
Reconstructing subsets of Zn

A.J. Radcliffe 1

Department of Mathematics and Statistics
University of Nebraska-Lincoln

Lincoln, NE 68588-0323

A.D. Scott
Department of Mathematics, University College

Gower Street, London WC1E 6BT
and

Trinity College, Cambridge CB2 1TQ, England

1Partially supported by NSF Grant DMS-9401351



Abstract

In this paper we consider the problem of reconstructing a subset A ⊂ Zn, up
to translation, from the collection of its subsets of size k, given up to translation
(its k-deck). Results of Alon, Caro, Krasikov, and Roditty [1] show that this is
possible provided k > log2 n. Mnukhin [10] showed that every subset of Zn of
size k is reconstructible from its (k − 1)-deck, provided k ≥ 4. We show that
when n is prime every subset of Zn is reconstructible from its 3-deck; that for
arbitrary n almost all subsets of Zn are reconstructible from their 3-decks; and
that for any n every subset of Zn is reconstructible from its 9α(n)-deck, where
α(n) is the number of distinct prime factors of n. We also comment on analogous
questions for arbitrary groups, in particular the cube Zn2 .

Our approach is to generalize the problem to that of reconstructing arbitrary
rational functions on Zn. We prove — by analysing the interaction between the
ideal structure of the group ring QZn and the operation of pointwise multiplica-
tion of functions — that with a suitable definition of deck every rational-valued
function on Zn is reconstructible from its 9α(n)-deck.



1 Introduction.
The reconstruction problem has a long history, started by the Reconstruction Con-
jecture (in 1941) and the Edge Reconstruction Conjecture (in 1960). The very
general problem is to reconstruct a combinatorial object (up to isomorphism) from
the collection of isomorphism classes of its subobjects (see Bondy [2] and Bondy
and Hemminger [3] for discussion of the two classical problems). Of course it is
the word “isomorphism” in the last sentence which makes the problem interesting.

In this paper we consider the problem of reconstructing subsets of the cyclic
group Zn from their subsets. The information provided about a subset of Zn is the
multiset of isomorphism classes of its subsets of fixed size k, where two subsets
are isomorphic if one subset is a translate of the other in Zn. We call this collection
the k-deck of a set in Zn. We say that a setA ⊂ Zn with |A| ≥ k is reconstructible
from its k-deck if any set B ⊂ Zn having the same k-deck is a translate of A.

Maybe the first thing to notice is that for |A| ≥ k one can reconstruct the l-
deck of A from the k-deck for any l ≤ k. This is analogous to Kelly’s lemma (see
[2]). On the other hand if |A| < k then the k-deck of A is empty, and therefore A
cannot be distinguished from any other subset of size strictly less than k. It makes
the statement of our theorems slightly easier if we use a definition of deck for
which this issue does not arise. The definition we adopt below regards the deck as
a function on multisets of size k from Zn. It is straightforward to check that this
form of the k-deck can be determined from the deck as defined above, provided
|A| ≥ k.

Definition 1 Let n be a positive integer and let X ⊂ Zn. The k-deck of X is the
function defined on multisets Y from Zn of size k by

dX,k(Y ) = |{i ∈ Zn : supp(Y + i) ⊂ X}|,

where supp(Y ) is the set of elements of Y , considered without multiplicity. We
say that X is reconstructible from its k-deck if we can deduce X up to translation
from its k-deck; in other words, we have

dW,k ≡ dX,k ⇒ W = X + i, for some i ∈ Zn.

More generally we say that a function of X is reconstructible from the k-deck of
X if its value is a function of dX,k.

Thus in Z12 the sets {1, 2, 4, 8} and {1, 2, 5, 7} are not distinguishable from
their 2-decks, but are reconstructible from their 3-decks. In fact, any two cyclic

1



difference sets in Zn will have the same 2-deck (viz., each possible pair with mul-
tiplicity 1). Since there are non-equivalent cyclic difference sets for arbitrarily
large n (see [5]), there are subsets of Zn for infinitely many n which are not re-
constructible from their 2-decks. There are more elementary examples: A cannot
be distinguished from −A by examining their 2-decks; A + B and A − B have
the same 2-deck for any subsets A,B ⊂ Zn. This last example also shows that for
sufficiently large n we cannot hope to reconstruct even up to reflection by looking
solely at the 2-deck.

It is straightforward to check that the l-deck ofX ⊂ Zn is reconstructible from
the k-deck for l ≤ k.

Alon, Caro, Krasikov and Roditty [1] consider the closely related problem of
reconstructing subsets of Zn under the natural action of Dn. Two sets X, Y ⊂ Zn
are Dn-isomorphic or isomorphic up to reflection if X = Y + i or X = −Y + i
for some i ∈ Zn. The k-deck of X ⊂ Zn given up to reflection is the function
DX,k on multisets Y of size k from Zn, where DX,k(Y ) = dX,k(Y ) if Y and −Y
are isomorphic up to translation and DX,k(Y ) = dX,k(Y ) + dX,k(−Y ) otherwise.
We say that X is reconstructible up to reflection if DX,k ≡ DW,k implies that W
and X are isomorphic up to reflection.

For n ≥ 1, we define f(n) to be the smallest k such that every X ⊂ Zn
is reconstructible from its k-deck. We define F (n) to be the smallest K such
that every X ⊂ Zn is reconstructible up to reflection from its k-deck; it is easily
checked that F (n) ≥ f(n). Alon, Caro, Krasikov and Roditty [1] proved that

F (n) ≤ log2 n+ 1,

which implies that
f(n) ≤ log2 n+ 1.

The example given above shows that, for sufficiently large n,

f(n) ≥ 3.

The main result of this paper (Theorem 18) is that

f(n) ≤ 9α(n),

where α(n) is the number of distinct prime factors of n, while for p prime we
prove (Theorem 3) that

f(p) ≤ 3,
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which is best possible for p sufficiently large. Thus f(n) does not tend to infinity
with n. This suggests that either f(n) ≤ C for some absolute constant C or else
that f(n) is sensitive to the precise multiplicative structure of n. We conjecture
that it is the latter.

Conjecture 1 f(n) is unbounded as n tends to infinity.

Note that the bound in terms of α(n) implies

f(n) ≤ (9 + o(1)) lnn/ ln lnn,

(see §22.12 of Hardy and Wright [7]; note that we use α(n) for their ω(n)) which
is smaller than lnn for all sufficiently large n. Furthermore, for almost every n,
we have

f(n) ≤ (9 + o(1)) ln lnn

(this follows immediately from Theorem 436 of Hardy and Wright [7]). For most
sets, however, we can do much better: we prove below (Theorem 4) that as n →
∞, almost every X ⊂ Zn is reconstructible from its 3-deck.

These results also yield improvements on the result of Alon, Caro, Krasikov
and Roditty [1]. It is proved in [12] that

F (n) ≤ 2f(n).

Thus the results above imply that for any n

F (n) ≤ 18α(n),

while for p prime
F (n) ≤ 6.

Furthermore, as n→∞, almost every X ⊂ Zn is reconstructible up to reflection
from its 6-deck given up to reflection.

The way in which we prove our main result is somewhat unexpected. We
generalize the objects being reconstructed and the notion of k-deck. To be precise
we consider reconstructing arbitrary rational-valued functions on Zn, and base our
results on a careful analysis of the ideal structure of the group ring QZn, and its
interaction with the operation of pointwise multiplication.

We begin in Section 2, however, with a simpler proof which implies that sub-
sets of Zp for p prime are reconstructible from their 3-decks, and gives as a corol-
lary that, as n tends to infinity, almost all subsets of Zn are reconstructible from
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their 3-decks. In Section 3 we describe the basic setup for the general proof and
give some definitions that we shall need. In Section 4 we prove the results we
need concerning the ?-product operation, defined in Section 3. In Section 5 we
prove the algebraic facts that we require, and the proof of our main theorem is
completed in Section 6. In Section 7 we consider the action of Zn2 on itself and
make some remarks on the situation for arbitrary groups.

We use χA throughout to refer to the characteristic function of a set A. We
will frequently use the arithmetic of Zn without further comment, for instance in
subscripts.

2 The case of prime n.
In this section we present a rather quick and straightforward proof that if p is a
prime then f(p) ≤ 3. Though couched in slightly different language than our later
general proof, it should make the later work more transparent.

We start with two simple lemmas; the first of which allows us to identify a
sequence which is a translate of (1, 0, 0, . . . , 0), and the second of which shows
that the identification can be made based only on the 3-deck.

Lemma 1 If (ci)
n−1
i=0 is a sequence of real numbers satisfying the two conditions∑n−1

i=0 c
2
i = 1, and

∑n−1
i=0 c

3
i = 1 then all the ci are zero, except for one which is 1.

Proof. Since
∑
c2i = 1 we have that |ci| ≤ 1 for i = 0, 1, . . . , n − 1. Hence we

have 1 =
∑
c3i ≤

∑
|ci|3 ≤

∑
c2i = 1. We must have therefore that |ci|3 = c2i for

i = 0, 1, . . . , n−1, and hence that each ci belongs to {−1, 0, 1}. The condition on∑
c2i establishes that there is one non-zero coefficient, and the condition on

∑
c3i

shows that that coefficient is 1.

Lemma 2 For any k ≤ n, any set A ⊂ Zn, and any multiset {i1, i2, . . . , ik} from
Zn we can reconstruct the size of (A − i1) ∩ (A − i2) ∩ · · · ∩ (A − ik) from the
k-deck of A.

Proof. This size is simply dA,k({i1, i2, . . . , ik}).
These preliminaries out of the way, we turn to the main result of this section:

that for p prime we can reconstruct all subsets of Zp from their 3-decks.

Theorem 3 If p is prime then any subset of Zp can be reconstructed from its 3-
deck.
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Proof. Consider a subset A ⊂ Zp and another, B say, with the same 3-deck as A.
We associate withA the circulant matrixMA = [mij] defined bymij = χA(j− i),
i, j = 0, 1, . . . , n−1. If we write Z for the fundamental circulant matrix Z = [zij],
zij = δ(i+1)j , then MA =

∑
j∈A Z

j . Since the eigenvalues of Z are exactly the pth

roots of unity ζ ip, i = 0, 1, . . . , p − 1, (where ζp = e2πi/p) it follows that MA has
eigenvalues

∑
j∈A ζ

ij
p , i = 0, 1, . . . , p− 1. We distinguish two cases, according to

whether MA is invertible or not.
Case 1. MA is invertible

MA has (circulant) inverse Λ, with first row λi, i = 0, 1, . . . , p − 1. Now
consider the (circulant) matrix C = ΛMB, with first row ci, i = 0, 1, . . . , p − 1.
We claim that (ci)

n−1
i=0 satisfies the conditions of Lemma 1 above. To show this, we

will prove that
∑p−1

j=0 c
r
j , r = 2, 3, considered as functions ofB, are reconstructible

from the 3-deck ofB. Knowing this, we conclude that these expressions must take
on the same value as they do for ΛMA = I . Well,

p−1∑
i=0

c2i =

p−1∑
i=0

(
p−1∑
j=0

λjχB(j − i)

)2

=

p−1∑
j=0

p−1∑
k=0

λjλk

p−1∑
i=0

χB(j − i)χB(k − i)

=

p−1∑
j=0

p−1∑
k=0

λjλk|(B − j) ∩ (B − k)|.

By Lemma 2 the factor |(B − j) ∩ (B − k)| occuring in the innermost sum on
the last line can be determined from the 2-deck of B. Hence the entire sum can
be computed from the 2-deck of B (and hence from the 3-deck of B). The sum of
the c3i can be determined the same way:

p−1∑
i=0

c3i =

p−1∑
i=0

(
p−1∑
j=0

λjχB(j − i)

)3

=

p−1∑
j=0

p−1∑
k=0

p−1∑
l=0

λjλkλl

p−1∑
i=0

χB(j − i)χB(k − i)χB(l − i)

=

p−1∑
j=0

p−1∑
k=0

p−1∑
l=0

λjλkλl|(B − j) ∩ (B − k) ∩ (B − l)|.
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The last expression is, by Lemma 2, reconstructible from the 3-deck of B.
Thus all three expressions are determined by the 3-deck of B. Since this is

by hypothesis the same as the 3-deck of A, it must be that these expression take
the same value for ΛMB as for ΛMA = I , i.e., each takes the value 1. Thus
by Lemma 1 (ci)

n−1
i=0 is a standard unit vector, and so ΛMB = Zk for some k in

{0, 1, . . . , p− 1}. Thus MB = ZkMA and B = A + k. Thus A can be recon-
structed from its 3-deck.
Case 2. MA is not invertible

First note that ∅ ⊂ Zn is the only subset whose 1-deck is identically zero,
so we may suppose A 6= ∅. Since the eigenvalues of A are the p values αi =∑

j∈A ζ
ij
p , for i = 0, 1, . . . , p − 1, in order for A to be singular there must exist

i ∈ {0, 1, 2, . . . , p− 1} with αi = 0. Now α0 = |A| 6= 0 so we must have 0 < i ≤
p− 1. The minimal polynomial of ζ ip is mp(x) =

∑p−1
j=0 x

j while
∑

j∈A(ζ ip)
j = 0.

Thus we must have mp(x) |
∑

j∈A x
j . This implies that A = {0, 1, . . . , p− 1},

which is certainly reconstructible from its 3-deck.
Using a similar method we can show that almost all subsets of Zn are recon-

structible from their 3-decks.

Theorem 4 The proportion of subsets of Zn which are not reconstructible from
their 3-decks tends to 0 as n tends to infinity.

Proof. The proof of Theorem 3 applies equally here, provided that the matrix MA

is invertible. This requires that
∑

j∈A ζ
ij
n 6= 0, i = 0, 1, . . . , n − 1. If we write

pA for the polynomial
∑

j∈A x
j then we aim to show that the fraction of subsets

A ⊂ Zn for which there exists i ∈ {0, 1, . . . , n− 1} with pA(ζ in) = 0 tends to
zero as n tends to infinity.

Kleitman’s extension [9] of Erdős’s theorem [6] concerning the Littlewood-
Offord problem states that if (xi)

n
i=1 is collection of vectors from some normed

space with ‖xi‖ ≥ 1, i = 1, 2, . . . , n, then at most
(

n
bn/2c

)
of the subset sums{∑

i∈B xi : B ⊂ {1, 2, . . . , n}
}

can belong to any fixed set of diameter 1. In par-
ticular if we consider, for fixed i, the collection of complex numbers {ζ ijn : j = 0, 1, . . . , n− 1},
at most

(
n
bn/2c

)
sets A ⊂ Zn can have pA(ζ in) =

∑
j∈A ζ

ij
n = 0. Thus for any fixed

i at most
(

n
bn/2c

)
subsets of Zn have ζ in as a root of pA.

To complete the proof note that the minimal polynomial of ζ in is the cyclotomic
polynomial Φn/(n,i) and if p(x) is any polynomial we have p(ζ in) = 0 iff Φn/(n,i) |
p. Thus pA(ζ in) = 0 for some i iff pA(ζdn) = 0 for some divisor d of n. Thus the
fraction of subsets A ⊂ Zn with pA(ζ in) = 0 for some i is at most d(n)

(
n
bn/2c

)
/2n
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where d(n) is the number of divisors of n. Since
(

n
bn/2c

)
/2n = O(n−1/2) and

d(n) = o(nε) for every ε > 0 (see Theorem 315 of Hardy and Wright [7]) this
proportion tends to zero as n tends to infinity.

It seems to us an exceptionally natural question to ask whether the result of
Theorem 4 holds for the 2-deck as well, to the extent that is possible.

Conjecture 2 Almost every subset of Zn is reconstructible up to reflection from
its 2-deck.

3 The approach for general n.
In this section we outline our approach to the problem of reconstructing subsets
of Zn when n is not prime.

Alon, Caro, Krasikov and Roditty [1] deduce their result, that F (n) ≤ log2 n+
1, from a general result about reconstructing sets under the action of permutation
groups. Several other authors, including Cameron [4], Mnukhin [10], and Pouzet
[11] have looked at such reconstruction problems. Indeed, from one point of view
every reconstruction problem concerns the action of a group on the collection of
combinatorial objects being reconstructed, and on their subobjects.

Definition 2 Let Γ be a permutation group acting on a set Ω. We say two sets
X, Y ⊂ Ω are isomorphic if gX = Y for some g ∈ Γ. For X ⊂ Ω, the k-deck of
X is the function defined on multisets from Ω of size k by

dX,k(Y ) = |{g ∈ Γ : supp(gY ) ⊂ X}|.

We say that Γ is reconstructible from its k-deck if

dX,k ≡ dY,k ⇒ X = gY for some g ∈ Γ.

Thus the Edge Reconstruction conjecture claims that every subset E of X(2)

of size 4 or more is reconstructible from its (|E| − 1)-deck under the induced
action of the symmetric group ΣX on X(2). Mnukhin [10] deals with the action
of Zn on itself, and proves that all k-subsets of Zn are reconstuctible from their
(k − 1)-decks, provided k ≥ 4.

Our approach is to consider not just subsets ofG but the larger class of rational-
valued functions on the group, where we associate S ⊂ G with its characteristic
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function χS : G→ {0, 1}. Clearly there is an action of G on this set of functions
given by

g.f(x) = f(g−1x)

for g ∈ G and f : G → Q . Note that the set of rational-valued functions on G
under the action of G can be identified with the elements of the group ring QG.
Consideration of this larger class requires us to refine our notion of deck. Since
we can think of elements of QZn as generalizations of multisets from Zn, it is
natural that the deck of α ∈ QZn should be a function defined on the set of all
multisets from Zn of size k, agreeing with our earlier convention about the k-deck
for subsets.

Definition 3 If f ∈ QG and k ≥ 1 the k-deck of f is the function defined on
multisets of G of size k by

df,k(Y ) =
∑
g∈G

∏
x∈gY

f(x).

We say that f is reconstructible from its k-deck if

df,k ≡ df ′,k ⇒ f ′ = g.f for some g ∈ G.

We define rQ (G) to be the smallest k such that every function f : G → Q is
reconstructible from its k-deck. Again we loosely talk of an expression involving
f being reconstructible from the k-deck if any two elements of QG with the same
k-deck have the same value for that expression.

Definition 4 If f ∈ QG and f ′ is another element of the group ring with the
property that df,k ≡ df ′,k and yet there is no g ∈ G with f ′ = g.f then we say that
f ′ is a k-imposter for f .

Remark 1 There is another plausible notion of k-deck for elements of QG. One
could consider the collection of all partial functions obtained by restricting f to
subsets of G of size k. The deck defined above is reconstructible from such a
deck, thus the results we prove apply just as well to this notion of deck.

Remark 2 Note that, for S ⊂ G, we have dχS ,k ≡ dS,k.
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Remark 3 In the case G = Zn we have, for I = {i1, i2, . . . , ik} a multiset of size
k,

df,k(I) =
n−1∑
j=0

f(j + i1)f(j + i2) . . . f(j + ik).

We will eventually show that every element of the group ring QZn can be
reconstructed from its 9α(n)-deck; in the rest of this section we discuss QZn and
its ideals.

The first thing to notice is that the group ring QZn is isomorphic to the ring
Qn = Q [x]/(xn− 1). The action of Zn on QZn is isomorphic to the action of Zn
on Qn given by i.α = xiα. We write (abusing notation slightly) α =

∑n−1
j=0 ajx

j

for a typical element ofQn, where properly we should indicate that we are dealing
with equivalence classes of polynomials.

Qn is of course a vector space over Q in a natural way; is a subring of
Cn = C[x]/(xn − 1); and comes equipped with the inner product 〈α, β〉 =∑n−1

j=0 ajbj , with respect to which the collection {xj : j = 0, 1, . . . , n− 1} forms
an orthonormal basis. When we discuss Qn we will think of the indices as ele-
ments of Zn; in particular we will perform all arithmetic on subscripts in Zn.

One way we will investigate Qn is through the Fourier transform, which we
will consider in Section 5. This requires us to widen our viewpoint somewhat,
since the natural domain for the Fourier transform is Cn (which is of course the
same thing as CZn). The Fourier transform is an isomorphism between Cn and
the ring Cn, equipped with pointwise multiplication.

The support of an element α =
∑n−1

j=0 ajx
j ∈ Qn is the set supp(α) =

{j : aj 6= 0} ⊂ Zn. Similarly, the support of a sequence is the set of places
where it takes a non-zero value, and the support of a multiset is the set of its
elements considered without multiplicity.

We will want to consider the following operation (of pointwise multiplication
of coefficients) on the ring Qn.

Definition 5 Given two elements of Qn define their star product to be(
n−1∑
j=0

ajx
j

)
?

(
n−1∑
j=0

bjx
j

)
=

(
n−1∑
j=0

ajbjx
j

)
.

In particular we will consider expressions of the following form. Given a multiset
I = {i1, i2, . . . , il} from {0, 1, . . . , n− 1} define

αI = (xi1α) ? (xi2α) ? · · · ? (xilα).
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A linear combination of such expressions, e.g., p(α) =
∑

I∈I λIα
I , we call a

?-polynomial. The degree of p is defined to be max {|I| : I ∈ I}. We are also
interested in the linear map S : Qn → Q defined by

S

(
n−1∑
j=0

ajx
j

)
=

n−1∑
j=0

aj

and the compositions S ◦ p for ?-polynomials p. Therefore define the ?-term
corresponding to the multiset I = {i1, i2, . . . , il} from {0, . . . , n− 1} to be the
function SI : Qn → Q given by SI(α) = S(αI). Thus

S{i1,i2,...,ik} =
n−1∑
j=0

aj−i1aj−i2 . . . aj−ik .

Similarly define a ?-expression to be the composition of S and a ?-polynomial.
The degree of a ?-expression is defined to be max {|I| : I ∈ I}.

Definition 6 Given ideals M , N ⊂ Qn we define their ?-product M ? N to be
the ideal generated by M and N together with the set of all ?-products of one
element from M and one from N . Note that M ? N contains the ideal gen-
erated by {m ? n : m ∈ M,n ∈ N}, but that the two ideals need not be
equal. The kth ?-power of M is the ideal M?k = M?(k−1) ? M = M ? M ?
· · · ? M , where k factors of M appear. Note that if M = (α) then M?k =
{p(α) : p is a ?-polynomial with deg(p) ≤ k}. These definitions have natural
generalizations to Cn, which we adopt without further comment.

In our proof of the main theorem, Theorem 18, we will show that given α ∈
Qn we can find a ?-polynomial p such that p(α) = 1 ∈ Qn, and that moreover it
can be done in such a way that p has reasonably low degree; at most l say. Then we
will show that the values of ?-expressions of degree at most k are reconstructible
from the k-deck. This will enable us to prove, with a little work, that if β ∈ Q n

has dβ,3l ≡ dα,3l then we must have p(β) = xi for some i ∈ {0, . . . , n− 1}, and
then that β = xiα.

4 ?-expressions.
The main result we require concerning ?-expressions is simply the fact that if α
and β are elements of Cn with dα,k ≡ dβ,k then all ?-expressions of degree at most
k take the same value at α as at β.
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Lemma 5 Suppose k is an integer with k ≥ 1 and α, β ∈ Cn have

dα,k ≡ dβ,k.

If
f =

∑
I∈I

λISI

is a ?-expression of degree at most k then f(α) = f(β).

Proof. It is clearly sufficient to prove the result when f is a ?-term; f = SI with
I = {i1, i2, . . . , il}, l ≤ k. Then we simply have

f(α) =
n−1∑
j=0

aj−i1aj−i2 . . . aj−il

= dα,l({−i1,−i2, . . . ,−il})
= dβ,l({−i1,−i2, . . . ,−il})
= f(β)

The next result allows us to identify, by means of ?-expressions, the elements
xi, i ∈ {0, . . . , n− 1}, of Qn.

Lemma 6 Suppose α ∈ Qn satisfies

S{0,0}(α) = S{0,0,0}(α) = 1.

Then for some i ∈ {0, . . . , n− 1} we have α = xi.

Proof. This is identical with Lemma 1.

Lemma 7 Let p, q be ?-polynomials and f be a ?-expression. Then p ◦ q is a ?-
polynomial of degree at most deg(p) deg(q) and f ◦ p is a ?-expression of degree
at most deg(f) deg(p).

Proof. Straightforward calculation.
The next two results are the key to our approach; they give, respectively, a

simple combinatorial condition and a simple algebraic condition on α ∈ Qn which
guarantee its reconstructibility,
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Proposition 8 Suppose that α =
∑n−1

j=0 ajx
j is an element of Qn and that there

exists a ?-polynomial p such that p(α) = 1. If deg(p) ≤ k and β ∈ Qn has
dβ,3k ≡ dα,3k then β = xiα for some i ∈ {0, . . . , n− 1}.

Proof. Let ι = p(β). Applying the ?-term S{0,0,0} to p we get (by Lemma 7)
a ?-expression f = S{0,0,0} ◦ p of degree at most 3k. By Lemma 5, we have
S{0,0,0}(ι) = f(β) = f(α) = S{0,0,0}(1) = 1. Similarly we have S{0,0}(ι) = 1.
By Lemma 6 it must be the case that ι = xi for some i ∈ {0, . . . , n − 1}. Now,
for j = 0, . . . , n − 1, consider the function on Qn given by β 7→ 〈xjι, β〉. This
function is some ?-expression gj of degree at most 3k (of course, in fact at most
k + 1). Hence, writing (bj)

n−1
j=0 for the coefficients of β,

bi+j =
〈
xjxi, β

〉
=
〈
xjι, β

〉
= gj(β)

= gj(α)

=
〈
xj1, α

〉
= aj.

In other words, β = xiα.

Theorem 9 If α ∈ Qn generates the ideal J = (α) and J?k = Qn then there are
no (3k)-imposters for α.

Proof. Since 1 ∈ Qn = J?k there exists some ?-polynomial p of degree k such
that p(α) = 1. By Proposition 8 any β ∈ Cn with dβ,3k ≡ dα,3k must be of the
form β = xiα for some i ∈ {0, . . . , n− 1}.

In the next section we will work on determining the minimal k for which the
conditions of Theorem 9 hold, and we will deduce the main result in section 6.

5 Algebraic Background
Recall that we are chiefly interested in the ring Qn = Q [x]/(xn − 1) and that
in order to understand its ideals better we will also consider the ring Cn with
pointwise multiplication. We have seen in Theorem 9 that any element α ∈ Qn

which has the property that (α)?k = Qn is reconstructible from its 3k-deck; the
faster the ?-powers of (α) grow, the easier it is to reconstruct α. In this section
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we analyse the behaviour of ?-powers of arbitrary ideals of Qn, using the Fourier
transform as our chief tool.

First note that if ξ ∈ C is an nth root of unity then the evaluation map α 7→
α(ξ) is well defined for α ∈ Cn. Analogously we may talk about p ∈ C[x]
dividing α ∈ Cn provided p | xn − 1. We write ζn for e2πi/n.

Proposition 10 The map F : Cn → Cn defined by

F(α) =
(
α(ζjn)

)n−1
j=0

is a ring isomorphism with inverse

F−1
(

(zj)
n−1
j=0

)
=

n−1∑
j=0

 1

n

∑
r∈{0,...,n−1}

zrζ
−rj
n

xj. (1)

In order to make progress we will need to understand the ideals of Cn and Cn.
The basic facts are recorded in the following definition and proposition.

Definition 7 Let

ZS =
{

(fi)
n−1
i=0 ∈ Cn : fi = 0 ∀i ∈ S

}
NZS = ZZn\S =

{
(fi)

n−1
i=0 ∈ Cn : fi = 0 ∀i 6∈ S

}
.

Proposition 11 Cn (and hence Cn) is a principal ideal domain. Cn has 2n ideals,
indexed by subsets of the set {ζ in : i = 0, . . . , n− 1} of nth roots of unity. The
subset T corresponds to the ideal MT =

(∏
ζjn∈T (x − ζjn)

)
. The ideals of Cn are

indexed by subsets of {0, . . . , n − 1}. A subset S ⊂ {0, . . . , n − 1} corresponds
to the ideal ZS of those vectors whose jth coordinate is 0 for each j ∈ S. The
Fourier transform maps the ideal MT to the ideal Z{j : ζjn∈T}.

Proof. The ideals of Cn = C[x]/(xn − 1) are in 1-1 correspondence with the
ideals J of C[x] with (xn − 1) ⊂ J ⊂ C[x]. Since C[x] is a principal ideal
domain these correspond to factors of xn− 1. Since C[x] is a unique factorization
domain these are exactly all possible products of irreducible factors of xn − 1,
viz., the polynomials x− ζ in for i ∈ {0, . . . , n− 1}. The description of the ideals
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of Cn and the correspondence between MT and Z{j : ζjn∈T} follows from noting

that F(p(x))(j) = 0 iff (x− ζjn) | p(x).
The reason that reconstructing elements of Qn is easier than reconstructing

arbitrary elements of Cn is that the ideal structure of Qn is more interesting than
that of Cn; Proposition 12 records the facts we require. We also need a little bit of
notation.

Definition 8 Let F = Q [ζn] be the splitting field of xn − 1 over Q . Define

Φn(x) =
∏
ζ′

(x− ζ ′)

where the product is over the set of all primitive nth roots of unity in F . We write
ΦD, where D is a subset of the divisors of n, for the product

∏
d∈D Φd.

Definition 9 If D is a subset of {d : d | n} we set

S(D) = {j ∈ Zn : (n, j) = n/d for some d ∈ D}

and
Sc(D) = Zn \ S(D) = {j ∈ Zn : n/(n, j) 6∈ D}.

Proposition 12
• For all n ≥ 1 the polynomial Φn has integer coefficients. Φn is irreducible
in Q [x] and has degree φ(n), the Euler totient function counting the number of
residues mod n that are coprime to n.

• The automorphisms of F over Q are the maps ζn 7→ ζjn for j ∈ {0, . . . , n− 1}
with (j, n) = 1. The polynomial xn − 1 factorizes in Q [x] as

xn − 1 =
∏
d|n

Φd(x).

• The zeros of Φd, for d a divisor of n are given by Φd(ζ
j
n) = 0 iff (n, j) = n/d.

• For any D ⊂ {d : d | n} the characteristic function of S(D) is in F(Qn). The
Fourier transform of the ideal (ΦD) ⊂ Qn is F(Qn) ∩ ZS(D).
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Proof. Most parts are standard facts; see e.g. Hungerford [8]. The last section
maybe requires some remark. Note that the expressions appearing in the calcula-
tion of F−1(χS(D)) are clearly invariant under the automorphism group of F over
Q , and hence, since F is a Galois extension of Q , are in Q . For the second part,
notice that we clearly have F((ΦD)) ⊂ F(Qn) ∩ ZS(D). To show the reverse
inclusion consider f ∈ F(Qn) ∩ ZS(D) and let α = F−1(f). Clearly α ∈ Qn.
Since f ∈ ZS(D), for each d ∈ D we have α(ζ

n/d
n ) = α(ζd) = 0; but the minimal

polynomial of ζd is Φd, hence Φd | α. Thus ΦD | α and α ∈ (ΦD).
To have our project succeed we must be able to bound the k for which I?k =

Qn, where I is an ideal of Qn. (At least when such a k exists; we will see later
that possible periodicity in I may restrict all the ?-powers of I to less than all of
Qn.) We will then be able to use Theorem 9 to obtain our main result. The next
result describes the effect of the ?-product on the Fourier transforms of ideals.

Lemma 13 Let I , J ⊂ Qn be ideals with I = (ΦD) and J = (ΦE). Then the
Fourier transform of the ?-product of I and J is given by

F(I ? J) = F(Qn) ∩NZSc(D)∪Sc(E)∪(Sc(D)+Sc(E)).

Proof. First notice that F−1 maps the pointwise product of elements of Cn to the
polynomial product of their images. Now F is essentially the same as F−1 – it
simply uses evaluation at ζ−in rather than ζ in. Thus let us define ? : Cn×Cn → Cn

by

(zi)
n−1
i=0 ? (wi)

n−1
i=0 =

(
n
∑
j+k=i

zjwk

)n−1

i=0

.

A straightforward calculation shows that if α, β ∈ Cn withF(α) = a andF(β) =
b then F(α ? β) = a ? b.

Now consider ideals I , J , as in the statement of the Lemma. Let S = Sc(D)∪
Sc(E)∪(Sc(D)+Sc(E)). By Proposition 12 we have χSc(D) ∈ F(I) and χSc(E) ∈
F(J) and thus χSc(D) ? χSc(E) ∈ F(I ? J). Now supp(χSc(D) + χSc(E) + χSc(D ?
χSc(E)) = S so, since we have exhibited an element of F(I ?J) which is non-zero
on all of S we have F(I ? J) ⊃ F(Qn) ∩NZS .

To prove the reverse inclusion note that whenever i 6∈ S and a ∈ F(I), b ∈
F(J) every term of the sum

∑
j+k=i ajbk is zero, and thus (a ? b)i = 0. Moreover

ai = bi = 0, so the ith coordinate is zero for every element of F(I ? J). Thus
F(I ? J) ⊂ F(Qn) ∩NZS .
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Since Sc(D) =
{
rn
d

: r ∈ Z∗n, d ∈ Zn \ S
}

, we can get a handle on the sets
appearing in the statement of Lemma 13 provided we can understand the sets Z∗n,
Z∗n + Z∗n, Z∗n + Z∗n + Z∗n, . . . . The next lemma establishes the essential facts.

Lemma 14 If n is odd then Z∗n ∪ (Z∗n + Z∗n) = Zn. If n is even then Z∗n ∪ (Z∗n +
Z∗n) ∪ (Z∗n + Z∗n + Z∗n) = Zn.

Proof. By the Chinese remainder theorem we know that if n = pk11 . . . pkrr is the
prime factorization of n then Zn ∼=

⊕r
i=1 Zpkii . In this representation Z∗n is the

subset of elements for which the ith coordinate belongs to Z∗pi for every i. To
prove the lemma for odd values if n it suffices to note that Z∗pi + Z∗pi = Zpi for
all odd prime powers pi. This is straightforward. For even values of n we are
limited by the fact that Z∗

2k
+Z∗

2k
= 2Z2k . Thus if i ≡ p (mod 2p), where p is an

odd prime dividing n, then i 6∈ Z∗n ∪ (Z∗n + Z∗n). However it is easy to check that
these are the only missing values. Since these are all odd residues we have that
i 6∈ Z∗n ∪ (Z∗n + Z∗n) implies i − 1 ∈ Z∗n ∪ (Z∗n + Z∗n). Hence, since 1 ∈ Z∗n, we
have Z∗n ∪ (Z∗n + Z∗n) ∪ (Z∗n + Z∗n + Z∗n) = Zn.

One issue we have not touched on so far is that of periodicity. It clearly affects
our approach since if α is a periodic element of Qn then all ?-powers of (α) are
also periodic; in particular no ?-power of (α) contains 1. To make our discussion
easier let us give names to the fundamental periodic elements of Qn: let πn,d =
(1+xd+x2d+ · · ·+xn−d) where d is a divisor of n. Clearly α = xdα iff πn,d | α.
Note that since xn − 1 = (xd − 1)πn,d we have πn,d = Φ{e : e|n and e6 | d}.

Definition 10 We say that α ∈ Qn is periodic if α = xdα for some divisor d of n
with d 6= n. We say that an ideal I ⊂ Qn is periodic if there exists some d 6= n,
d | n such that α = xdα for all α ∈ I .

Lemma 15 The ideal I = (α) is periodic iff α is periodic. ΦD (and hence
(ΦD)) is periodic iff D contains some top face of the lattice of divisors of n.
In other words ΦD is periodic iff there exists some prime p dividing n such that
{pme : e | n/pm} ⊂ D where pm is the highest power of p dividing n.

Proof. For the first part note that I being periodic implies that every element of I
is periodic, in particular α is periodic. Conversely, if α = xdα then πn,d | α and
hence πn,d | β for all β ∈ I .

Suppose now that ΦD is periodic with period d; then it is also periodic with
period e for any d | e | n. In particular it is periodic with period n/p for some
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prime p dividing n. So πn,n/p | ΦD, hence {d | n : d 6 | n/p} ⊂ D. This set is the
top face of the divisor lattice of n in the p direction.

Theorem 16 If α ∈ Qn and n has m distinct prime factors then either α is peri-
odic or (α)?3m = Qn.

Proof. Suppose α is not periodic. Then, by Lemma 15, we have (α) = (ΦD) for
some D ⊂ {d : d | n} such that for all primes p | n there is some divisor f of
n with f 6∈ D and p 6 | n/f . Note that n/f ∈ Sc(D). This implies that we can
find a subset S ′ of Sc(D) which has at most m elements and has greatest common
divisor 1 – simply take one “missing” element from each top face. Now, by the
gcd condition, we can form any element of Zn by taking a linear combination of
the elements of S ′ with coefficients in Zn. Let i ∈ Zn be written as i =

∑
s∈S′ css,

where the cs lie in Zn. We can write each cs in turn as the sum of at most three
terms from Z∗n (by Lemma 14). Hence, since Z∗n∪(Z∗n+Z∗n)∪(Z∗n+Z∗n+Z∗n) = Zn
we can form any element of Zn by summing at most 3m terms, each of the form
rs where r ∈ Z∗n and s ∈ S ′. Since Sc(D) is closed under multiplication by
elements of Z∗n this means that every element of Zn can be written as a sum of at
most 3m terms from Sc(D). Hence, by Lemma 13, (α)?3m = Qn.

6 The main result.
In this section we tie together the strands from Sections 3, 4, and 5 to prove our
main results.

Proposition 17 If α ∈ Qn is not periodic and n has m distinct prime factors then
there are no 9m-imposters for α.

Proof. By Theorem 16 we know that (α)?3m = Qn. Then Proposition 8 tells us
that there are no (9m)-imposters for α.

Theorem 18 No element of Qn, and hence in particular no two subset of Zn, has
a 9m-imposter, where m is the number of distinct prime factors of n.

Proof. Proposition 17 deals effectively with the non-periodic elements of Qn. We
can detect periodicity of α ∈ Qn (and indeed the minimal period) from its 2-
deck; note that |S{0,d}(α)| ≤ S{0,0}(α), by Cauchy-Schwartz, with equality iff
α = xdα. Moreover, if α is periodic with period d we can construct the k-deck of
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α considered as an element of Qd from its k-deck in Qn. Thus if α, β ∈ Qn are
two periodic elements with the same minimal period d and dα,9m ≡ dβ,9m then the
induced elements α′, β′ ∈ Qd have dα′,9m ≡ dβ′,9m, and moreover α′ and β′ are
non-periodic. Thus, for some i′ ∈ {0, 1, . . . , d− 1}, β′ = xi

′
α′. This implies that

β = xiα for all i ≡ i′ (mod d). Thus the theorem is proved.

Corollary 19 For all n we have

rQ (Zn) ≤ (9 + o(1)) lnn/ ln lnn

and for almost all n
rQ (Zn) ≤ (9 + o(1)) ln lnn.

Proof. It is known that α(n) ≤ (1 + o(1)) lnn/ ln lnn, and that for almost all n
we have α(n) ≤ (1 + o(1)) ln lnn; see for instance Hardy and Wright [7], §22.12
and Theorem 436 respectively.

7 Final Remarks
The problems considered to this point have natural analogues for other finite
Abelian groups. We make the natural definitions concerning decks and recon-
structing. We write r(G) for the reconstruction number of G; the smallest k such
that every subset of G is reconstructible from its k-deck.

The most natural abelian group to consider after Zn is the cube Zn2 . It is a
straightforward consequence of Alon, Caro, Krasikov, and Roditty’s [1] Corollary
2.5 that r(Z2

n) ≤ log2(2
n) = n. Our techniques, in particular our use of pointwise

multiplication and the Fourier transform, do not seem to produce a better result.
If we let I be the ideal in QZn2 consisting of the inverse Fourier transforms of
elements of Q Zn

2 supported on the singleton sets {{i} : i = 1, 2, . . . , n} then I
is not a periodic ideal, and yet no earlier ?-power of I than the nth is the whole
group ring QZn2 .

The above remark lends some support to the following conjecture.

Conjecture 3 r(Zn2 ) = rQ (Zn
2 ) = n.

For other Abelian groups it seems likely that a similar bound holds; we suspect
that if n1, . . . , nk are prime powers then

r(Zn1 × · · · × Znk
) ≤ ck,
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for some absolute constant c.
When we come to consider non-Abelian groups it seems that our methods

must change somewhat. It is possible however, for an arbitrary finite group G, to
prove that r(G) ≤ cL(QG), where c is a constant and L(QG) is the length of the
longest increasing chain of ideals in QG (see [12]).

Finally we make what seems to be an exceptionally natural conjecture.

Conjecture 4 For all finite groups G and H

r(G×H) ≤ r(G)r(H).

References
[1] N. Alon, Y. Caro, I. Krasikov and Y. Roditty, Combinatorial reconstruction

problems, J. Comb. Theory, Ser. B 47 (1989), 153–161

[2] J.A. Bondy, A graph reconstructor’s manual, in Surveys in Combinatorics,
1991, ed. A.D. Keedwell, LMS Lecture Note Series 166, 221–252

[3] J.A. Bondy and R.L. Hemminger, Graph reconstruction – a survey, J. Graph
Theory 1 (1977), 227–268

[4] P.J. Cameron, Stories from the age of reconstruction, Festschrift for
C. St. J. A. Nash-Williams, Congr. Numer. 113 (1996), 31–41

[5] C.J. Colbourn and J.H. Dinitz (eds.), The CRC Handbook of Combinatorial
Designs, CRC Press, Boca Raton, 1996, xviii + 753pp.
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