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Abstract

We sharpen a result of Hansel on separating set systems. We also
extend a theorem of Spencer on completely separating systems by
proving an analogue of Hansel’s result.

1 Introduction

A weakly separating system or, simply, a separating system on [n] = {1, . . . , n}
is a collection (S1, T1), . . . , (SN , TN) of disjoint pairs of subsets of [n] such that
for every i, j ∈ [n] with i 6= j there is a k with i ∈ Sk and j ∈ Tk, or i ∈ Tk and
j ∈ Sk. Equivalently, the complete bipartite graphs with vertex classes Si

and Ti cover the edges of the complete graph with vertex set [n]. Similarly,
a strongly separating system on [n] is a collection (S1, T1), . . . , (SN , TN) of
disjoint pairs of subsets of [n] such that for every i, j ∈ [n] with i 6= j there
is a k with i ∈ Sk and j ∈ Tk. The study of separating systems was started
by Rényi [10] in 1961.

There are four basic extremal functions associated with separating sys-
tems. Write s(n) for the minimal number of pairs (Si, Ti) in a weakly sepa-
rating system on [n], and t(n) for the corresponding minimum for a strongly
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separating system. Also, let

S(n) = min
{ N∑

i=1

|Si ∪ Ti| : (Si, Ti)
N
i=1 is a separating system on [n]

}
,

and let T (n) be the corresponding minimum for a strongly separating system.
Let us recall some of the results concerning these functions. First, it

is essentially trivial that s(n) = dlog2 ne: this many bipartite graphs are
necessary and sufficient to cover the edges of Kn. Hansel [3] (see also Katona
and Szemerédi [5], Nilli [7], Radhakrishnan [8]) proved the following lower
bound on S(n).

Theorem 1. S(n) ≥ n log2 n for every n.

Note that this immediately implies the trivial bound s(n) ≥ dlog2 ne.
However, the theorem gives a stronger bound on the minimal number of
pairs in a weakly separating system (Si, Ti) if we restrict the size of Si ∪ Ti.

The question of determining t(n) was raised by Dickson [2], who proved
that t(n) = (1 + o(1)) log2 n. (Note that, in this case, we may assume that
Tk = [n] \ Sk.) The exact value of t(n) was determined by Spencer [11].

Theorem 2. Let t be the smallest positive integer with
(

t
bt/2c

)
≥ n. Then

t(n) = t.

This implies that t(n) = log2 n + 1
2
log2 log2 n + O(1). Thus s(n) and t(n)

differ by about 1
2
log2 log2 n. Spencer’s proof uses a correspondence between

strongly separating systems of size k on [n] and antichains on [k].
Separating systems (Si, Ti) with restrictions on the cardinalities |Si|, |Ti|

have been studied by Katona [4], Wegener [13], Ramsay and Roberts [9],
Kündgen, Mubayi and Tetali [6], among others.

Our aim in this brief note is to strengthen Hansel’s theorem to a result
that gives us the exact value of S(n) for every n, and to prove a lower bound
on T (n) that extends Spencer’s result and is analogous to Hansel’s theorem.

2 Weakly Separating Systems

In this section we give a slight sharpening of Theorem 1. The main interest
here is that the result is sharp for every n. Indeed, if n = 2k + l, where
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0 ≤ l < 2k, then partition [n] into 2k − l sets of size 1 and l pairs. We can
cover the edges between these 2k sets with k complete bipartite graphs (with
n vertices each); we can cover the l remaining edges with a single bipartite
graph with 2l vertices. Then summing the orders of the graphs gives a total
of nk + 2l, which equals the bound in the following result.

Theorem 3. Write n as n = 2k + l < 2k+1. Then S(n) = nk + 2l.

Proof. Let G be the complete graph with vertex set V = [n]. For each i
independently, we delete all vertices in either Si or Ti, where Si and Ti are
chosen with equal probability. Since the pairs (Si, Ti), 1 ≤ i ≤ N , cover the
edges of G, there is at most one vertex left after any sequence of deletions,
and so the expected number of vertices left at the end is at most 1. If v is in
d(v) sets Si ∪ Ti, the probability that it survives is 2−d(v). So∑

v

2−d(v) ≤ 1. (1)

Let (e(v))v∈V be a sequence of nonnegative integers that satisfies (1) and,
subject to this, has

∑
v e(v) minimal. Thus

∑
v e(v) ≤

∑
v d(v). If there are

v, w with e(v) ≥ e(w) + 2 then we can replace e(v) by e(v)− 1 and e(w) by
e(w) + 1 without violating (1) or changing the sum. Thus we may assume
that e(v) takes at most two values, and these must be k and k + 1. If there
are α vertices with e(v) = k, we have

α2−k + (n − α)2−(k+1) ≤ 1

and so
(n + α)2−(k+1) ≤ 1.

It follows that α ≤ 2k − l, and so

N∑
i=1

|Si ∪ Ti| =
∑

v

d(v) ≥
∑

v

e(v) = αk + (n − α)(k + 1) = nk + n − α

which is at least nk + n − 2k + l = nk + 2l.

3 Strongly Separating Systems

The purpose of this section is to prove the following analogue of Hansel’s
result.
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Theorem 4. Let n ≥ 2 and let t be the minimal integer such that
(

t+1
b(t+1)/2c

)
>

n. Then T (n) ≥ nt, with equality if and only if n =
(

t
bt/2c

)
.

The role played by antichains in Spencer’s proof of Theorem 2 is here
played by cross-intersecting systems. Recall that a collection {(Aj, Bj) : 1 ≤
j ≤ n} is cross-intersecting if Ai ∩ Bi = ∅ for every i and Ai ∩ Bj 6= ∅ for
every i 6= j. Bollobás [1] proved the following inequality.

Lemma 5. Suppose that {(Aj, Bj) : 1 ≤ j ≤ n} is a cross-intersecting
family. Then

n∑
i=1

(
|Ai| + |Bi|

|Ai|

)−1

≤ 1. (2)

We use this inequality and the simple fact that if 1 ≤ a ≤ b − 2 then(
a

ba/2c

)−1

+

(
b

bb/2c

)−1

≥
(

a + 1

b(a + 1)/2c

)−1

+

(
b − 1

b(b − 1)/2c

)−1

. (3)

We are now ready to prove the theorem.

Proof of Theorem 4. For 1 ≤ j ≤ n, define

Aj = {i : vj ∈ Si}
Bj = {i : vj ∈ Ti}.

Then {(Aj, Bj) : 1 ≤ j ≤ n} is a cross-intersecting family if and only if(
(Si, Ti)

)N

i=1
is a strongly separating system.

Now
N∑

i=1

|Si ∪ Ti| =
n∑

i=1

|Ai ∪ Bi|.

By (2) this is at least

min{
n∑

i=1

(ai + bi) :
n∑

i=1

(
ai + bi

ai

)−1

≤ 1},

which is at least

min{
n∑

i=1

ci :
n∑

i=1

(
ci

bci/2c

)−1

≤ 1},
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where the minimum is taken over all sequences c1, . . . , cn of positive integers.
Consider a sequence c1, . . . , cn that achieves this minimum and (subject

to this) has
∑

c2
i minimal. It follows from (3), and the minimality of

∑
c2
i ,

that there are no i, j with ci ≥ cj +2, since we could then replace ci by ci−1
and cj by cj + 1. Thus the ci take at most two values, say t and t + 1 (where
t = min ci). We have (

t

bt/2c

)
≤ n <

(
t + 1

b(t + 1)/2c

)
and so

∑n
i=1 ci ≥ tn, with equality only when n =

(
t

bt/2c

)
. Note that, in

this case, equality is achieved by starting with the cross-intersecting family
{(A, [t] \ A) : A ∈ [t]bt/2c}.
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