On separating systems

Béla Bollobás * Alex Scott \dagger

April 18, 2006

Abstract

We sharpen a result of Hansel on separating set systems. We also extend a theorem of Spencer on completely separating systems by proving an analogue of Hansel's result.

1 Introduction

A weakly separating system or, simply, a separating system on $[n]=\{1, \ldots, n\}$ is a collection $\left(S_{1}, T_{1}\right), \ldots,\left(S_{N}, T_{N}\right)$ of disjoint pairs of subsets of $[n]$ such that for every $i, j \in[n]$ with $i \neq j$ there is a k with $i \in S_{k}$ and $j \in T_{k}$, or $i \in T_{k}$ and $j \in S_{k}$. Equivalently, the complete bipartite graphs with vertex classes S_{i} and T_{i} cover the edges of the complete graph with vertex set $[n]$. Similarly, a strongly separating system on $[n]$ is a collection $\left(S_{1}, T_{1}\right), \ldots,\left(S_{N}, T_{N}\right)$ of disjoint pairs of subsets of $[n]$ such that for every $i, j \in[n]$ with $i \neq j$ there is a k with $i \in S_{k}$ and $j \in T_{k}$. The study of separating systems was started by Rényi [10] in 1961.

There are four basic extremal functions associated with separating systems. Write $s(n)$ for the minimal number of pairs $\left(S_{i}, T_{i}\right)$ in a weakly separating system on $[n]$, and $t(n)$ for the corresponding minimum for a strongly

[^0]separating system. Also, let
$$
S(n)=\min \left\{\sum_{i=1}^{N}\left|S_{i} \cup T_{i}\right|:\left(S_{i}, T_{i}\right)_{i=1}^{N} \text { is a separating system on }[n]\right\},
$$
and let $T(n)$ be the corresponding minimum for a strongly separating system.
Let us recall some of the results concerning these functions. First, it is essentially trivial that $s(n)=\left\lceil\log _{2} n\right\rceil$: this many bipartite graphs are necessary and sufficient to cover the edges of K_{n}. Hansel [3] (see also Katona and Szemerédi [5], Nilli [7], Radhakrishnan [8]) proved the following lower bound on $S(n)$.

Theorem 1. $S(n) \geq n \log _{2} n$ for every n.
Note that this immediately implies the trivial bound $s(n) \geq\left\lceil\log _{2} n\right\rceil$. However, the theorem gives a stronger bound on the minimal number of pairs in a weakly separating system $\left(S_{i}, T_{i}\right)$ if we restrict the size of $S_{i} \cup T_{i}$.

The question of determining $t(n)$ was raised by Dickson [2], who proved that $t(n)=(1+o(1)) \log _{2} n$. (Note that, in this case, we may assume that $T_{k}=[n] \backslash S_{k}$.) The exact value of $t(n)$ was determined by Spencer [11].

Theorem 2. Let t be the smallest positive integer with $\binom{t}{\lfloor t / 2\rfloor} \geq n$. Then $t(n)=t$.

This implies that $t(n)=\log _{2} n+\frac{1}{2} \log _{2} \log _{2} n+O(1)$. Thus $s(n)$ and $t(n)$ differ by about $\frac{1}{2} \log _{2} \log _{2} n$. Spencer's proof uses a correspondence between strongly separating systems of size k on $[n]$ and antichains on $[k]$.

Separating systems $\left(S_{i}, T_{i}\right)$ with restrictions on the cardinalities $\left|S_{i}\right|,\left|T_{i}\right|$ have been studied by Katona [4], Wegener [13], Ramsay and Roberts [9], Kündgen, Mubayi and Tetali [6], among others.

Our aim in this brief note is to strengthen Hansel's theorem to a result that gives us the exact value of $S(n)$ for every n, and to prove a lower bound on $T(n)$ that extends Spencer's result and is analogous to Hansel's theorem.

2 Weakly Separating Systems

In this section we give a slight sharpening of Theorem 1. The main interest here is that the result is sharp for every n. Indeed, if $n=2^{k}+l$, where
$0 \leq l<2^{k}$, then partition $[n]$ into $2^{k}-l$ sets of size 1 and l pairs. We can cover the edges between these 2^{k} sets with k complete bipartite graphs (with n vertices each); we can cover the l remaining edges with a single bipartite graph with $2 l$ vertices. Then summing the orders of the graphs gives a total of $n k+2 l$, which equals the bound in the following result.

Theorem 3. Write n as $n=2^{k}+l<2^{k+1}$. Then $S(n)=n k+2 l$.
Proof. Let G be the complete graph with vertex set $V=[n]$. For each i independently, we delete all vertices in either S_{i} or T_{i}, where S_{i} and T_{i} are chosen with equal probability. Since the pairs $\left(S_{i}, T_{i}\right), 1 \leq i \leq N$, cover the edges of G, there is at most one vertex left after any sequence of deletions, and so the expected number of vertices left at the end is at most 1 . If v is in $d(v)$ sets $S_{i} \cup T_{i}$, the probability that it survives is $2^{-d(v)}$. So

$$
\begin{equation*}
\sum_{v} 2^{-d(v)} \leq 1 \tag{1}
\end{equation*}
$$

Let $(e(v))_{v \in V}$ be a sequence of nonnegative integers that satisfies (1) and, subject to this, has $\sum_{v} e(v)$ minimal. Thus $\sum_{v} e(v) \leq \sum_{v} d(v)$. If there are v, w with $e(v) \geq e(w)+2$ then we can replace $e(v)$ by $e(v)-1$ and $e(w)$ by $e(w)+1$ without violating (1) or changing the sum. Thus we may assume that $e(v)$ takes at most two values, and these must be k and $k+1$. If there are α vertices with $e(v)=k$, we have

$$
\alpha 2^{-k}+(n-\alpha) 2^{-(k+1)} \leq 1
$$

and so

$$
(n+\alpha) 2^{-(k+1)} \leq 1 .
$$

It follows that $\alpha \leq 2^{k}-l$, and so

$$
\sum_{i=1}^{N}\left|S_{i} \cup T_{i}\right|=\sum_{v} d(v) \geq \sum_{v} e(v)=\alpha k+(n-\alpha)(k+1)=n k+n-\alpha
$$

which is at least $n k+n-2^{k}+l=n k+2 l$.

3 Strongly Separating Systems

The purpose of this section is to prove the following analogue of Hansel's result.

Theorem 4. Let $n \geq 2$ and let t be the minimal integer such that $\binom{t+1}{\lfloor(t+1) / 2\rfloor}>$ n. Then $T(n) \geq n t$, with equality if and only if $n=\binom{t}{\lfloor t / 2\rfloor}$.

The role played by antichains in Spencer's proof of Theorem 2 is here played by cross-intersecting systems. Recall that a collection $\left\{\left(A_{j}, B_{j}\right): 1 \leq\right.$ $j \leq n\}$ is cross-intersecting if $A_{i} \cap B_{i}=\emptyset$ for every i and $A_{i} \cap B_{j} \neq \emptyset$ for every $i \neq j$. Bollobás [1] proved the following inequality.

Lemma 5. Suppose that $\left\{\left(A_{j}, B_{j}\right): 1 \leq j \leq n\right\}$ is a cross-intersecting family. Then

$$
\begin{equation*}
\sum_{i=1}^{n}\binom{\left|A_{i}\right|+\left|B_{i}\right|}{\left|A_{i}\right|}^{-1} \leq 1 \tag{2}
\end{equation*}
$$

We use this inequality and the simple fact that if $1 \leq a \leq b-2$ then

$$
\begin{equation*}
\binom{a}{\lfloor a / 2\rfloor}^{-1}+\binom{b}{\lfloor b / 2\rfloor}^{-1} \geq\binom{ a+1}{\lfloor(a+1) / 2\rfloor}^{-1}+\binom{b-1}{\lfloor(b-1) / 2\rfloor}^{-1} \tag{3}
\end{equation*}
$$

We are now ready to prove the theorem.
Proof of Theorem 4. For $1 \leq j \leq n$, define

$$
\begin{aligned}
& A_{j}=\left\{i: v_{j} \in S_{i}\right\} \\
& B_{j}=\left\{i: v_{j} \in T_{i}\right\} .
\end{aligned}
$$

Then $\left\{\left(A_{j}, B_{j}\right): 1 \leq j \leq n\right\}$ is a cross-intersecting family if and only if $\left(\left(S_{i}, T_{i}\right)\right)_{i=1}^{N}$ is a strongly separating system.

Now

$$
\sum_{i=1}^{N}\left|S_{i} \cup T_{i}\right|=\sum_{i=1}^{n}\left|A_{i} \cup B_{i}\right|
$$

By (2) this is at least

$$
\min \left\{\sum_{i=1}^{n}\left(a_{i}+b_{i}\right): \sum_{i=1}^{n}\binom{a_{i}+b_{i}}{a_{i}}^{-1} \leq 1\right\}
$$

which is at least

$$
\min \left\{\sum_{i=1}^{n} c_{i}: \sum_{i=1}^{n}\binom{c_{i}}{\left\lfloor c_{i} / 2\right\rfloor}^{-1} \leq 1\right\}
$$

where the minimum is taken over all sequences c_{1}, \ldots, c_{n} of positive integers.
Consider a sequence c_{1}, \ldots, c_{n} that achieves this minimum and (subject to this) has $\sum c_{i}^{2}$ minimal. It follows from (3), and the minimality of $\sum c_{i}^{2}$, that there are no i, j with $c_{i} \geq c_{j}+2$, since we could then replace c_{i} by $c_{i}-1$ and c_{j} by $c_{j}+1$. Thus the c_{i} take at most two values, say t and $t+1$ (where $t=\min c_{i}$). We have

$$
\binom{t}{\lfloor t / 2\rfloor} \leq n<\binom{t+1}{\lfloor(t+1) / 2\rfloor}
$$

and so $\sum_{i=1}^{n} c_{i} \geq t n$, with equality only when $n=\binom{t}{\lfloor t / 2\rfloor}$. Note that, in this case, equality is achieved by starting with the cross-intersecting family $\left\{(A,[t] \backslash A): A \in[t]^{\lfloor t / 2\rfloor}\right\}$.

References

[1] B. Bollobás, On generalized graphs, Acta Math. Acad. Sci. Hungar. 16 (1965), 447-452
[2] T.J. Dickson, On a problem concerning separating systems of a finite set, J. Comb. Theory 7 (1969), 191-196
[3] G. Hansel, Nombre minimal de contacts de fermeture nécessaires pour réaliser une fonction booléenne symétrique de n variables, C. R. Acad. Sci. Paris 258 (1964), 6037-6040
[4] G. Katona, On separating systems of a finite set. J. Comb. Theory 1 (1966), 174-194
[5] G. Katona and E. Szemerédi, On a problem of graph theory, Studia Sci. Math. Hungar. 2 (1967), 23-28
[6] A. Kündgen, D. Mubayi and P. Tetali, Minimal completely separating systems of k-sets, J. Comb. Theory Ser. A 93 (2001), 192-198.
[7] A. Nilli, Perfect hashing and probability, Combinatorics, Probability and Computing 3 (1994), 407-409
[8] J. Radhakrishnan, Entropy and Counting, manuscript
[9] C. Ramsay and I.T. Roberts, Minimal completely separating systems of sets, Australasian J. Combin. 13 (1996), 129-150.
[10] A. Rényi, On random generating elements of a finite Boolean algebra, Acta Sci. Math. Szeged 22 (1961), 75-81
[11] J. Spencer, Minimal completely separating systems, J. Comb. Theory 8 (1970), 446-447
[12] Zs. Tuza, Applications of the set-pair method in extremal hypergraph theory, in Extremal problems for finite sets (Visegrád, 1991), 479-514, Bolyai Soc. Math. Stud. 3, János Bolyai Math. Soc., Budapest, 1994.
[13] I. Wegener, On separating systems whose elements are sets of at most k elements, Discrete Math. 28 (1979), 219-222.

[^0]: *Trinity College, Cambridge CB2 1TQ, UK and Department of Mathematical Sciences, University of Memphis, Memphis TN38152, USA; email: bollobas@msci.memphis.edu. Research supported in part by NSF grants CCR-0225610 and DMS-0505550.
 ${ }^{\dagger}$ Department of Mathematics, University College London, Gower Street, London WC1E 6BT, UK. Current address: Mathematical Institute, University of Oxford, 24-29 St Giles, Oxford OX1 3LB; email: scott@maths.ox.ac.uk.

