kc−1/3x−2/3 +Kc2/3|G|+Kc1/6|G|+ 2x|G| ≤ K(2c2/3 + c1/6)|G|+ 1
4 |G| <

1
2 |G|

where the last inequality holds by the choice of c and since x ≤ 1/8. This proves (1).

Let us say a subset Z ⊆ V (G) is s-good, where 0 ≤ s ≤ m, if G[Z] has maximum degree at most
2−sc|G|, and

|Z| ≥ |G| −
∑

0≤i≤s−1
(Ns + x2|G|).

Thus V (G) is 0-good.

(2) There is no m-good subset.

Suppose that Z is m-good. By (1), |Z| ≥ |G|/2. Let B be an (`, bx|Z|c)-blockade in G[Z]. Since
`2 ≥ 1

4x
−2 ≥ 1/x and G[Z] has maximum degree at most

2−mc|G| ≤ 2x2(c|G|) ≤ 4cx2|Z| ≤ xbx|Z|c,

it follows that B is an x-sparse (`, b|Gm|/`2c)-blockade, a contradiction. This proves (2).
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Consequently, from (2), there exists an integer s < m such that there is an s-good subset Z, but
there is no (s+ 1)-good subset. Let C0 = Z, let D = 2−sc|G|, and choose j ≥ 0 maximum such that
there are vertices v1, . . . , vj in Z, and subsets A1, . . . , Aj , B1, . . . , Bj and C1, . . . , Cj of Z, such that
for 1 ≤ i ≤ j:

• vi ∈ Ci−1; Ai is the set of all neighbours of vi in Ci−1; Bi is the set of all vertices in Ci−1 \
(Ai ∪ {vi}) that have at least x|Ai| neighbours in Ai; and Ci = Ci−1 \ (Ai ∪Bi ∪ {vi});

• |Ai| ≥ D/2, and |Bi| ≤ q
√
|G| ·D = 2−s/2c1/2q|G|.

Consequently, the sets {v1}, . . . , {vj}, A1, . . . , Aj , B1, . . . , Bj are all pairwise disjoint subsets of Z.

(3) j < ` and j < c−1/32(s+1)/3.

Since Ci is x-sparse to Ai for 1 ≤ i ≤ j, and |Ai| ≥ D/2 for 1 ≤ i ≤ j, it follows that (A1, . . . , Aj) is
an x-sparse (j,D/2)-blockade in G. Moreover,

D/2 ≥ x2c|G| ≥ x3|G| ≥ |G|/`6.

Consequently, D/2 ≥ |G|/`d, and 2 ≤ ` ≤ 1/x, so if j ≥ `, then (A1, . . . , A`) would be a blockade
with the desired property, a contradiction. If |G|/j3 ≤ D/2, then j ≥ 2, and (A1, . . . , Aj) would
have the desired property, a contradiction. Thus 2−s−1c|G| = D/2 < |G|/j3 and so

j < (2s+1/c)1/3 = c−1/32(s+1)/3.

This proves (3).

(4) |A1 ∪ · · · ∪Aj | ≤ 2(1−2s)/3c2/3|G|, and |B1 ∪ · · · ∪Bj | ≤ 2(2−s)/6c1/6q|G|.

Since v1, . . . , vj all have degree at most D in G[Z], it follows that |A1|, . . . , |Aj | ≤ D, and so from
(3),

|A1 ∪ · · · ∪Aj | ≤ c−1/32(s+1)/32−sc|G| = 21/3c2/3|G|2−2s/3.

Since |Bi| ≤ 2−s/2c1/2q|G| for all i ∈ [j], we have from (3) that

|B1 ∪ · · · ∪Bj | ≤ j · 2−s/2c1/2q|G| < 2(s+1)/3c−1/3 · 2−s/2c1/2q|G| = 2(2−s)/6c1/6q|G|.

This proves (4).

Let T be the set of vertices in Cj that have degree at least D/2 in G]Cj ]. Now Cj \ T has
maximum degree at most D/2 = 2−s−1c|G|; but it is not (s+ 1)-good, and so from (3), (4) it follows
that |T | ≥ x2|G|. From the maximality of j, if v ∈ T with neighbour set A in G[Cj ] say, there are
at least q(D|G|)1/2 vertices in Cj \ (A ∪ {v}) that have at least x|A| neighbours in A. But then
G′ = G[Cj ] satisfies the theorem. This proves 6.1.
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7 Rainbow forests

A pure pair in a graph G is a pair P,Q of disjoint subsets of V (G) such that P is either complete or
anticomplete to Q. Let B be a blockade in a graph G. An induced subgraph H of J is B-rainbow if
every vertex of H is in a block of B and every two vertices belong to different blocks; and a copy of
a graph T in G is B-rainbow if it maps T to a B-rainbow induced subgraph of G. The following was
proved in [5], extending a theorem of [6]:

7.1 For every forest T , there exist d > 0 and an integer K, such that, for every graph G with a
blockade B of length at least K, either:

• there is a pure pair P,Q in G with |P |, |Q| ≥W/d, where W is the width of B; or

• there is a B-rainbow copy of one of T, T in G.

(The meaning of “blockade” in [6] was different in that all blocks had to be nonempty, but 7.1 is
trivially true if W = 0.)

To prove 1.10, we need to modify 7.1 in several ways, which we will do below. In fact, we only
need these results when T is the four-vertex path P4, but the proof for P4 is no simpler than that
for general trees, so we have kept it all in full generality. First, we show:

7.2 For every forest T , there is an integer L > 0, such that for every graph G with a blockade B of
length at least L, either:

• there is a pure pair P,Q in G with |P |, |Q| ≥ W/L, where W is the width of W, such that
P ⊆ B and Q ⊆ B′ for some two distinct blocks B,B′ of B; or

• there is a B-rainbow copy of one of T, T in G.

Proof. Let d,K be as in 7.1. We may assume that d,K are integers. We claim that L = 2dK
satisfies the theorem.

To see this, let B in a graph G, with length at least L, and width W . We may assume that all the
blocks of B have the same size W . Let B = (B1, . . . , BL). We may assume that there is no B-rainbow
copy of one of T, T in G. For 1 ≤ j ≤ K let Cj =

⋃
1≤i≤2dB2d(j−1)+i. Then C = (C1, . . . , CK) is a

blockade of length K and width 2dW .
Let G′ be the subgraph of G induced on the union of the blocks of C. Since C has length K, and

width 2dW , we may apply 7.1 to G′ and C, and deduce that either:

• there is a pure pair P,Q of G′ with |P |, |Q| ≥ (2dW )/d; or

• there is a C-rainbow copy of one of T, T in G′.

The second case is impossible, since such a copy would also be B-rainbow. Thus the first case holds.
Let P,Q be the corresponding pure pair. Since P is a subset of B1 ∪ · · · ∪ B2K , there is a block
B of B with |P ∩ B| ≥ |P |/(2K) ≥ W/K ≥ W/L. Since |B| = W and |Q| ≥ 2W , it follows that
|Q \ B| ≥ W , and so there is a block B′ 6= B with |Q ∩ B′| ≥ W/(2K) ≥ W/L. But then the first
bullet of the theorem holds. This proves 7.2.
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Next, we need a second modification, weakening the “complete/anticomplete” outcome of 7.2 to
a “dense/sparse” outcome, and strengthening its “B-rainbow” outcome to say that there are many
B-rainbow copies instead of just one. For that, we need the following lemma:

7.3 Let a ∈ (0, 18) and x ∈ (0, 12) such that x log 1
x ≤

1
4a. Let m ≥ x−2 and w ≥ 2m be integers.

Let G be a graph, and let A,B ⊆ V (G) be disjoint, with |A| = |B| = w, such that there do not exist
P ⊆ A and Q ⊆ B with |P |, |Q| ≥ aw for which P is x-sparse to Q. Choose P ⊆ A of cardinality m,
uniformly at random, and choose Q ⊆ B similarly. Then the probability that P,Q are anticomplete
is at most 2(2a)m/2.

Proof. Choose vertices a1, . . . , am one by one such that for each i, ai is a uniformly random element
of A \ {a1, . . . , ai−1}. For 0 ≤ i ≤ m, let Xi := {a1, . . . , ai}. Then for each i, Xi is a uniformly
random i-subset of A. For 0 ≤ i ≤ m, let Yi be the set of vertices in B with no neighbour in Xi;
thus, Y0 ⊇ Y1 ⊇ · · · . For 0 ≤ i ≤ m, let Ai be the set of vertices in A \ Xi−1 with at most xaw
neighbours in Yi−1. Let I := {i : 1 ≤ i ≤ m and ai /∈ Ai}. For each i ∈ I there are at least xaw
vertices in B adjacent to ai and to none of a1, . . . , ai−1, and so |I| ≤ (xa)−1. Let r := (xa)−1.

(1) For every J ⊆ {1, . . . ,m} with |J | ≤ r, P[(|Ym| ≥ aw) ∧ (I ⊆ J)] ≤ (2a)m−|J | ≤ (2a)m−r.

For 1 ≤ i ≤ m, let us say that i behaves if either i ∈ J , or both |Yi| ≥ aw and ai ∈ Ai. If
|Yi| ≥ aw, then since Ai is x-sparse to Yi, it follows from the hypothesis that |Ai| ≤ aw. Conse-
quently, for each i /∈ J , and for every choice of a1, . . . , ai−1, the probability that i behaves is at
most

|Ai|
w − i+ 1

≤ aw

w −m
≤ 2a

since m ≤ w/2. Let pi be the probability that i behaves given that 1, . . . , i− 1 all behave. The event
that 1, . . . , i− 1 all behave only depends on the choice of a1, . . . , ai−1; so pi ≤ 2a if i /∈ J (and pi ≤ 1
if i ∈ J). The probability that 1, . . . ,m all behave is the product of p1, p2, . . . , pm, and so at most
(2a)m−|J |. But |Ym| ≥ aw and I ⊆ J only if 1, . . . ,m all behave. This proves (1).

(2) (2a)m−rmr ≤ (2a)m/2.

It suffices to show that (2a)m/2−rmr ≤ 1. To this end, observe that

r = (xa)−1 ≤ x−2

4 log(x−1)
=

x−2

2 log(x−2)
≤ m

2 logm
≤ m

4
,

since x log(x−1) ≤ 1
4a and 4 ≤ x−2 ≤ m. Thus m/2− r ≥ m/4 and mr = 2r logm ≤ 2m/2, and so

(2a)m/2−rmr ≤ (2a)m/42m/2 = (8a)m/4 ≤ 1.

This proves (2).

Since there are at most mr subsets J of {1, . . . ,m} of size at most r (because r ≥ 2), and since
|I| ≤ r, (1) and (2) imply that the probability that |Ym| ≥ aw is at most∑

J⊆{1,...,m},|J |≤r

P[(|Ym| ≥ aw) ∧ (I ⊆ J)] ≤ (2a)m−rmr ≤ (2a)m/2.
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Let Y ⊆ B be a set of cardinality m chosen uniformly at random; and let E be the event that
Y,Xm are anticomplete, that is, Y ⊆ Ym. It suffices to prove P[E] ≤ 2(2a)m/2. But Y ⊆ Ym only if
either |Ym| ≥ aw, or Y ⊆ Ym and |Ym| < aw, and we will bound the probability of these two events
separately. We have seen that the probability that |Ym| ≥ aw is at most (2a)m/2; and the probability
that both Y ⊆ Ym and |Ym| < aw is at most

(
aw
m

)
/
(
w
m

)
≤ am. Consequently

P[E] ≤ (2a)m/2 + am ≤ 2(2a)m/2.

This proves 7.3.

We use 7.3 to prove the following variation on 7.2:

7.4 For every forest T , there is an integer d > 0 such that for all x ∈ (0, d−2) and for every graph
G with a (d,w)-blockade B, either:

• there are distinct blocks B,B′ of B, and subsets P ⊆ B and Q ⊆ B′, with |P |, |Q| ≥ w/d, such
that Q is either x-sparse or x-dense to P ; or

• for some subblockade D of B with length |T |, there are at least (d−2x2w)|T | D-rainbow copies
of one of T, T .

Proof. Let L > 0 be as in 7.2; we claim that d := d8(eL)8e satisfies the theorem. Thus, d ≥ 1000.
We may assume that d−2x2w > 1, since otherwise we are done by 7.2; and consequently x2w ≥ 106,
and x2w ≥ 2L, and x log(1/x) ≤ 1/(4d). Let B = (B1, . . . , Bd); we may assume that |Bi| = w
for 1 ≤ i ≤ d, and that the first outcome does not hold. Let m := dx−2e ≤ 2x−2 ≤ 1

2w. For all
distinct i, j ∈ {1, . . . , d}, 7.3 (with a = 1/d) implies that a uniformly random m-subset of Bi and a
uniformly random m-subset of Bj make a pure pair with probability at most 2(2/d)m/2. Let Aij be
the collection of pure pairs (Ai, Aj) with Ai ⊆ Bi, Aj ⊆ Bj and |Ai| = |Aj | = m; then

|Aij | ≤ 2

(
d

2

)−m/2(w
m

)2

≤ 2

(
d

2

)−m/2 (ew
m

)2m
.

Now w ≥ 2Lx−2 ≥ Lm. For 1 ≤ i ≤ d, let Si be a uniformly random Lm-subset of Bi. We say
(Si, Sj) includes (Ai, Aj) ∈ Aij if Ai ⊆ Si and Aj ⊆ Sj . Now(

w−m
Lm−m

)(
w
Lm

) =
Lm

w
· Lm− 1

w − 1
· · · Lm−m+ 1

w −m+ 1
≤
(
Lm

w

)m
.

Consequently, for all distinct i, j ∈ {1, . . . , d}, the probability that (Si, Sj) includes some member of
Aij is at most

|Aij |
(
w−m
Lm−m

)2(
w
Lm

)2 ≤ 2

(
d

2

)−m/2 (ew
m

)2m(Lm
w

)2m

= 2(2e4L4/d)m/2.

Hence, by the choice of d, the probability that there are distinct i, j ∈ {1, . . . , d} for which (Si, Sj)
includes some pair in Aij is at most(

d

2

)
· 2(2e4L4/d)m/2 ≤ d2(2e4L4/d)m/2 ≤ d2(2e4L4/d)4 = 16(eL)16d−2 ≤ 1

2
.
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Thus, with probability at least 1
2 , there is no pure pair (A,B) with |A| = |B| = m contained in

different blocks of the random (d, Lm)-blockade S := (S1, . . . , Sd); and so by 7.2, there is an S-
rainbow copy of T or T in G with probability at least 1

2 . Thus there exists I ⊆ {1, . . . , d} with

|I| = |T | such that with probability at least 1
2

(
d
|T |
)−1

, there is an SI -rainbow copy of T or T in G

where SI = (Si : i ∈ I). Therefore, for D := (Bi : i ∈ I), the number of D-rainbow induced copies of
T or T in G is at least

1

2

(
d

|T |

)−1 ( w

Lm

)|T |
≥
( w

2dLm

)|T |
≥ (d−2x2w)|T |,

since
(
d
|T |
)
≤ d|T |, and 2dLm ≤ 4dLx−2 ≤ d2x−2. This proves 7.4.

For a graph F with vertex set {1, . . . , n}, an x-blowup of F in a graph G is a blockade (B1, . . . , Bn)
in G such that for all distinct i, j with 1 ≤ i < j ≤ n, Bj is x-dense to Bi if ij ∈ E(F ) and x-sparse to
Bi if ij /∈ E(F ). 7.4 gives us a pair of sets where one is x-sparse to the other, and thus an x-blowup
of a two-vertex cograph. We can make this into an x-blowup of a larger cograph, as follows.

7.5 Let T be a forest, and let d > 0 be as in 7.4. Then for every x ∈ (0, d−5), every integer s ≥ 1
such that 2s−1d2s−1 ≤ x−1/5, and every graph G with an (`, w)-blockade B where ` = 2s−1d2s−1,
either:

• G contains a (2s, w/`)-blockade that is an x-blowup of a cograph; or

• for some subblockade D of B of length |T |, there are at least (x3w)|T | D-rainbow copies of T or
T .

Proof. We proceed by induction s ≥ 1. The case s = 1 follows from 7.4; so we assume the theorem
is true for s, and we shall prove it for s+ 1. Thus, let x ∈ (0, d−5), and let ` = 2sd2s+1 ≤ x−1/5. Let
B = (B1, . . . , B`) be an (`, w)-blockade in a graph G. We assume that the second outcome does not
hold.

Let n = 2sd2s, and let I1, . . . , Id be pairwise disjoint subsets of {1, . . . , `} each of cardinality n.
Let B′j =

⋃
i∈Ij Bi for 1 ≤ j ≤ d; then B′ = (B′1, . . . , B

′
d) is a (d, nw)-blockade. Since the second

outcome does not hold, and since nd = ` ≤ x−1/5, it follows that for every subblockade D′ of B′ of
length |T |, there are fewer than n|T |(x3w)|T | ≤ (d−2(x/n2)2w)|T | D′-rainbow copies of Y or T in G.
By 7.4, there is a pair P,Q of subsets contained in distinct blocks of B′ with |P |, |Q| = nw/d such
that Q is (x/n2)-dense or (x/n2)-sparse to P .

Let `′ = 2s−1d2s−1; thus, `′ ≤ x−1/5. We may assume that P ⊆ B′1. Let I be the set of i ∈ I1 such
that |P ∩ Bi| ≥ w/(2d); then |I| ≥ |I1|/(2d) = n/(2d). Since the second outcome is false, it follows
that for every subblockade D of (Bi : i ∈ I) of length |T |, there are fewer than (x3w)|T | D-rainbow
copies of T or T . Consequently, the same holds for the blockade (P ∩Bi : i ∈ I). This blockade has
length at least n/(2d) = `′ and width at least w/(2d). Consequently, from the inductive hypothesis,
since (w/(2d))/`′ ≥ w/`, there is a (2s−1, w/`)-blockade (C1, . . . , C2s−1) in G[P ] that is an x-blowup
of a cograph. Similarly, there is a (2s−1, w/`)-blockade (D1, . . . , Dss−1) in G[Q] that is an x-blowup
of a cograph. Each set Ci satisfies

|Ci| ≥ w/` = d|P |/(n`) = |P |n−2;
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and since Q is (x/n2)-dense or (x/n2)-sparse to P , it follows that Q, and hence each set Dj , is
x-dense or x-sparse to Ci. Consequently, by combining these two blockades and renumbering, we
obtain a (2s, w/`)-blockade in G[P ∪ Q] that is an x-blowup of a cograph, as desired. This proves
7.5.

8 A “sparse” analogue of components

For x ∈ (0, 12) and a graph G, a subset S ⊆ V (G) is an x-core in G if there is no partition A,B of
S with |A|, |B| ≥ x|S| such that the edge-density between A,B is less than x5. (The edge-density
between A,B is the number of edges between A,B divided by |A| · |B|.) Every large graph with
no large component contains a blockade of large length and width, the blocks of which are pairwise
anticomplete. Here we show a similar statement, with “component” and “anticomplete” replaced by
“x-core” and “sparse”.

8.1 Let x ∈ (0, 12), and let k ∈ [4, 1/x] be an integer. Let G be a graph that contains no x2-core in
G of size at least |G|/k. Then G contains an x-sparse (k, |G|/k2)-blockade.

Proof. We begin with the following:

(1) There is a partition S1, . . . , Sn of V (G), such that |Si| ≤ |G|/k for each i, and the edge-density
between Si, Sj is at most x4 for all distinct i, j.

Choose a partition S1, . . . , Sn of V (G) with n maximum subject to the following conditions:

• |Si| ≥ x3|G| for 1 ≤ i ≤ n;

• the number of edges between Si, Sj is at most x10|G|2 for all distinct i, j.

Suppose that |Si| ≥ |G|/k for some i. Since Si is not an x2-core, there is a partition A,B of Si with
|A|, |B| ≥ x2|Si| such that the edge-density between A,B is less than x10, and hence the number of
edges between A,B is at most x10|A| · |B| ≤ x10|G|2. But |A|, |B| ≥ x2|Si| ≥ x2|G|/k ≥ x3|G|. Thus,
the partition obtained from S1, . . . , Sn by removing Si and adding A and B satisfies the two bullets
above, contrary to the maximality of n. This proves that |Si| < |G|/k for each i. For all distinct i, j,
there are at most x10|G|2 edges between Si, Sj , and since |Si|, |Sj | ≥ x3|G|, the edge-density between
Si, Sj is at most x4. This proves (1).

(2) There is a partition S1, . . . , Sn of V (G), such that |Si| ≤ |G|/k for 1 ≤ i ≤ n, and |Si| ≥ |G|/(2k)
for 1 ≤ i ≤ n− 1, and the edge-density between Si, Sj is at most x4 for all distinct i, j.

By (1), we may choose a partition S1, . . . , Sn of V (G) with n minimum subject to the following
conditions:

• |Si| ≤ |G|/k for 1 ≤ i ≤ n;

• the edge-density between Si, Sj is at most x4 for all distinct i, j.
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If two of S1, . . . , Sn both have cardinality at most |G|/(2k), we can replace them by their union,
contrary to the minimality of k. Thus we may renumber such that |Si| ≥ |G|/(2k) for 1 ≤ i ≤ n− 1.
This proves (2).

Since |Si| ≤ |G|/k for each i, it follows that n ≥ k, and if equality holds then |Sn| = |G|/k. So
(S1, . . . , Sk) is a blockade of width at least |G|/k. For all i, j with 1 ≤ i < j ≤ k, let Dij be the set
of vertices in Sj that have more than x2|Si| neighbours in Si; and let Bj := Sj \ (

⋃
1≤i<j Dij). Since

the edge-density between Si, Sj is at most x4, we have |Dij | < x2|Sj | for all i, j with 1 ≤ i < j ≤ k;
and so |Bj | > (1 − (k − 1)x2)|Sj | ≥ (1 − x)|Sj |. Since Bj is x2-sparse to Si and x2 < x(1 − x), we
see that Bj is x-sparse to Bi. Therefore (B1, . . . , Bk) is an x-sparse blockade in G of length k and
width at least (1− x)|G|/(2k) ≥ |G|/k2. This proves 8.1.

9 Three covering lemmas

In this section we give three lemmas about covering in bipartite graphs. If A ⊆ V (G) and v ∈ V (G),
we say A covers v if v has a neighbour in A; and if A,B ⊆ V (G), we say A covers B if A covers
every member of B. First, we need the following:

9.1 Let x ∈ (0, 12). Let (A,B) be a bipartition of a graph G, such that every vertex in B has at least
x|A| neighbours in A. Let Z be a set of nonempty subsets of A, such that∑

Z∈Z
(x|A|)−|Z| ≤ 1/4.

Then there exists A′ ⊆ A with |A′| ≤ 1/x that covers at least 1
4 |B| vertices in B and includes no

member of Z.

Proof. Let S be a subset of A with size k := b1/xc, chosen uniformly at random. For each v ∈ B,
since v has at least x|A| neighbours in A, the probability that v has no neighbours in S is at most(|A|−x|A|

k

)(|A|
k

) ≤
(
|A| − x|A|
|A|

)k
= (1− x)b1/xc ≤ e−xb1/xc ≤ e−2/3

where the last inequality holds since xb1/xc ≥ 2/3 for x ∈ (0, 12). Thus, Markov’s inequality implies

that the expected number of vertices in B with no neighbour in S is at most e−2/3|B|; and so S
covers fewer than 1

4 |B| vertices in B with probability at most 4
3e
−2/3.

For every Z ∈ Z, the probability that Z ⊆ S is(|A|−|Z|
k−|Z|

)(|A|
k

) ≤
(
k

|A|

)|Z|
≤ (x|A|)−|Z|,

since k ≤ 1/x. Thus, the probability that S includes some member of Z is at most∑
Z∈Z

(x|A|)−|Z| ≤ 1/4.

Consequently, the probability that S either covers fewer than 1
4 |B| vertices in B or includes some

member of Z is at most 4
3e
−2/3 + 1

4 < 1. Hence there is a choice of A′ ⊆ A with the desired property.
This proves 9.1.
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Our second lemma will help us to handle pairs of subsets with middling edge-density.

9.2 Let x ∈ (0, 12), let G be a graph, and let A,B ⊆ V (G) be nonempty and disjoint, such that the
edge-density between A and B is at least x and at most 1− x. Then either

• there exists A′ ⊆ A with |A′| ≥ (1 − x)|A| such that every vertex in A′ has at least 1
4x|B|

neighbours and at least 1
4x|B| nonneighbours in B, or

• there exists B′ ⊆ B with |B′| ≥ 1
4x|B| such that every vertex in B′ has at least 1

4x|A| neighbours
and at least 1

4x|A| nonneighbours in A.

Proof. Let B1 be the set of vertices in B with at most 1
4x|A| neighbours in A, and let B2 be the

set of vertices in B with at most 1
4x|A| nonneighbours in A. Let B′ = B \ (B1 ∪B2). If |B′| ≥ 1

4x|B|
then we are done, so we may assume that |B′| < 1

4x|B|. Let A1 be the set of vertices in A with
at most 1

2 |B1| neighbours in B1; then |A1| ≥ (1 − x
2 )|A|. Similarly, let A2 be the set of vertices

in A with at most 1
2 |B2| nonneighbours in B2; then |A2| ≥ (1 − x

2 )|A|. Let A′ := A1 ∩ A2; then
|A′| ≥ (1− x)|A|, and every vertex in A′ has at least 1

2 |B1| nonneighbours in B1 and at least 1
2 |B2|

neighbours in B2. Thus, if |B1|, |B2| ≥ 1
2x|B| then we are done, and so by the symmetry we may

assume that |B1| < 1
2x|B|. Therefore the number of nonedges between A and B is at most

|A|(|B′|+ |B1|) + 1
4x|A||B2| < (14x+ 1

2x)|A||B|+ 1
4x|A||B| = x|A||B|,

a contradiction. This proves 9.2.

The third lemma is a key theorem from [5], a result about “combs”. Let G be a graph, and let
t, w ≥ 0 where t is an integer. We say ((ai, Bi) : 1 ≤ i ≤ t) is a (t, w)-comb in G if:

• a1, . . . , at ∈ V (G) are distinct, andB1, . . . , Bt are pairwise disjoint subsets of V (G)\{a1, . . . , at};

• for 1 ≤ i ≤ t, ai is adjacent to every vertex in Bi;

• for i, j ∈ {1, . . . , t} with i 6= j, ai has no neighbour in Bj ; and

• B1, . . . , Bt all have cardinality at least w.

The following was proved in [5], strengthening a result of Pach and Tomon [16]:

9.3 Let Γ, θ > 0 with θ < 1. Let (A,B) be a bipartition of a graph G, such that every vertex in B
has a neighbour in A and each vertex in A has at most ∆ > 0 neighbours in B. Then either

• |B| ≤ 3θ+1

3/2−(3/2)θΓθ∆1−θ; or

• for some integer k ≥ 1, G contains a (k,Γk−1/θ)-comb ((ai, Bi) : i ∈ [k]) where ai ∈ A and
Bi ⊆ B for all i ∈ [k].
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10 Finishing the proof

So far, our results have not been focussed on excluding any particular graphs, but now we turn to
excluding Ĉ5 and its complement, to complete the proof of 1.10. First, we will need the following,
proved in [5]:

10.1 There exists a > 0 such that every {Ĉ5, Ĉ5}-free graph G has a clique or stable set of size at
least |G|a.

We use this and the results of the preceding sections to prove the following, which is the last step in
the proof of 1.10:

10.2 For all sufficiently large d, the following holds. Let x ∈ (0, d−1), and let G be a graph with
maximum degree at most ∆ ∈ (x3|G|, |G|/d). Let v ∈ V (G) be a vertex of degree at least x3|G|, let
A be the set of neighbours of v, and let B be the set of vertices in V (G) \ (A∪{v}) with at least x|A|
neighbours in A. Then either

• there are at least (x8|G|)5 induced copies of Ĉ5 in G whose images contain v; or

• there are at least (x3|A|)6 induced copies of Ĉ5 or Ĉ5 in G[A]; or

• |B| ≤ 80
√
|G|∆; or

• there is an x-sparse or x-dense (k, |G|/kd)-blockade in G for some integer k ∈ [2, 1/x].

Proof. Choose a as in 10.1. Choose d′ > 0 such that 7.4 holds with d, T replaced by d′, P4, and let
b := 1 + 3 log(d′); then (2s)b ≥ 2s(d′)2s+1 for all s ≥ 1. We claim that if d ≥ max((d′)10/a, 30b/a, 8/a)
then d satisfies the theorem.

Let x,G,∆, v, A,B be as in the theorem. Let Z6 be the collection of 6-subsets of A that induce

subgraphs isomorphic to Ĉ5 or Ĉ5 in G. Let Z2 be the collection of nonadjacent pairs {a1, a2} in
A such that there is a (2, x3|G|)-comb ((a1, B1), (a2, B2)) where B1, B2 are x2-cores in G[B] and the
edge-density between them is at least 4x2 and at most 1− 4x2. Let Z3 be the collection of 3-subsets
{a1, a2, a3} in A such that either

• {a1, a2, a3} is a clique and there is a (3, x2|G|)-comb ((ai, Bi) : i ∈ {1, 2, 3}) in G with
B1, B2, B3 ⊆ B, such that there are at least x19|G|3 induced three-vertex paths u1-u2-u3 with
ui ∈ Bi for all i ∈ {1, 2, 3}; or

• {a1, a2, a3} is stable and there is a (3, x3|G|)-comb ((ai, Bi) : i ∈ {1, 2, 3}) inG withB1, B2, B3 ⊆
B, such that the edge-density between every pair among them is at least 1− 4x2.

(1) There are at least 2|Z2|(x24|G|3) copies of Ĉ5 in G whose images contain v.

Let {a1, a2} ∈ Z2; then there is a comb ((a1, B1), (a2, B2)) where B1, B2 are x2-cores in G[B] and
the edge-density between them is at least 4x2 and at most 1 − 4x2. By 9.2, there exists i ∈ {1, 2}
such that there are at least x2|Bi| vertices in Bi each having at least x2|B3−i| neighbours and at least
x2|B3−i| nonneighbours in B3−i; and we may assume i = 1. For each such vertex u ∈ B1 with set
of neighbours Nu in B2, since B2 is an x2-core in G[B], the edge-density between Nu and B2 \Nu is
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at least x10; and each such edge together with v, u, a1, a2 gives a copy of Ĉ5 in G. Actually, it gives
two copies, since a “copy” is an isomorphism, not just an induced subgraph. Moreover,

|Nu|(|B2| − |Nu|) ≥ x2(1− x2)|B2|2 ≥ x3|B2|2.

Thus there are at least

2x2|B1| · x10 · x3|B2|2 = 2x15|B1||B2|2 ≥ 2x24|G|3

copies of Ĉ5 in G whose images contain v, a1, a2. It follows that the number of copies of Ĉ5 in G
whose images contain v is at least 2|Z2|(x24|G|3). This proves (1).

(2) There are at least 2|Z3|(x19|G|2) copies of Ĉ5 in G whose images contain v.

Let {a1, a2, a3} ∈ Z3; we consider two cases.

• In the first case, {a1, a2, a3} is a clique and there is a (3, x2|G|)-comb ((ai, Bi) : i ∈ {1, 2, 3})
in G with B1, B2, B3 ⊆ B, such that there are at least x19|G|3 induced three-vertex paths
u1-u2-u3 with ui ∈ Bi for all i ∈ {1, 2, 3}. Then each such induced path together with v, a1, a3
gives two copies of Ĉ5 in G.

• In the second case, {a1, a2, a3} is stable and there is a (3, x3|G|)-comb ((ai, Bi) : i ∈ {1, 2, 3})
in G with B1, B2, B3 ⊆ B, such that the edge-density between every pair among them is at
least 1 − 4x2. Then there are at least (1 − 12x2)|B1||B2||B3| ≥ x(x3|G|)3 ≥ x10|G|3 triangles

which are (B1, B2, B3)-rainbow, and each together with v, a1, a3 gives two copies of Ĉ5 in G.

Since the copies of Ĉ5 just produced contain a1 and a3 but not a2, we must beware of double-
counting them. But there are at least |Z3|/|G| pairs {a1, a3} in A for which there exists a2 ∈
A\{a1, a3} with {a1, a2, a3} ∈ Z3, and each such pair gives us 2x19|G|3 copies of Ĉ5, with no double-

counting. It follows that there are at least 2(|Z3|/|G|)(x19|G|3) ≥ 2|Z3|(x19|G|2) copies of Ĉ5 in G
whose images contain v. This proves (2).

Again, there may be double-counting between (1) and (2); but (1) and (2) imply that there are
at least

|Z2|(x24|G|3) + |Z3|(x19|G|2)

copies of Ĉ5 in G whose images contain v. We may assume that

|Z2|(x24|G|3) + |Z3|(x19|G|2) ≤ (x8|G|)5

since otherwise the first outcome holds; and so, since |A| ≥ x3|G|, we obtain

|Z2|(x|A|)−2 + |Z3|(x|A|)−3 ≤ |Z2|(x4|G|)−2 + |Z3|(x4|G|)−3

≤ (x7|G|)−5 · (|Z2|(x24|G|3) + |Z3|(x19|G|2))
≤ (x7|G|)−5 · (x8|G|)5 = x5.

We may assume that |Z6| ≤ (x2|A|)6, since otherwise the second outcome holds; and we deduce that

|Z2|(x|A|)−2 + |Z3|(x|A|)−3 + |Z6|(x|A|)−6 ≤ x5 + x6 < 1/4.
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By 9.1, there exist A′ ⊆ A and B′ ⊆ B with |A′| ≤ 1/x and |B′| ≥ 1
4 |B| such that every vertex

in B′ has a neighbour in A′, and A′ includes no member of Z2 ∪ Z3 ∪ Z6. We may assume that
|B′| ≥ 1

4 |B| ≥ 20
√
|G|∆, since otherwise the third outcome holds; and now we will prove that the

fourth outcome holds. By 9.3, there is a (k, |G|/k2)-comb ((ai, Bi) : 1 ≤ i ≤ k) for some integer
k ∈ [1, 1/x], where ai ∈ A′ and Bi ⊆ B′ for 1 ≤ i ≤ k. Since the degree of a1 is at most ∆, it
follows that |B1| ≤ ∆, and so |G|/k2 ≤ ∆ ≤ |G|/d. Hence k2 ≥ d and so k ≥ d1/2 ≥ 4. The

set {a1, . . . , ak} includes no member of Z6 and thus induces a {Ĉ5, Ĉ5}-free graph in G. So by the
definition of a and the choice of d, there exists I ⊆ {1, . . . , k} with |I| ≥ ka ≥ da/2 ≥ (d′)5 such that
S := {ai : i ∈ I} is a clique or a stable set. Let B := (Bi : i ∈ I); then B is a (|I|, w)-blockade where
w = d|G|/k2e ≥ x2|G|. We may assume that all the sets Bi (i ∈ I) have cardinality exactly w.

(3) If S is a clique then the fourth outcome holds.

Since |I|1/5 ≥ d′, there exists an integer s ≥ 1 maximum such that |I|1/5 ≥ 2s−1(d′)2s−1; and
so (2s)b ≥ 2s(d′)2s+1 ≥ |I|1/5 by the choice of b. Since S contains no member of Z3, for all distinct
p, q, r ∈ I there are fewer than x19|G|3 induced three-vertex paths up-uq-ur where up ∈ Bp, uq ∈ Bq
and ur ∈ Br. Thus, for every subblockade D of B with length four, there are fewer than

12x19|G|3 · w ≤ x18|G|3 · w = (x6|G|)3w ≤ (x4w)3w = (x3w)4

D-rainbow copies of P4 in G (since all the sets Bi have cardinality w). Hence, since |I| ≤ k ≤ 1/x,
and therefore

2s−1(d′)2s−1 ≤ |I|1/5 ≤ x−1/5,

7.5 implies that there is a (2s, w/|I|)-blockade in G[B] which is an x-blowup of a cograph; and thus
G[B] contains an x-sparse or x-dense (d2s/2e, w/|I|)-blockade. But then the fourth outcome holds,
since

2s/2 ≥ |I|1/(10b) ≥ ka/(10b) ≥ k3/d

by the choice of d, and w/|I| ≥ w/k ≥ |G|/k3. This proves (3).

(4) If S is stable then the fourth outcome holds.

Suppose that there exists i ∈ I such that Bi includes no x2-core of size at least |Bi|/k. Since k ≥ 4,
8.1 implies that there is an x-sparse (k, |Bi|/k2)-blockade in G[Bi]; but then the fourth outcome
holds since

|Bi|/k2 ≥ |G|/k4 ≥ |G|/kd.

Thus, we may assume that for every i ∈ I, there is an x2-core Di ⊆ Bi with

|Di| ≥ |Bi|/k ≥ |G|/k3 ≥ x3|G|.

Let D := (Di : i ∈ I). Because S includes no member of Z2, the edge-density between every pair of
blocks of D is at most 4x2 or at least 1 − 4x2. Let F be the graph with vertex set I such that for
all distinct i, j ∈ I, if Di, Dj have edge-density at least 1 − 4x2 then ij ∈ E(F ), and if Di, Dj have
edge-density at most 4x2 then ij /∈ E(F ). Because S contains no member of Z3, F is triangle-free,
and so contains a stable set with size at least |I|1/2 ≥ ka/2 ≥ k4/d by the choice of d; and so we may
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choose a stable set J in F with |J | = dk4/de, and therefore 2 ≤ |J | ≤ dx−1/2e. Thus (Di : i ∈ J) is a
(|J |, |G|/k3)-blockade in G[B] where the edge-density between every pair of blocks is at most 4x2.

Now, for every i, j ∈ J with i < j, let Dij be the set of vertices in Dj with at least 1
2x|Di|

neighbours in Di; then |Dij | ≤ 8x|Dj |. For each j ∈ J , let B′j := Dj \ (
⋃
i∈J,i<j Dij); then

|B′j | ≥ (1− 8x|J |)|Dj | ≥
1

k
|Dj |

since 8x|J | ≤ 8xdx−1/2e ≤ 1
2 . Then for every i, j ∈ J with i < j, every vertex in B′j has at most

1
2x|Di| ≤ x|B′i| neighbours in B′i; and so (B′i : i ∈ J) is an x-sparse (|J |, |G|/k4)-blockade. Since
k4 ≤ |J |d, this shows that the fourth outcome holds, and so proves (4).

(3) and (4) together yield the fourth outcome. This proves 10.2.

We deduce:

10.3 Let H = {Ĉ5, Ĉ5}; then there exists d > 0 with the following property. Let x ∈ (0, d−1), and
let G be a graph with µH(xd, G) < 1 and maximum degree at most ∆ where ∆ ∈ (2x3|G|, |G|/d).
Let T be the set of vertices of G with degree at least 1

2∆, and for each v ∈ T let Av be the set of
neighbours of v in G. Then either

• |T | ≤ x42|G|; or

• for some v ∈ T , there are at most 80
√
|G|∆ vertices in V (G) \ (Av ∪ {v}) that have at least

x|Av| neighbours in Av; or

• there is an x-sparse or x-dense (k, b|G|/kdc)-blockade in G for some integer k ∈ [2, 1/x].

Proof. Choose d as in 10.2. Since all larger numbers also satisfy 10.2, we may assume that d ≥ 100.
We claim that d satisfies the theorem. To see this, let x ∈ (0, d−1), and let G be such that µH(xd, G) ≤
1, with maximum degree at most ∆ where ∆ ∈ (2x3|G|, |G|/d). We assume that none of the three
outcomes hold; and in particular, |T | ≥ x42|G| ≥ 1. Let n := dx42|G|e, and let v1, . . . , vn ∈ T be
distinct. For notational convenience, for each i ∈ [n], let Ai := Avi , and let Bi be the set of vertices
in V (G) \ (Ai ∪{vi}) that have at least x|Ai| neighbours in Ai; then |Bi| > 80

√
|G|∆. By 10.2, since

its fourth outcome does not hold, it follows that for 1 ≤ i ≤ n, either

• there are at least (x8|G|)5 copies of Ĉ5 in G whose images contain vi; or

• there are at least (x3|Ai|)6 copies of Ĉ5 or Ĉ5 in G[Ai].

Since µH(xd, G) < 1, there are fewer than x6d|G|6 copies of one of each of Ĉ5, Ĉ5 in G. Consequently
the second bullet above does not hold, since

(x3|Ai|)6 ≥ (x6|G|)6 ≥ 2x6d|G|6.

Thus the first holds for all i ∈ {1, . . . , n}, and so for 1 ≤ i ≤ n, there are at least (x8|G|)5 copies

of Ĉ5 in G whose images contain vi. Each such copy contains at most six of v1, . . . , vn, and so is
counted at most six times; and hence altogether there are at least

(x8|G|)5n/6 ≥ (x8|G|)5x42|G|/6 = x82|G|6/6 ≥ x83|G|6 ≥ x6d|G|6

copies of Ĉ5 in G, again contradicting that contradicting that µH(xd, G) ≤ 1. This proves 10.3.
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Now we can deduce 1.10, and 1.8:

10.4 The set {Ĉ5, Ĉ5} is viral. Consequently C5 and the bull are viral.

Proof. Let J = {Ĉ5, Ĉ5}. Choose b such that setting d = b satisfies 10.3; and choose d ≥ b + 1
satisfying 6.1 taking q = 80. We claim that d satisfies the theorem. By 5.2, it suffices to show that
if G is a graph with µH(xd, G) ≤ 1 and maximum degree at most |G|/d, there is an x-sparse or
(1 − x)-dense blockade in G of length k and width at least b|G|/kdc for some k ∈ [2, 1/x]. Suppose
not. Then, from 6.1 with q = 80, there is a number D with 2x3|G| ≤ D ≤ |G|/d, and an induced
subgraph G′ of G such that, denoting by T the set of vertices in G′ that have degree at least D/2:

• |G′| ≥ |G|/2, and G′ has maximum degree at most D/2;

• |T | ≥ x2|G|; and

• for every vertex v ∈ T , with neighbour set A in G′ say, there are at least q(D|G|)1/2 vertices
in V (G′) \A that have at least x|A| neighbours in A.

Now µH(xb, G′) ≤ µH(xb+1, G) ≤ µH(xd, G) ≤ 1 by the choice of d. Thus, since G′ has no x-sparse
or x-dense (k, |G′|/kb)-blockade for any integer k ∈ [2, 1/x] (note that |G′|/kb ≥ |G|/kb+1 ≥ |G|/kd),
10.3 implies that |T | ≤ x42|G|′, a contradiction, since |T | ≥ x2|G|. This proves that there is an
x-sparse or (1−x)-dense blockade in G of length k and width at least b|G|/kdc for some k ∈ [2, 1/x],
and hence J is viral from 5.2. Let H = {C5}. Since every graph in J includes the member of H as
an induced subgraph, it follows from 2.1 that C5 is viral, and similarly the bull is viral. This proves
10.4.

It was proved in [5] that {C6, C6} has the Erdős-Hajnal property, and a proof similar to that of
10.4 shows that {C6, C6} is viral, as we sketch now. In the proof of 10.2, with the same S = {ai : i ∈ I}
and B = (Bi : i ∈ I), every B-rainbow induced copy of P4 would give an induced copy of C6 whenever
S is a clique or stable set in G. Consequently, up to minor numerical adjustments in the exponents

of x, one can change Ĉ5, Ĉ5 to C6, C6, respectively, in the first two outcomes of 10.2, and 10.3 and
10.4 can be modified accordingly. We omit further details.
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