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Abstract

A pure pair in a tournament G is an ordered pair (A,B) of disjoint subsets of V (G) such that every
vertex in B is adjacent from every vertex in A. Which tournaments H have the property that if G
is a tournament not containing H as a subtournament, and |G| > 1, there is a pure pair (A,B) in G
with |A|, |B| ≥ c|G|, where c > 0 is a constant independent of G? Let us say that such a tournament
H has the strong EH-property

As far as we know, it might be that a tournament H has this property if and only if its vertex
set has a linear ordering in which its backedges form a forest. Certainly this condition is necessary,
but we are far from proving sufficiency. We make a small step in this direction, showing that if a
tournament can be ordered with at most three backedges then it has the strong EH-property (except
for one case, that we could not decide). In particular, every tournament with at most six vertices
has the property, except for three that we could not decide. We also give a seven-vertex tournament
that does not have the strong EH-property.

This is related to the Erdős-Hajnal conjecture, which in one form says that for every tournament
H there exists τ > 0 such that every tournament G not containing H as a subtournament has a
transitive subtournament of cardinality at least |G|τ . Let us say that a tournament H satisfying this
has the EH-property. It is known that every tournament with the strong EH-property also has the
EH-property; so our result extends work by Berger, Choromanski and Chudnovsky, who proved that
every tournament with at most six vertices has the EH-property, except for one that they did not
decide.



1 Introduction

A tournament is a digraph G, with no loops, such that for every pair u, v of distinct vertices, exactly
one of uv, vu is an edge. (All graphs and digraphs in this paper are finite, and have no loops or
parallel edges.) Let us say a tournament G contains a tournament H if there is a subtournament of
G isomorphic to H, and G is H-free otherwise. We denote the number of vertices of G by |G|.

The Erdős-Hajnal conjecture was raised as a question by Erdős and Hajnal [11, 12] and asserts
that, for every graph H, there exists τ > 0 such that every graph G not containing an induced
subgraph isomorphic to H has a clique or stable set of cardinality at least |G|τ . Alon, Pach and
Solymosi [1] showed that it is equivalent to the following assertion about tournaments:

1.1 Conjecture: For every tournament H there exists τ > 0 such that every H-free tournament
G has a transitive subtournament with at least |G|τ vertices.

For a tournament H, if there exists τ > 0 as in 1.1, we say that H has the EH-property or (weak)
EH-property. Thus the conjecture says that all tournaments have the EH-property.

Let P7 denote the Paley tournament with seven vertices; that is, its vertex set is {1, . . . , 7}, and
for all distinct i, j ∈ {1, . . . , 7}, j is adjacent from i if j − i is congruent to 1, 2 or 4 modulo 7. Let
P−7 denote the tournament obtained by deleting one vertex from P7. (It makes no difference which
vertex is deleted.) Berger, Choromanski and Chudnovsky [4] showed:

1.2 Every tournament with at most six vertices has the EH-property, except possibly for P−7 .

There are other classes of tournaments that have been shown to have the EH-property: see for
instance [3, 6, 19, 20].

In a graph G, a pure pair is a pair A,B of disjoint subsets of V (G) such that either there are no
edges between A,B or every vertex in A is adjacent to every vertex in B; and its order is min(|A|, |B|).
Let us say a pure pair in a tournament G is an ordered pair (A,B) of disjoint subsets of V (G) such
that every vertex in B is adjacent from every vertex in A; and its order is min(|A|, |B|). And let us
say a tournament H has the strong EH-property or SEH property if there exists c > 0 such that for
every H-free tournament G with |G| > 1, there is a pure pair in G with order at least c|G|. It is
easy to see that every tournament with the strong EH-property also has the EH-property, but not
all tournaments have the strong EH-property; we shall see that P7 does not. So it is natural to ask
which tournaments do. (One can take the same approach for graphs – see [8].) This question seems
not to have been studied to any great extent. We discussed it briefly in [8]; “heroes”, defined in [2],
have the strong EH-property; and Berger, Choromanski, Chudnovsky and Zerbib [5] proved that D5

has the strong EH-property (D5 is defined below); but we know of nothing else on the topic.
A numbering of a graph is an enumeration (v1, . . . , vn) of its vertex set; and an ordered graph

is a graph together with some numbering. If (v1, . . . , vn) is a numbering of a tournament H, then
the corresponding backedge graph of H is the ordered graph B with vertex set V (H) and numbering
(v1, . . . , vn), in which for 1 ≤ i < j ≤ n, vi and vj are adjacent in B if and only if vi is adjacent from
vj in H. Its edges are called backedges. A tournament can be reconstructed from a backedge graph
and the corresponding numbering, and it is often convenient to work with the backedge graph rather
than directly with the tournament.

Different numberings of the same tournament may result in wildly different backedge graphs, of
course. For instance, D5 is the (unique, up to isomorphism) tournament with five vertices, in which
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every vertex has outdegree two; and the following are two of its backedge graphs (in such figures,
vertices are always numbered from left to right):

Figure 1: Two backedge graphs for D5.

For a graph G, we denote its complement graph by G; and if G is an ordered graph, G means
the complement graph with the same numbering. Let us say the reverse H of a tournament H is
obtained by reversing the direction of all edges of H. A tournament has the strong EH-property
if and only if its reverse does. Note that, if under some numbering a tournament H has backedge
graph B, then B is the backedge graph of H under the same numbering; and B with its numbering
reversed is the backedge graph of H under the reverse numbering.

Can we hope to characterize the tournaments with the strong EH-property? A parallel question
for graphs had a very satisfactory answer: we proved in [8] that:

1.3 For a graph H, the following are equivalent:

• there exists c > 0 such that for every graph G with |G| > 1 not containing H or H as an
induced subgraph, there is a pure pair A,B in G with order at least c|G|;

• one of H,H is a forest.

One might hope for a parallel for this in the world of tournaments. Certainly, one half is true: we
will show, in 10.2, that

1.4 Every tournament with the strong EH-property admits a numbering for which the backedge graph
is a forest.

As far as we know, the converse to this might also be true. Initially this seemed unlikely to us, but
we have tried hard to disprove it and failed, so let us pose it as a conjecture:

1.5 Conjecture: A tournament has the strong EH-property if and only if it admits a numbering
for which the backedge graph is a forest.

This would be a beautiful analogue of 1.3, but we are far from proving it. Indeed, the tournament
P−7 has a backedge graph that is a forest with only four edges (see figure 2), and we cannot even
show that it has the (weak) EH-property.

Figure 2: Backedge graph for P−7 .

There is a recent positive result in this area: it is shown in [14] that if a tournament can be
built from nothing by repeatedly adding vertices with in-degree at most one or out-degree at most

2



one (and consequently admits an ordering in which the backedge graph is a forest), then it has the
(weak) EH-property.

The first main result of this paper is:

1.6 Let H be a tournament that admits a numbering (v1, . . . , vn) for which the backedge graph B
has at most three edges. Suppose that H is also D5-free, that is, there do not exist a, b, c, d, e with
1 ≤ a < b < c < d < e ≤ n such that E(B) = {vavd, vave, vbve}. Then H has the strong EH-property.

To see the equivalence asserted in the second sentence, observe that if there exist a, b, c, d, e as stated
then H contains D5; and conversely, if H contains D5 then there exist a, b, c, d, e as stated, since up
to isomorphism there is only one backedge graph of D5 with only three edges. (We leave the reader
to check this.) Perhaps the second sentence in 1.6 (the condition about D5) can be omitted, but
that remains open.

Figure 3: Backedge graph of a tournament satisfying 1.6.

For instance, 1.6 implies that the tournament with the backedge graph in figure 3 has the strong
EH-property. A referee kindly told us that the methods of earlier papers would not show this. Let
H6 be the tournament with a backedge graph as in figure 4.

Figure 4: Backedge graph for H6.

1.6 will be used to show our second main result, that:

1.7 Every tournament with at most six vertices has the strong EH-property, except possibly for
P−7 , H6 and H6.

All except one of them (and that one is easy) either contain D5 or admit backedge graphs with at
most three edges, and so we can apply 1.6.

We remark that if we just wanted to prove that these tournaments have the (weak) EH-property,
we could make use of the theorem of Alon, Pach and Solymosi [1] that the class of tournaments
with the EH-property is closed under substitution, and so it would only be necessary to examine
the tournaments that are not built from smaller ones by substitution. But the class with the strong
EH-property is not closed under substitution.

The paper is organized as follows. Sections 2–6 are devoted to proving 1.6, and then we turn to
1.7. We need to prove that if |H| ≤ 6 then H has the SEH property (except for three cases).

• In sections 7 and 8, we prove that if H contains D5 then H has the SEH property (except for
two of the exceptional cases). This proof is a modification of a proof of Berger, Choromanski,
Chudnovsky and Zerbib [5], who showed that D5 itself has the strong EH-property.
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• In section 9, we prove by case-by-case analysis, that every tournament with at most six vertices
admits a numbering for which the backedge graph has at most three edges, except for four
particular tournaments, three of which are the exceptions in 1.7 (it is easy to show that the
fourth has the SEH property). So 1.7 follows from 1.6.

• In section 10 we prove 1.4, and show that P7 does not have the SEH property. Finally, in
section 11 we give two other tournaments that have the SEH property but not a “rainbow”
refinement of it discussed in the proof of 1.6.

2 The strong EH-property for ordered graphs

An ordered graph G contains another (H say) if some induced subgraph of G, with the induced
numbering, is isomorphic (as an ordered graph) to H; and if not, G is H-free. It is helpful to recast
our problem about tournaments into the language of ordered graphs. We observe first that:

2.1 Let G be a tournament, and let J be a backedge graph of G, with numbering (v1, . . . , vn).

• If G has a pure pair of order t, then J has a pure pair of order at least t/2.

• If J has a pure pair of order t then G has a pure pair of order at least t/2.

Proof. Let (A,B) be a pure pair of order t in G, and choose i ∈ {1, . . . , n} minimum such that
one of A′, B′ has cardinality at least t/2, where A′ = {v1, . . . , vi} ∩ A and B′ = {v1, . . . , vi} ∩ B.
Define A′′ = A \A′ and B′′ = B \B′. If |A′| ≥ t/2, then from the minimality of i, |B′| < t/2, and so
|B′′| ≥ t/2; and since every vertex in B is G-adjacent from every vertex in A, it follows that there
are no edges of J between A′ and B′′, and this pair of sets is the desired pure pair of J . Similarly, if
|B′| ≥ t/2, then every vertex of B′ is J-adjacent to every vertex in in A′′, and so this is the desired
pure pair. This proves the first assertion.

For the second, let A,B be a pure pair of order t in J , choose i as before, and define A′, A′′, B′, B′′

as before. By exchanging A,B if necessary, we may assume that |A′| ≥ t/2; and so either (A′, B′′) (if
there are no edges of J between A,B) or (B′′, A′) (if every vertex in A is J-adjacent to every vertex
in B) is the desired pure pair of G. This proves the second assertion, and so proves 2.1.

Alon, Pach and Solymosi [1] proved that the Erdős-Hajnal conjecture is equivalent to the same
statement for ordered graphs: that is, for every ordered graph H there exists τ > 0 such that every
H-free ordered graph G has a clique or stable set of cardinality at least |G|τ . One can extend the
“strong EH-property” to ordered graphs in the natural way, but while it makes sense to ask which
tournaments have the strong EH-property, the same question for ordered graphs is unprofitable, as
only very trivial ordered graphs have the property. For instance, a result of Fox [13] shows that the
ordered graph with vertices v1, v2, v3 numbered in this order, and edges v1v2, v2v3, does not have the
property (see [17, 18] for related results). We can show (we omit the proof) that if an ordered graph
has this property, then each of its components either has at most two vertices, or is a three-vertex
path with middle vertex the first or last in the induced numbering, or is one particular four-vertex
ordered path.

It is better to exclude more than one ordered graph at the same time. Let A be a set of ordered
graphs. We say an ordered graph G is A-free if G is H-free for all H ∈ A; and A has the strong
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EH-property if there exists c > 0 such that every A-free ordered graph G with |G| > 1 has a pure
pair of order at least c|G|.

To translate our question about tournaments into the language of ordered graphs, we observe
that

• because of 2.1, a tournament G has a linear pure pair if and only if some (or equivalently,
every) backedge graph of G has a linear pure pair (with a different constant of linearity);

• a tournament G does not contain a tournament H if and only if some (and therefore every)
backedge graph of G contains none of B1, . . . , Bk, where B1, . . . , Bk are the backedge graphs
of H that arise from the different numberings of H.

Thus a tournament H has the strong EH-property if and only if the set A of all backedge graphs
that arise from H under its different numberings has the strong EH-property.

This set A can be rather large. For instance, when H is D5, it has 24 nonisomorphic backedge
graphs, and we are looking at the ordered graphs that contain none of 24 specific ordered graphs.
Excluding just one of them is not enough, but 24 is more than we need; the proof given in 8.3 shows
that a subset of four of them already has the strong EH-property, the two shown in figure 1 and their
complements. A similar thing happens for all the tournaments we can handle: we need to retain at
most three (usually two) backedge graphs and their complements.

3 Blockades and rainbow subgraphs

Our goal at the moment is to show that all D5-free tournaments that admit backedge graphs with
at most three edges have the strong EH-property. We will prove that in fact they have a stronger
property that we explain now.

A blockade in a set V is a family B = (Bi : i ∈ I) of pairwise disjoint nonempty subsets of V ,
where I is a finite set of integers. (We have used blockades in several papers of this series, for instance
in [8].) Its length is |I|, and the minimum of |Bi| (i ∈ I) is its width. We write W (B) to denote the
width of B. We call the sets Bi blocks of the blockade. (What matters is that the blocks are not
too small. We could shrink the larger ones to make them all the same size.) We are interested in
blockades of some fixed length in the vertex set of some graph, ordered graph or tournament G, in
which each block contains linearly many vertices of G.

If (v1, . . . , vn) is a numbering of V , a blockade (Bi : i ∈ I) respects the numbering if for all
i1, i2 ∈ I with i1 < i2, if vh ∈ Bi1 and vj ∈ Bi2 then h < j. In this case we say B is respectful.

Let B be a blockade in a set V . A graph (or ordered graph, or tournament) H with V (H) ⊆ V
is B-rainbow if each vertex of H belongs to some block of B, and no two vertices belong to the same
block. A copy of a graph (or ordered graph, or tournament) H is another such object isomorphic to
H.

In order to prove that a tournament has the strong EH-property, it is often easier to prove
something even stronger. Let us say a tournament H has the rainbow strong EH-property or RSEH-
property if there exists c with 0 < c < 1 such that if B is a blockade of length at least 1/c in a
tournament G, and there is no B-rainbow copy of H contained in G, then there is a pure pair in G
of order at least cW (B).

3.1 If H is a tournament with the RSEH-property then H has the strong EH-property.
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Proof. Choose c > 0 as in the definition of the RSEH-property; by reducing c we may assume that
k = 1/c is an integer. Let c′ = c2/2. Now let G be an H-free tournament with |G| > 1. We claim
that G has a pure pair of order at least c′|G|. Since |G| > 1, we may assume that |G| > 1/c′, since
otherwise a pure pair of order 1 exists and satisfies the theorem. There is a blockade B in G of length
k, where

W (B) ≥ b|G|/kc = bc|G|c ≥ c|G|/2;

and since G is H-free there is certainly no B-rainbow copy of H contained in G. Thus G has a pure
pair of order at least cW (B) ≥ c2|G|/2 = c′|G|. This proves 3.1.

The converse of 3.1 is not true: we will see that D5 has the strong EH-property, but not the
RSEH-property. On the other hand, we will show that:

3.2 If H is a D5-free tournament that admits a backedge graph with at most three edges, then H
has the RSEH-property.

Similarly, if A is a set of ordered graphs, we say that A has the rainbow strong EH-property or
RSEH-property if there exists c with 0 < c < 1 such that if B is a respectful blockade of length at
least 1/c in an ordered graph G, and there is no B-rainbow copy of any member of A contained in
G, then there is a pure pair in G of order at least cW (B).

Evidently we have:

3.3 If H is a tournament and the set of all backedge graphs of H (or a subset of this set) has the
RSEH-property, then H has the RSEH-property.

An anticomplete pair in a graph G (possibly ordered) is a pair A,B of disjoint subsets of V (G)
such that there are no edges between A,B; and its order is min(|A|, |B|).

We need to throw a form of sparsity into this sea of definitions too: we say that a set A of
ordered graphs has the sparse rainbow strong EH-property or SRSEH-property if there exists c with
0 < c < 1 such that if B is a respectful blockade of length at least 1/c in an ordered graph G, and
there is no B-rainbow copy of any member of A contained in G, and every vertex of G has degree
less than cW (B), then there is an anticomplete pair in G of order at least cW (B). We say c is an
SRSEH-coefficient for A.

Next we show that if a set of ordered graphs has the SRSEH-property then it together with its
set of complement graphs has the RSEH-property. The proof will use the following theorem of [7]:

3.4 For all ε > 0 and every graph P on p vertices, there exist γ, δ > 0 such that if G is a graph
containing fewer than γ|G|p induced labelled copies of P , then there exists X ⊆ V (G) with |X| ≥ δ|G|
such that one of G[X], G[X] has maximum degree at most εδ|G|.

3.5 Let A be a set of ordered graphs, and let A′ be the set of complements of the members of A. If
A has the SRSEH-property then A ∪A′ has the RSEH-property.

Proof. Choose H ∈ A. By 7.2, there is a graph P such that for every numbering of P , the ordered
graph that results contains H. Let p = |P |.

Let c′ be an SRSEH-coefficient for A. By reducing c′ we may assume that 1/c′ is an integer at
least two (1/c′ = K ′ say).
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Let ε ≤ c′2/2 with ε > 0, and choose γ, δ > 0 to satisfy 3.4. Choose c with 1/c an integer
(1/c = K say), such that c ≤ c′δ/2, and (1 − cp)p > 1 − γ, and c ≤ δ/c − 1/c′. We claim that c
satisfies our requirement.

(1) δK/K ′ − 1 ≥ max (εδK/c′, c/c′).

To see that δK/K ′ − 1 ≥ εδK/c′, observe that δK/(2K ′) = δc′/(2c) ≥ 1, and δK/(2K ′) ≥ εδK/c′.
The second part, that δK/K ′ − 1 ≥ c/c′, is true from the choice of c. This proves (1).

Let G be an ordered graph with a blockade B = (B1, . . . , BK) that respects the numbering
(v1, . . . , vn) of G, such that there is no B-rainbow copy of any member of A ∪ A′. Let W = W (B).
We must show that there is a pure pair in G of order at least cW . We may assume that V (G) =
B1 ∪ · · · ∪BK , and that |Bi| = W for each i, and so |G| = KW , and

Bi = {vj : (i− 1)W < j ≤ iW}

for 1 ≤ i ≤ K.
The number of injections φ from V (P ) into V (G) such that the vertices φ(v) (v ∈ V (P )) all

belong to different blocks of the blockade, is

|G|(|G| −W )(|G| − 2W ) · · · (|G| − (p− 1)W ) > (1− p/K)p|G|p ≥ (1− γ)|G|p,

and since none of them give an isomorphism from P to an induced subgraph of G (from the choice
of P , and since there is no B-rainbow copy of H in G), it follows that the number of induced labelled
copies of P in G is less than |G|p − (1 − γ)|G|p = γ|G|p. By 3.4, there exists X ⊆ V (G) with
|X| ≥ δKW , such that one of G[X], G[X] has maximum degree less than εδKW ; and by replacing
G by G if necessary, we may assume that G[X] has maximum degree less than εδKW . By (1), there
exists a real number W ′ such that

δK

K ′
− 1 ≥ W ′

W
≥ max

(
εδK/c′,

c

c′

)
.

The sets B1 ∩X, . . . , BK ∩X each have cardinality at most W , but their union has cardinality
at least δKW . Define i0 = 0, and inductively for s = 1, 2, . . . choose is ∈ {1, . . . ,K} minimum such
that |B′s| ≥ W ′, where B′s =

⋃
is−1<i≤is Bi ∩X, if such a choice is possible; and let the first value of

s where the choice is impossible be s = t+ 1. Thus B′1, . . . , B
′
t are defined. From the minimality of

each is it follows that |B′s| ≤W ′ +W for 1 ≤ s ≤ t. From the maximality of t,

|X ∩ (Bit+1 ∪ · · · ∪BK) | < W ′;

and so δKW ≤ |X| ≤ t(W ′ +W ) +W ′. Since δK/K ′ − 1 ≥W ′/W it follows that t ≥ K ′.
Let B′ be the blockade (B′1, . . . , B

′
K′); it has width at least W ′, and it respects the numbering

(v1, . . . , vn). Let G′ = G[B′1 ∪ · · · ∪ B′K′ ]. Every vertex of G′ has degree less than εδKW ≤ c′W ′

in G′. Also there is no B′-rainbow copy of any member of A in G′, since such a copy would also
be B-rainbow. Hence from the choice of c′, there is an anticomplete pair in G′ of order at least
c′W ′ ≥ cW . This proves 3.5.
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By combining 3.5, 3.3 and 3.1, we have:

3.6 Let H be a tournament. If A is a set of some of the backedge graphs of H, and A has the
SRSEH-property, then H has the RSEH-property and hence the strong EH-property.

Proof. Let A′ be the set of complements of the members of A. Thus all the members of A′ are also
backedge graphs of H under appropriate numberings of H (obtained by reversing the numberings
that give the members of A). Since A has the SRSEH-property, 3.5 implies that A ∪ A′ has the
RSEH-property; and hence so does the set of all backedge graphs of H. Consequently H has the
RSEH-property, by 3.3, and hence the strong EH-property, by 3.1. This proves 3.6.

4 Blockades

If we start with a blockade with great length, we might hope to make a smaller, but more tightly
structured, blockade by shrinking or removing some of its blocks. Here are two useful ways to make
smaller blockades from larger. First, if B = (Bi : i ∈ I) is a blockade, let I ′ ⊆ I; then (Bi : i ∈ I ′)
is a blockade, of smaller length but of at least the same width, and we call it a sub-blockade of B.
Second, for each i ∈ I let B′i ⊆ Bi be nonempty; then the sequence (B′i : i ∈ I) is a blockade, of
the same length but possibly of smaller width, and we call it a contraction of B. A contraction of a
sub-blockade (or equivalently, a sub-blockade of a contraction) we call a minor of B.

If H is a B-rainbow induced subgraph, its support is the set of all i ∈ I such that V (H)∩Bi 6= ∅.
If J is an ordered graph, we define the trace of J (relative to B = (Bi : i ∈ I)) to be the set of
supports of all B-rainbow copies of J . If τ ≥ 1 an integer, we say B is τ -support-uniform if for every
ordered graph J with |J | ≤ τ , either the trace of J is empty, or it consists of all subsets of I of
cardinality |J |.

Let 0 < κ ≤ 1 and τ ≥ 1. We say B is (κ, τ)-support-invariant if for every contraction B′ = (B′i :
i ∈ I) of B of width at least κ times the width of B, and for every ordered graph J with |J | ≤ τ , the
trace of J relative to B equals the trace of J relative to B′.

We need a theorem of [8], the following:

4.1 Let k ≥ 0 and τ ≥ 1 be integers, and 0 < κ ≤ 1; then there exist an integer K with the following
property. Let B = (B1, . . . , BK) be a blockade in a graph. Then there is a minor B′ of B, with length

k and width at least κ2
K+τ2

W (B), such that B′ is τ -support-uniform and (κ, τ)-support-invariant.

In fact we have cheated a little here: the theorem of [8] defines “τ -support-uniform” and “(κ, τ)-
support-invariant” using ordered trees rather than general ordered graphs. But it is not worth writing
the proof out again, since exactly the same argument works for general ordered graphs, except we
have to replace the bound τ τ used in [8] for the number of ordered trees on at most τ vertices,
by the bound 2τ

2
for the number of ordered graphs on at most τ vertices. (This only changes the

multiplicative constant in 4.1.)
One important application of 4.1 is the following.

4.2 Let A be a set of ordered graphs, and let H ∈ A. Suppose that V1, V2 ⊆ V (H) with V1 ∪ V2 =
V (H) and V1 ∩ V2 = ∅, such that there are no edges of H between V1, V2. For i = 1, 2, let Hi be
the ordered subgraph of H induced on Vi, and let Ai = {Hi} ∪ (A \ {H}). If both A1,A2 have the
SRSEH-property then so does A.
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Proof. For i = 1, 2, let ci be an SRSEH-coefficient for Ai. By reducing c1 or c2 we may assume
that c1 = c2 (= c′ say), and 1/c′ ≥ 2|H|, and 1/c′ is an integer. Let k = 1/c′, and choose K as in

4.1, taking τ = |H| and κ = 1/2. Let c > 0 with c ≤ c′2−2K+|H|2
and c ≤ 1/K.

We claim that, if B is a respectful blockade of length at least 1/c in an ordered graph G, and there
is no B-rainbow copy in G of any member of A, and every vertex of G has degree less than cW (B),
then there is a pure pair in G of order at least cW (B). Let W = W (B). By 4.1, there is a minor

C = (C1, . . . , Ck) of B, of width W ′ where W ′ ≥ 2−2
K+|H|2

W , such that C is |H|-support-uniform
and (1/2, |H|)-support-invariant. If there is no C-rainbow copy in G of any member of A1, then since
G has maximum degree less than cW ≤ c′W ′, there is an anticomplete pair in G of order at least
c′W ′ ≥ cW as required. So we may assume that there is a C-rainbow copy in G of some member of
A1. But there is no B-rainbow copy in G of any member of A, so there is a C-rainbow copy in G of
H1, and similarly we may assume (for a contradiction) that there is a C-rainbow copy in G of H2.

Let (v1, . . . , vn) be the numbering of H, and let Ij = {i : vi ∈ Vj} for j = 1, 2. Since C is
|H|-support-uniform, there is a C-rainbow copy J1 of H1 with support I1. For 1 ≤ i ≤ k, if i /∈ I2
let Di = Ci, and if i ∈ I2 let Di be the set of vertices in Ci with no neighbour in V (J1). Thus
|Di| ≥ |Ci| − cW |J1| ≥ |Ci|/2, since

cW |J1| ≤ cW |H| ≤ (c′|H|)
(

2−2
K+|H|2

W

)
≤W ′/2 ≤ |Ci|/2.

Let D = (D1, . . . , Dk). Since C is |H|-support-uniform and (1/2, |H|)-support-invariant, and there is
a C-rainbow copy of H2 in G, it follows that there is a D-rainbow copy J2 of H2 in G with support
I2. But there are no edges of G between V (J1) and V (J2), and so G contains a C-rainbow copy of
H, a contradiction. This proves 4.2.

Let A be a set of ordered graphs, and for each H ∈ A let CH be a component of H (with the
induced numbering). We call the set {CH : H ∈ A} a transversal of A. By repeated application of
4.2, it follows that:

4.3 Let A be a finite set of ordered graphs. If every transversal of A has the SRSEH-property then
A has the SRSEH-property.

For instance, let A = {H1, H2}, where for i = 1, 2, Hi is an ordered graph in which two compo-
nents (Ai, Bi say) have more than two vertices, and perhaps some other components have at most
two vertices. In order to prove that A has the SRSEH-property it would suffice to show that

{A1, A2}, {A1, B2}, {B1, A2}, {B1, B2}

all have the SRSEH-property. There are other transversals, using a one- or two-vertex component of
one of H1 or H2, but they all obviously have the SRSEH-property and we don’t have to check them.
But in general we do have to check all four of the transversals given. When we come to work with a
tournament, the art will be to select a small number of orderings of the tournament such that every
transversal of the corresponding set A of backedge graphs has the SRSEH-property, so that we can
apply 4.3.
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5 Some sets of ordered graphs that have the SRSEH-property

In this section we prove that certain sets of ordered graphs have the SRSEH-property, enough that for
every tournament we need to handle, it has a set of backedge graphs such that all their transversals
can be shown to have the SRSEH-property.

A left-star is an ordered graph, with numbering (v1, . . . , vn) say, such that n > 0, and v1 is
adjacent to every other vertex, and every edge is incident with v1. If it has n vertices it is also called
a left (n− 1)-star. We start with an easy one:

5.1 Let A be a set of ordered graphs, such that all components of some member of A are left-stars or
right-stars, and all components of some member of A are cliques. Then A has the SRSEH-property.

Proof. By 4.3 it suffices to prove the result when A has two members, one a left-star and one a
clique. Choose t such that both these ordered graphs have at most t vertices.

Let N ≥ 0 be an integer such that every graph on at least N vertices has either a stable set or
a clique of size t − 1. Let c = 1/(N + 1). Let G be an ordered graph, let B = (B1, . . . , BK) be a
respectful blockade in G of length at least 1/c, and suppose that there is no B-rainbow copy in G of
any member of A, and every vertex of G has degree less than cW (B). (The last condition will not
be used.) We claim that G has an anticomplete pair of order at least cW (B). We may assume that
each Bi has cardinality W (B). For 2 ≤ i ≤ N + 1, we may assume that fewer than cW (B) vertices
in B1 have no neighbour in Bi, since this set of vertices forms an anticomplete pair with Bi. Since
Nc < 1, it follows that there is a vertex v1 ∈ B1 with a neighbour vi ∈ Bi for 2 ≤ i ≤ N + 1. From
the choice of N , either t − 1 of the vertices v2, . . . , vN+1 form a stable set (and then G contains a
B-rainbow copy of the left-star in A) or t−1 of them form a clique (and then G contains a B-rainbow
copy of the clique in A), in either case a contradiction. This proves 5.1.

We need another theorem of [8], the following:

5.2 For every tree T , there exists c > 0, such that for every graph G with a blockade B of length
at least 1/c, if there is no B-rainbow copy of T , and every vertex has degree less than cW (B), then
there is an anticomplete pair of order at least cW (B).

This is a theorem about unordered graphs, and in particular, the vertices of the B-rainbow copy of
T might be in any order. Still, we can deduce some useful results about ordered graphs from it, for
instance:

5.3 Let A be a set of ordered graphs that does not have the SRSEH-property. For every tree T ,
there is a numbering of T such that the ordered graph formed by T with this numbering contains no
member of A.

Proof. Let T be a tree, and let c > 0 satisfy 5.2. Since A does not have the SRSEH-property, there
is an ordered graph G, and a respectful blockade B in G, such that G has maximum degree less than
cW (B), and there is no B-rainbow copy of any member of A in G, and there is no anticomplete pair
in G of order at least cW (B). By the choice of c, there is a B-rainbow copy of the unordered graph
T in G; let J be this copy, with the induced numbering. Then J contains no member of A. This
proves 5.3.
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A left-spike is an ordered graph, with numbering (v1, . . . , vn) say, such that n > 1, and v2 is
adjacent to every other vertex, and every edge is incident with v2. Right-spikes are defined similarly.
A monotone path is an ordered graph, with numbering (v1, . . . , vn) where n > 0, with edge set
{v1v2, v2v3, . . . , vn−1vn}. Left-stars, left-spikes and monotone paths are all special cases of a left-
broom, which is an ordered tree, with numbering (v1, . . . , vn) where n > 0, and with edge set

{v1v2, v2v3, . . . , vm−1vm} ∪ {vmvm+1, vmvm+2, . . . , vmvn}

for some m with 1 ≤ m ≤ n. A right-broom is defined similarly.
If (v1, . . . , vn) is a numbering, we say vi is earlier than vj if i < j, and vi is later than vj if

i > j. Sometimes we will have different graphs and digraphs with the same vertex set, and we will
sometimes speak of “H-neighbour” meaning “neighbour in H”, and so on. 5.2 has the following
consequence:

5.4 Let A be a set of ordered graphs. If either A contains a left-star and a right-broom, or it
contains a right-star and a left-broom, then A has the SRSEH-property.

Proof. Let A contain a left-star L and a right-broom R, both with at most t ≥ 2 vertices. Let T
be the tree in which every vertex has degree either 2t or one; and there is a vertex v with degree 2t
such that every path of T with one end v, and maximal with this property, has exactly t− 1 edges.
Take a numbering of T , making an ordered graph T ′. For each vertex u of T ′ with degree 2t, we
may assume that at least t of its neighbours are earlier than u, since otherwise T ′ contains L. Let
u0 = v, and having chosen ui, if i < t let ui+1 be a T ′-neighbour of ui that is earlier than ui. For
each i with 0 ≤ i < t, there are at least t T ′-neighbours of ui that are earlier than ui, and so T ′

contains R (because |R| ≤ t.) From 5.3, this proves 5.4.

This will suffice to handle almost all the tournaments of interest to us, but there are a few tough
ones that need something extra, provided by the following three results.

Let us say a left-bristle is an ordered graph, with numbering (v1, . . . , vn) where n > 2, where v1
is adjacent to v2, . . . , vn−1, and vn is adjacent to exactly one of v2, . . . , vn−1, and there are no other
edges. A right-bristle is defined similarly.

5.5 Let A be a set of ordered graphs containing a left 2-star and a right-bristle; or containing a
right 2-star and a left-bristle. Then A has the SRSEH-property.

Proof. Choose t ≥ 3 such that A contains a left 2-star and a right-bristle R, both with at most t
vertices. Let T be the tree in which every vertex has degree either 2t or one; and there is a vertex
v such that every path of T with one end v, and maximal with this property, has exactly two edges.
Thus |T | = 4t2 + 1. Let c′ satisfy 5.2 (with c replaced by c′).

Choose c > 0 such that c ≤ c′/(1 + c′) and 1/c ≥ 4t2 + 2. Let G be an ordered graph, let
B = (B1, . . . , BK) be a respectful blockade in G of length at least 1/c, and suppose that there is no
B-rainbow copy in G of any member of A, and every vertex of G has degree less than cW (B). Let
W = W (B). We claim that G has an anticomplete pair of order at least cW . We may assume that
each Bi has cardinality W .

For 2 ≤ i ≤ 4t2 + 2 let Ci be the set of vertices in Bi with a neighbour in B1. We may assume
that |Bi \ Ci| < cW , since Bi \ Ci is anticomplete to B1, and so |Ci| > (1 − c)W . If there is
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no (C2, . . . , C4t2+2)-rainbow copy of T , then by 5.2, either some vertex of G has degree at least
c′(1 − c)W , or G has an anticomplete pair of order at least c′(1 − c)W , and since c′(1 − c) ≥ c, we
are done.

Thus we may assume (for a contradiction) that there is a (C2, . . . , C4t2+2)-rainbow copy of T ,
and we assume (to simplify notation) that this is T itself. Now v has 2t neighbours in T , and at
least 2t − 1 of them are earlier than v; let 2t − 1 of them be a1, . . . , a2t−1, numbered in order. One
neighbour of at is later than at, namely v, and so all the others are earlier than at, say b1, . . . , b2t−1,
again numbered in order. Since T is (C2, . . . , C4t2+2)-rainbow, it follows that bt has a neighbour
x ∈ B1. Now x is nonadjacent to b1, . . . , bt−1 and to bt+1, . . . , b2t−1. If x is also nonadjacent to
at, then the ordered subgraph induced on {x, at, b1, . . . , b2t−1} contains R, a contradiction. Thus x
is adjacent to at. By the same argument, x is nonadjacent to a1, . . . , at−1 and to at+1, . . . , a2t−1;
and it is also nonadjacent to v, since otherwise {x, bt, v} induces a B-rainbow left 2-star. But then
{x, v, a1, . . . , a2t−1} contains R, a contradiction. This proves 5.5.

Let us say a crossed left-star is an ordered graph, with a numbering (v1, . . . , vn), such that v1 is
adjacent to v2, . . . , vn, and only one edge is not incident with v1. (Thus it consists of a left-star and
one more edge joining some pair of leaves of the left-star.) A crossed right-star is defined similarly.

5.6 If A contains a three-vertex monotone path, and a crossed left-star, and a crossed right-star
then A has the SRSEH-property.

Proof. Let the crossed left-star and the crossed right-star both have at most n vertices. Let
c = 1/(2n), let G be an ordered graph, let B = (B1, . . . , BK) be a respectful blockade in G of length
K ≥ 1/c, let W be its width, and suppose that there is no B-rainbow copy in G of any member of A,
and every vertex of G has degree less than cW . We claim that G has an anticomplete pair of order
at least cW . We may assume that each Bi has cardinality W .

For i = 2, 3, . . . , 2n− 1 in turn, we will inductively define Ai ⊆ Bi with the following properties:

• either at least (1 − 1/n)W vertices in B1, or at least (1 − 1/n)W vertices in B2n, have a
neighbour in Ai;

• the sets A2, A3, . . . , Ai are pairwise anticomplete; and

• for all j ∈ {2, . . . , 2n− 1} \ {i}, fewer than cW vertices in Bj have a neighbour in Ai.

The inductive definition is as follows. Assume that 2 ≤ i ≤ 2n−1, and A2, . . . , Ai−1 are defined. Let
X be the set of vertices in Bi that have a neighbour in one of A2 ∪ · · · ∪Ai−1; thus |X| ≤ (i− 2)cW .
Since |Bi \X| ≥ cW , we may assume that fewer than cW vertices in Bn have no neighbour in Bi \X,
since otherwise G has an anticomplete pair of order at least cW . Since cW ≤ W/n, we may choose
Ai ⊆ Bi \X minimal such that either at least (1−1/n)W vertices in B1, or at least (1−1/n) vertices
in B2n, have a neighbour in Ai. Since each vertex in Ai has fewer than cW neighbours in Bn, the
minimality of Ai implies that at most (1− 1/n)W + cW vertices in B1 have a neighbour in Ai, and
hence the set Z of vertices in B1 with no neighbour in Ai has cardinality at least (1/n− c)W ≥ cW .
Similarly the set Z ′ of vertices in B2n with no neighbour in Ai has cardinality at least cW . Let
2 ≤ j ≤ 2n− 1 with j 6= i. We claim that fewer than cW vertices in Bj have a neighbour in Ai. To
see this, suppose that j > i (the argument when j < i is similar and we omit it). If v ∈ Bj has a
neighbour in Ai, then it has no neighbour in Z ′, since there is no B-rainbow monotone three-vertex
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path in G; and since we may assume that G has no anticomplete pair of order at least cW , and
|Z ′| ≥ cW , it follows that fewer than cW vertices in Bj have a neighbour in Ai as claimed. This
completes the inductive definition. In summary, we have:

• for 2 ≤ i ≤ 2n− 1, either at least (1 − 1/n)W vertices in B1, or at least (1 − 1/n) vertices in
B2n, have a neighbour in Ai;

• the sets A2, A3, . . . , A2n−1 are pairwise anticomplete; and

• for all distinct i, j ∈ {2, . . . , 2n− 1}, fewer than cW vertices in Bj have a neighbour in Ai.

From the symmetry, we may assume that for at least n − 1 values of i ∈ {2, . . . , 2n − 1}, at least
(1 − 1/n)W vertices in B1 have a neighbour in Ai. Choose n − 1 such values, say i2, . . . , in in
increasing order, and define i1 = 1. Since at most W/n vertices in B1 have no neighbour in each
Bis for 2 ≤ s ≤ n, there is a set M1 ⊆ B1 with |M1| ≥ W/n such that every vertex in M1 has a
neighbour in each of Ai2 , . . . , Ain .

There is a crossed left-star L in A; let its numbering be (v1, . . . , vt) say where t ≤ n, and va, vb
are adjacent for some a, b with 2 ≤ a < b ≤ t. Let Mia be the set of all vertices in Bia with
no neighbour in any of the sets Ais where s ∈ {2, . . . , t} \ {a, b}, and define Mib ⊆ Bib similarly.
Thus |Mia |, |Mib | ≥ W − (t − 1)cW ≥ 2cW . We may assume that fewer than cW vertices in Mia

have no neighbour in M1 (since |M1| ≥ cW ) and similarly, fewer than cW vertices in Mia have no
neighbour in Mib ; and so some vertex uia ∈ Bia has a neighbour u1 ∈M1 and a neighbour uib ∈Mib .
Since there is no B-rainbow three-vertex path in G it follows that u1, uib are adjacent. For each
s ∈ {2, . . . , t} \ {a, b}, choose uis ∈ Ais adjacent to u1 (this is possible since every vertex of M1 has
a neighbour in Ais). Then the ordered subgraph induced on {ui1 , ui2 , . . . , uit} is a B-rainbow copy
of L, a contradiction. This proves 5.6.

A left-split is an ordered graph, with numbering (v1, . . . , vn), such that:

• v1, v2 are nonadjacent, and {v3, . . . , vn} is a clique; and

• for 3 ≤ i ≤ n, vi is adjacent to at most one of v1, v2.

5.7 If A contains a left 2-star, and a crossed right-star, and a left-split, then A has the SRSEH-
property.

Proof. For t ≥ 1, a t-uniform crossed right-star is a crossed right-star with numbering (v1, . . . , vn),
where n = 3t−1, and vt, v2t are adjacent. Every crossed right-star is contained in a t-uniform crossed
right-star for all sufficiently large t.

For t ≥ 1, a t-uniform left-split is a left-split with numbering (v1, . . . , vn), where n = 3t+ 2, such
that for i = 3, . . . , n, v1 is adjacent to vi if i is divisible by three, and v2 is adjacent to vi if i − 1
is divisible by three. Every left-split is contained in a t-uniform left-split for all sufficiently large t.
Choose t ≥ 1 such that some member of A is contained in a t-uniform crossed right-star, and some
member of A is contained in a t-uniform left-split.

Choose K satisfying 4.1, taking k = 35t+1 and τ = 8t+1 and κ = 1/4. Let L = K+(8t+1)2. By
5.4, the set consisting of a left 2-star and a monotone (8t+ 1)-vertex path has the SRSEH-property.
Let c0 > 0 be an SRSEH-coefficient for this set.
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Choose c > 0 with
c ≤ min

(
c04
−2L , 1/K, 1/(35t+ 1), 4−2

L−1/t
)
.

We will show that c is an SRSEH-coefficient for A. Let G be an ordered graph, let B′ be a respectful
blockade in G of length at least 1/c, let W ′ be its width, and suppose that there is no B′-rainbow
copy in G of any member of A. We claim that either some vertex has degree at least cW ′ in G, or
G has an anticomplete pair of order at least cW ′.

From the choice of K, since 1/c ≥ K, there is a minor B = (B1, . . . , B35t+1) of B′ of width at least

4−2
L
W ′, such that B is (8t+1)-support-uniform and (1/4, 8t+1)-support-invariant. Let its width be

W ; we may assume that all its blocks have cardinality W . There is no B-rainbow left 2-star, and if
there is no B-rainbow monotone (8t+ 1)-vertex path, then from the choice of c0, there is either some

vertex with degree at least c04
−2LW ′ in G, or an anticomplete pair in G of order at least c02

−2LW ′;
and since c04

−2L ≥ c, in either case this proves our claim.
So we may assume (for a contradiction) that there is a B-rainbow monotone (8t+ 1)-vertex path.

For i = 0, 1, 2, let C8ti+1 be the set of vertices in B8ti+1 that have at least one neighbour in each
of B32t+2, . . . , B35t+1. For each j > 8ti + 1, at most cW ′ vertices in B8ti+1 have no neighbour in
Bj ; and so |B8ti+1 \ C8ti+1| ≤ 3tcW ′. Hence |C8ti+1| ≥ W − 3tcW ′. Again, for i = 0, 1, 2 let Di

be the set of vertices in B24t+1 that belong to a B-rainbow monotone (8t + 1)-vertex path with
support {8ti+ 1, . . . , 8t(i+ 1), 24t+ 1} and with its first vertex (the vertex in B8ti+1) in C8ti+1. Now

|C8ti+1| ≥W − 3tcW ′ ≥W/4, because tc ≤ 4−2
L−1 ≤W/(4W ′). Since B is (8t+ 1)-support-uniform

and (1/4, 8t + 1)-support-invariant, and there is no B-rainbow monotone (8t + 1)-vertex path with
support {8ti+1, . . . , 8t(i+1), 24t+1} and with its first vertex in C8ti+1 and last vertex in B24t+1\Di,
it follows that |B24t+1 \Di| < W/4, and so |Di| > 3W/4.

Let D3 be the set of vertices in B24t+1 that belong to a B-rainbow monotone (8t+ 1)-vertex path
with support {24t+ 1, . . . , 32t+ 1}; then by the same argument |D3| > 3W/4. Since D0, . . . , D3 all
have cardinality more than 3W/4, and they are all subsets of B24t+1 (which has cardinality W ), there
exists w ∈ D0∩D1∩D2∩D3. For i = 0, 1, 2, let Pi be a B-rainbow monotone (8t+1)-vertex path with
support {8ti+ 1, . . . , 8t(i+ 1), 24t+ 1}, with first vertex (ui say) in C8ti+1 and last vertex w; and let
P3 be a B-rainbow monotone (8t+1)-vertex path with support {24t+1, . . . , 32t+1} and first vertex w.

(1) No vertex in any of B32t+2, . . . , B35t+1 is adjacent to more than one of u0, u1, u2.

Suppose that z ∈ B32t+2 ∪ · · · ∪ B35t+1 is adjacent to ua, ub say, where 0 ≤ a < b ≤ 2. Since
there is no B-rainbow left 2-star, it follows that z is adjacent to every vertex of Pa ∪ Pb, and hence
to every vertex of P3. Let w′ be the neighbour of w in Pa. Since Pa is induced, it has a stable set Ia
of cardinality t containing w′. Each vertex in Ia\ has at most two neighbours in V (Pb) since there is
no B-rainbow left 2-star; and so there is a stable subset Ib of Pb containing w and with cardinality t,
such that ww′ is the only edge of G[Ia ∪ Ib]. Each vertex in Ia ∪ Ib \ {w} has at most two neighbours
in V (P3); so there is a stable subset I3 of P3 of cardinality t, containing w, and such that ww′ is the
only edge of G[Ia ∪ Ib ∪ I3]. But then the ordered graph induced on Ia ∪ Ib ∪ I3 ∪ {z} is a B-rainbow
copy of a t-uniform crossed right-star, a contradiction. This proves (1).

For i = 3, . . . , 3t + 2 choose ui ∈ B32t−1+i, adjacent to u1 if i is divisible by three, adjacent to
u2 if i − 1 is divisible by three, and adjacent to u0 otherwise. (This is possible since uj ∈ C8tj+1

for j = 0, 1, 2.) Thus each of u3, . . . , u3t+2 has exactly one neighbour in {u0, u1, u2}, by (1). For
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3 ≤ i ≤ 3t + 2, ui is adjacent to one of u0, u1, u2, and hence to all of one of V (P0), V (P1), V (P2),
since there is no B-rainbow left 2-star; and in particular, it is adjacent to w. Thus w is adjacent to
each of u3, . . . , u3t+2, and consequently {u3, . . . , u3t+2} is a clique; and the ordered subgraph induced
on {u1, . . . , u3t+2} is a t-uniform left-split, a contradiction. This proves 5.7.

6 Tournaments that have backedge graphs with at most three edges

Let us (at last!) apply all these results to prove:

6.1 If H is a D5-free tournament with a backedge graph with at most three edges, then H has the
RSEH-property.

Proof. Let B be a backedge graph of H that has at most three edges, and let (v1, . . . , vn) be its
numbering. B will have at most six vertices of positive degree, but between them there may be
arbitrary sequences of vertices of degree zero, and we cannot ignore them, because we need to use B
to find other backedge graphs in order to apply 4.3. We need some notation to encompass this. Let
B have t vertices of positive degree, and let us number them b1, b3, b5, . . . , b2t−1 in order; and let us
label the sequences of vertices between them as B0, B2, . . . , B2t, where the sequence (v1, . . . , vn) is
the concatenation of

B0, b1, B2, b3, . . . , b2t−1, B2t.

This notation does not tell us the number of vertices in each sequence Bi, but we do not need that.
By 3.6 it suffices to show that some set of backedge graphs of H has the SRSEH-property. First,

if no vertex of B has degree more than one, then every component of B is both a left-star and a
right-star, and so from 5.4 and 4.3, {B} has the SRSEH-property. Thus we may assume that some
vertex has degree more than one. If some bi is incident with every edge of B, then by moving bi to
the start of the numbering, we obtain a numbering with back-edge graph a left-star (and isolated
vertices), and similarly by moving bi to the other end of the numbering, we obtain a numbering with
back-edge graph a right-star (and isolated vertices), and 5.4 and 4.3 imply that the set of these two
backedge graphs has the SRSEH-property, and so H has the RSEH-property. So we may assume
there is no such bi. In particular, B has exactly three edges.

Suppose that t = 3, and so b1, b3, b5 are pairwise adjacent. The numberings

B0, b5, b1, B2, b3, B4, B6

B0, B2, b3, B4, b5, b1, B6

have backedge graphs in which each component is a left-star, and each component is a right-star,
respectively. Thus each transversal (of this set of two ordered graphs) consists of a left-star and a
right-star, and therefore we may apply 5.4 and 4.3.

So we may assume that t ≥ 4. Suppose that t = 4. Since B has three edges and no vertex
is incident with all of them, the subgraph induced on {b1, b3, b5, b7} is a four-vertex path. There
are several possibilities for the order in which b1, b3, b5, b7 appear in this path, but there is some
symmetry we can use to reduce the number of cases. First, there are two orders in which b1, b3, b5, b7
appear in this path, reverses of one another, and we only need list one of them. Second, we do not
need to list both of two cases which can be taken one to the other by reversing the numbering of H;
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since reversing the numbering of H gives a backedge graph of the reverse of H, and the result holds
for H if and only if it holds for the reverse of H. Up to these two symmetries, the possibilities for
the vertices of this path in order are the following:

• b1-b3-b5-b7. Apply 5.4 and 4.3 to

B0, b1, B2, B4, b5, b3, B6, b7, B8

B0, b1, B2, b5, b3, B4, B6, b7, B8.

• b1-b3-b7-b5. Apply 5.4 and 4.3 to

B0, b1, B2, b7, b3, B4, b5, B6, B8

B0, B2, b3, b1, B4, b5, B6, b7, B8.

• b1-b5-b3-b7. Apply 5.4 and 4.3 to

B0, b5, b1, B2, b3, B4, B6, b7, B8

B0, b1, B2, B4, b5, B6, b7, b3, B8.

• b1-b5-b7-b3. Apply 5.4 and 4.3 to

B0, b1, B2, b7, b3, B4, b5, B6, B8

B0, b1, B2, b3, B4, B6, b7, b5, B8.

• b1-b7-b3-b5. The numberings

B0, b1, B2, B4, b5, B6, b7, b3, B8

B0, b1, B2, B4, b5, b7, b3, B6, B8

(where B4 means B4 with order reversed) have back-edge graphs in which every component
is a right-star, and every component is either a clique or left-spike, respectively. Thus every
transversal of the two consists of either a right-star and a clique (and such a transversal has
the SRSEH-property by 5.1), or a right-star and a left-spike (and such a transversal has the
SRSEH-property by 5.4). Consequently, the result follows from 4.3.

• b1-b7-b5-b3. Apply 5.4 and 4.3 to

B0, b1, B2, b3, B4, B6, b7, b5, B8

B0, b1, B2, b3, B4, b7, b5, B6, B8.
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• b3-b1-b7-b5. The numberings

B0, b3, b1, B2, B4, b5, B6, b7, B8

B0, b1, B2, b3, B4, B6, b7, b5, B8

B0, b3, b1, B2, B4, b5, B6, b7, B8

have back-edge graphs in which each component is a right-star or clique; each component is a
left-star or clique; and each component is a left-star or right-star, respectively. Hence we may
apply 5.1, 5.4 and 4.3.

• b3-b7-b1-b5. Since H is D5-free, it follows that B4 is null. Apply 5.1 and 4.3 to

B0, B2, b5, b7, b1, b3, B6, B8

B0, B2, b5, b7, b1, b3, B6, B8

This completes the list of cases with t = 4; so t ≥ 5, and therefore t = 5, since B has only three
edges and some vertex has degree more than one. The subgraph induced on {b1, b3, b5, b7, b9} has
two components, one an edge and the other a three-vertex path. The three-vertex path might be
a monotone path or a left-star or a right-star. Suppose first that it is a monotone path, and so all
components of B are monotone paths. Hence the claim follows if we can exhibit a numbering for
which every component of the backedge graph is a left-star or left-spike, or if there is a numbering
for which every component is a right-star or right-spike. If the vertices of the three-vertex path in
order are vi-vj-vk where i < j < k, and none of vi+1, . . . , vj−1 have positive degree in B, then the
numbering

(v1, . . . , vi−1, vj , vi, . . . , vj−1, vj+1, . . . , vn)

gives a backedge graph in which every component is a left-star, as required; and similarly we may
assume that one of vj+1, . . . , vk−1 has positive degree in B. Consequently the only possibility is
(using the bi, Bi notation) that the edges of B are b1b5, b3b7 and b5b9. The backedge graph of the
numbering

B0, B2, b3, B4, b5, B6, b7, B8, b1, b9, B10

has two components, one an edge and the other a crossed right-star; and the backedge graph of

B0, b1, b9, B2, b3, B4, b5, B6, b7, B8, B10

again has two components, one an edge and the other a crossed left-star. Since every component of
B itself is a monotone path, the claim follows from 5.6.

Thus we may assume that a component of B is either a left 2-star or a right 2-star; and from
the symmetry under reversal, we may assume it is a left 2-star. Let its vertices be vi, vj , vk. If
none of vi+1, . . . , vj−1 has positive degree in B, then every component of the backedge graph of the
numbering

(v1, . . . , vi−1, vi+1, . . . , vj , vi, vj+1, . . . , vn)

is either a right-star or a right-broom, and the claim follows from 5.4 and 4.3. So we may assume that
one of vi+1, . . . , vj−1 has positive degree in B. If also some vertex earlier than vi has positive degree,
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the edges of B (in the Bi, bi notation) are b1b5, b3b7, b3b9; and then the non-singleton component of
the backedge graph of the numbering

B0, b1, B2, B4, b5, B6, b7, B8, b9, b3, B10

is a right-bristle, and since every component of B is a left-star with at most three vertices, the claim
follows from 5.5. So we may assume that b1 is adjacent to exactly two of b5, b7, b9, and b3 is adjacent
to the third. There are three cases, but the same argument applies to each. Every component of B
is a left-star with at most three vertices. The non-singleton component of the backedge graph of the
numbering

B0, B2, b3, B4, b5, B6, b7, B8, b9, b1, B10

is a crossed right-star; and the non-singleton component of the backedge graph of the numbering

B0, b1, B2, b3, B4, b9, B8, b7, B6, b5, B10

is a left-split, so the claim follows from 5.7. This proves 6.1.

7 Sparsity

Now we turn to the proof of 1.7. We will need the following theorem of Rödl [15] (see for instance [9]
for this version):

7.1 For every graph H, and every ε > 0, there exists δ > 0 such that if G is a graph with no induced
subgraph isomorphic to H, there exists X ⊆ V (G) with |X| ≥ δ|G| such that one of the graphs G[X],
G[X] has maximum degree less than εδ|G|.

We need a version of this for ordered graphs. To obtain that, we use a theorem of Rödl and
Winkler [16], that says:

7.2 For every ordered graph H, there exists a graph P such that, for every numbering of P , the
resulting ordered graph contains H.

We deduce

7.3 For every ordered graph H, and every ε > 0, there exists δ > 0 such that if G is an H-free
ordered graph, there exists X ⊆ V (G) with |X| ≥ δ|G| such that one of the graphs G[X], G[X] has
maximum degree less than εδ|G|.

Proof. By 7.2, there is a graph P such that for every numbering of P , the resulting ordered graph
contains H. Choose δ as in 7.1, with H replaced by P . We claim that δ satisfies the theorem. Let
G be an ordered graph that does not contain H. From the choice of P , it follows that G (as an
unordered graph) does not contain P as an induced subgraph; and so the result follows from the
choice of δ. This proves 7.3.
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8 Six-vertex tournaments containing D5

We will handle the tournaments (with at most six vertices) that contain D5 separately from those
that do not, because the arguments needed are quite different. In this section we handle those that
contain D5. Berger, Choromanski, Chudnovsky and Zerbib [5] proved that D5 itself has the strong
EH-property, and we will show that their proof method also works for what we need.

1

2

3 4

5

Figure 5: D5.

Which tournaments do we need to handle? As we said, D5 itself is handled in [5], so we are
concerned with the tournaments with exactly six vertices that contain D5. With D5 numbered as in
figure 5, if we add a new vertex, we can describe it by giving its set of out-neighbours. That might
be any subset of {1, . . . , 5}; but by taking the reverse if necessary, we may assume the new vertex
has at most two out-neighbours (since D5 is isomorphic to its reverse), and from the symmetry there
are only four cases that give nonisomorphic tournaments, namely

∅, {1}, {1, 2}, {1, 3}.

The fourth case yields H6, which we cannot do, so we will just show how to handle the first three.
Let us give these three tournaments names: if we start with D5 numbered as above, and add a new
vertex with out-neighbour set X where X ⊆ {1, . . . , 5} (and in-neighbour set {1, . . . , 5} \X), we call

the tournament we obtain DX
5 . Thus we need to handle D∅5, D

{1}
5 and D

{1,2}
5 .

We need a result proved in [5]. Let us say a digraph G is out-simplicial if for all distinct v, x, y ∈
V (G) such that vx, vy are edges, at least one of xy, yx is an edge. It was proved in [5] that:

8.1 For every out-simplicial digraph G with |G| > 1, either:

• there exist disjoint subsets A,B ⊆ V (G) with |A|, |B| ≥ b|G|/6c, such that there are no edges
of G between A,B (in either direction); or

• there exist disjoint subsets A,B ⊆ V (G) with |A|, |B| ≥ b|G|/6c, such that for all a ∈ A and
b ∈ B, there is a directed path in G from a to b.

The proof for D5 given in [5] extends to the following:

8.2 Let G be a tournament, and let A1, . . . , A7 be pairwise disjoint subsets of V (G), each of cardi-
nality at least W . Then either:

19



• there exist 1 ≤ i < j ≤ 7 such that some vertex in Ai has at least W/9 in-neighbours in Aj, or
some vertex in Aj has at least W/9 out-neighbours in Ai; or

• there is a pure pair in G with order at least bW/6c; or

• G contains all of D∅5, D
{1}
5 and D

{1,2}
5 .

Proof. Let B be the graph with vertex set A1 ∪ · · · ∪A7, where uv ∈ E(G) if u ∈ Ai and v ∈ Aj for
some i < j, and u is adjacent from v in G. Thus we may assume that for 1 ≤ i ≤ 7, every vertex of B
has fewer than W/9 B-neighbours in Ai, for otherwise the theorem holds. We may assume that B has
at least one edge, since otherwise the second outcome holds; so W ≥ 10. We begin with the following:

(1) If there exist v1, v2 ∈ A1 and v4, v5 ∈ A6 such that

v1v2, v4v5, v5v1, v5v2, v4v1, v2v4 ∈ E(G),

then G contains all of D∅5, D
{1}
5 and D

{1,2}
5 .

For 1 ≤ i ≤ 7 let A′i be the set of vertices in Ai that are not B-adjacent to any of v1, v2, v4, v5.
Consequently |A′i| ≥ 5W/9. For each v3 ∈ A′3, it follows that the subtournament of G induced
on {v1, . . . , v5} is isomorphic to D5. (We have chosen the numbering to match that in figure 5.)
If we choose v3 ∈ A′3 and v6 ∈ A′7, not B-adjacent (this is possible since v3 has fewer than W/9
B-neighbours in A′7, and |A′7| ≥ 5W/9 > W/9), the set {v1, . . . , v6} induces D∅5. If we choose v3 ∈ A′3
and v6 ∈ A′7, B-adjacent (this is possible since otherwise (A′3, A

′
7) is a pure pair in G and the sec-

ond outcome of the theorem holds) then {v1, . . . , v6} induces D
{1}
5 . If we choose v3, v6 ∈ A′3, then

{v1, . . . , v6} induces D
{1,2}
5 . This proves (1).

(2) If there exist v1, v2 ∈ A1 and v4 ∈ A3 and v5 ∈ A6 such that

v1v2, v4v5, v5v1, v5v2, v4v1, v2v4 ∈ E(G),

then G contains all of D∅5, D
{1}
5 and D

{1,2}
5 .

Define A′1, . . . , A
′
7 as before; then again each |A′i| ≥ 5W/9. If we choose v3 ∈ A′2, then {v1, . . . , v5}

induces D5. If we choose v3 ∈ A′2 and v6 ∈ A′7, not B-adjacent, then {v1, . . . , v6} induces D∅5. If we

choose v3 ∈ A′2 and v6 ∈ A′7, B-adjacent, then {v1, . . . , v6} induces D
{1}
5 . If we choose v3, v6 ∈ A′2,

then {v1, . . . , v6} induces D
{1,2}
5 . This proves (2).

(3) If there exist v1 ∈ A1, v5 ∈ A3 and v4 ∈ A6, pairwise B-adjacent, then G contains all of

D∅5, D
{1}
5 and D

{1,2}
5 .

For 1 ≤ i ≤ 7 let A′i be the set of vertices in Ai that are not B-adjacent to any of v1, v4, v5. Thus
each |A′i| ≥ W − 3W/9 = 2W/3. If we choose v3 ∈ A′2 and v2 ∈ A′4, B-adjacent, then {v1, . . . , v5}
induces D5. If we choose v3 ∈ A′2 and v2 ∈ A′4, B-adjacent, and choose v6 ∈ A′7, not B-adjacent to
v2, v3, then {v1, . . . , v6} induces D∅5. If we choose v3 ∈ A′2 and v2 ∈ A′4, B-adjacent, and v6 ∈ A′5,
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not B-adjacent to v2, v3, then {v1, . . . , v6} induces D
{1}
5 . Finally, we may assume that some vertex

in A′4 has at least two B-neighbours in A′2, because otherwise we can choose X ⊆ A′2 and Y ⊆ A′4
with |X|, |Y | = bW/3c ≥ bW/6c such that there are no B-edges between X,Y , and so (X,Y ) is a
pure pair of G and the second outcome holds. Let v2 ∈ A′4 have two B-neighbours v3, v6 ∈ A′2; then

{v1, . . . , v6} induces D
{1,2}
5 . This proves (3).

We assume therefore that none of (1), (2), (3) apply. From now on the argument is exactly as in
[5], but we give it for the reader’s convenience. Let J be the digraph with vertex set A1, in which
for all distinct u, v ∈ A1, v is J-adjacent from u if v is G-adjacent from u and there exists w ∈ A6

B-adjacent to both u, v.

(4) J is out-simplicial.

Suppose that v1 ∈ A1 is adjacent in J to v2, v
′
2 ∈ A1, and neither of v2v

′
2, v
′
2v2 is an edge of J .

Choose v5 ∈ A6 B-adjacent to v1, v2, and choose v4 ∈ A6 B-adjacent to v1, v
′
2. Since one of v1v2, v2v1

is an edge of G, and not an edge of J , it follows that v4 is not B-adjacent to v2, and v5 is not B-
adjacent to v′2. From the symmetry we may assume that v4v5 is an edge of G. But then v1, v2, v4, v5
satisfy the hypotheses of (1), a contradiction. This proves (4).

From 8.1, either

• there exist disjoint subsets X,Y ⊆ A1 with |X|, |Y | ≥ b|A1|/6c, such that there are no edges
of J between X,Y (in either direction); or

• there exist disjoint subsets X,Y ⊆ A1 with |X|, |Y | ≥ b|A1|/6c, such that for all x ∈ X and
y ∈ Y , there is a directed path in J from x to y.

Suppose that the first holds. It follows that no vertex in A6 has both a B-neighbour in X and a
B-neighbour in Y . Thus either at least half the vertices in A6 have no B-neighbour in X, or at least
half have no B-neighbour in Y ; and so G has a pure pair (P,Q) with P one of X,Y and Q ⊆ A6

with |Q| ≥ |A6|/2 ≥W/2. Since |P | ≥ bW/6c, the second outcome of the theorem holds.
Thus we may assume that the second bullet holds; there exist disjoint subsets X,Y ⊆ A1 with

|X|, |Y | ≥ b|A1|/6c, such that for all x ∈ X and y ∈ Y , there is a directed path in J from x to y.

(5) There do not exist x ∈ X, y ∈ Y and z ∈ A3 such that z is B-adjacent to x, and z is not
B-adjacent to y.

Suppose that such x, y, z exist. Since there is a directed path of J between x, y, there is an edge
uv ∈ E(J) such that z is B-adjacent to u and not to v. Choose w ∈ A6 B-adjacent to both u, v (this
exists from the definition of J). If z, w are not B-adjacent, the hypotheses of (2) are satisfied, and
if z, w are B-adjacent then the hypotheses of (3) are satisfied, in either case a contradiction.

From (5), either half the vertices in A3 have no B-neighbour in X, or half the vertices in A3 are
B-adjacent to all of Y ; so there exists P ⊆ A3 with |P | ≥ W/2 such that one of (X,P ), (P, Y ) is a
pure pair of G, and the second outcome of the theorem holds. This proves 8.2.

We deduce:
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8.3 If H is a tournament with |H| ≤ 6 that contains D5, and H is different from H6, H6, then H
has the strong EH-property.

Proof. As we saw, we may assume that H is one of D∅5, D
{1}
5 and D

{1,2}
5 . Let J be some backedge

graph of H. By 7.3 there exists δ > 0 such that if G is a J-free ordered graph, there exists X ⊆ V (G)
with |X| ≥ δ|G| such that one of the graphs G[X], G[X] has maximum degree less than δ|G|/126.
Let c = δ/84; we will show that every H-free tournament G with |G| > 1 has a pure pair of order at
least c|G|. Let G be an H-free tournament with |G| > 1. If |G| ≤ 1/c then G has a pure pair of order
1 that satisfies the theorem, so we may assume that |G| > 1/c. Let (u1, . . . , um) be a numbering of G,
and let B be its backedge graph. Thus B is J-free. From the choice of δ, there exists X ⊆ V (G) with
|X| ≥ δ|G| such that one of B[X], B[X] has maximum degree less than δ|G|/126; and by reversing
the numbering of G if necessary, we may assume that B[X] has maximum degree less than δ|G|/126.

Let W = 6dc|G|e. Since c|G| ≥ 1, it follows that dc|G|e ≤ 2c|G|, and so

δ|G|/14 = 6c|G| ≤W ≤ 12c|G| = δ|G|/7 ≤ |X|/7.

Choose disjoint subsets A1, . . . , A7 of X, each of cardinality W , such that for 1 ≤ i < j ≤ 7, if

up ∈ Ai and uq ∈ Aj then p < q. Since G is H-free and H is one of D∅5, D
{1}
5 and D

{1,2}
5 , it follows

from 8.2 (since |W | is divisible by six) that either

• there exist 1 ≤ i < j ≤ 7 such that some vertex in Ai has at least W/9 in-neighbours in Aj , or
some vertex in Aj has at least W/9 out-neighbours in Ai; or

• there is a pure pair in G with order at least W/6.

The first is impossible since every vertex in X has degree less than δ|G|/126 ≤ W/9 in B[X].
Consequently G has a pure pair of order at least W/6 ≥ c|G|. This proves 8.3.

9 Choosing a backedge graph

To complete the proof of 1.7, we need to handle the six-vertex tournaments that do not contain
D5, which is the content of this section. We will have to examine all tournaments with at most six
vertices, and we will enumerate them by their backedge graphs. Each tournament may have several
different backedge graphs, and we only need to examine one per tournament, so let us try to choose
a good one. In this section we show that all six-vertex tournaments have backedge graphs with at
most four edges; so we can handle most of them by means of 6.1, and the others are handled case
by case. Let us say a numbering of a tournament H is optimal if it has as few backedges as possible,
over all numberings of H.

9.1 Let (v1, . . . , vn) be an optimal numbering of a tournament H, with backedge graph B, and let
1 ≤ i < j ≤ n. Then:

• vi is B-adjacent to at most (j− i)/2 members of {vi+1, . . . , vj}; and vj is B-adjacent to at most
(j − i)/2 members of {vi, . . . , vj−1}.

• If j − i ≤ 3 then B[{vi, . . . , vj}] has at most one edge.
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• If j−i = 4 then B[{vi, . . . , vj}] has at most three edges. It has three only if they are vivi+4, vivi+3

and vi+1vi+4, and then G contains D5.

Proof. For the first statement,

(v1, . . . , vi−1, vi+1, . . . , vj , vi, vj+1, . . . , vn)

is a numbering of H, and the number of its backedges is obtained from the number of backedges of
(v1, . . . , vn) by adding the number of H-out-neighbours of vi in {vi+1, . . . , vj} and subtracting the
number of H-in-neighbours of vi in this set; and since (v1, . . . , vn) is optimal, it follows that at least
half of the vertices in {vi+1, . . . , vj} are H-out-neighbours of vi, that is, vi is B-adjacent to at most
(j− i)/2 members of {vi+1, . . . , vj}. This proves half of the first statement and the other half follows
from symmetry.

For the second statement, let j ≤ i+ 3, and suppose that B[{vi, . . . , vj}] has at least two edges.
Hence there exist i ≤ a < b ≤ j with b − a < j − i such that va, vb are B-adjacent; and by the
first statement b − a ≥ 2. Consequently j − i = 3. The only pairs of vertices in {vi, . . . , vi+3} that
might be adjacent are vivi+2, vi+1vi+3 and vivi+3; and by the first statement, vi has at most one
B-neighbour in {vi+1, vi+2, vi+3}, and vi+3 has at most one B-neighbour in {vi, vi+1, vi+2}. Thus vi
is not B-adjacent to vi+3; and so vivi+2 and vi+1vi+3 are backedges. But then the numbering

(v1, . . . , vi−1, vi+2, vi, vi+3, vi+1, vi+1, . . . , vn)

has fewer backedges, a contradiction. This proves the second statement.
For the third, let j = i + 4, and suppose that B[{vi, . . . , vj}] has at least three edges. By

the second statement, B[{vi, . . . , vj−1}] has at most one edge, and so does B[{vi+1, . . . , vj}]; so
B[{vi, . . . , vj}] has exactly three edges, and one of them is vivj , and each of the other two only
appears in one of B[{vi, . . . , vj−1}], B[{vi+1, . . . , vj}]. Let the other two backedges be vivb and vavj
where a, b ∈ {i+ 1, . . . , j − 1}. Now b ∈ {i+ 2, i+ 3} and a ∈ {i+ 1, i+ 2}, from the first statement;
so there are four cases.

• If a = b = i+ 2, then

(v1, . . . , vi−1, vi+1, vi+4, vi+2, vi, vi+3, vi+5, . . . , vn)

has fewer backedges, a contradiction.

• If a = i+ 1 and b = i+ 2, then

(v1, . . . , vi−1, vi+2, vi+4, vi, vi+1, vi+3, vi+6, . . . , vn)

has fewer backedges, a contradiction; and similarly there is a contradiction if a = i + 2 and
b = i+ 3.

• If a = i+ 1 and b = i+ 3, then the tournament induced on {vi, . . . , vi+5} is isomorphic to D5,
and the third outcome of the theorem holds.

This proves 9.1.
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Figure 6 defines the tournament F6.

Figure 6: Backedge graph of F6.

9.2 Let H be a tournament with |H| ≤ 6, and let (v1, . . . , v|H|) be an optimal numbering, with
backedge graph B. If |H| ≤ 4, there is at most one backedge. If |H| = 5, there are at most three
backedges, and at most two unless H = D5. If |H| = 6, there are at most four backedges, and at
most three unless H is one of P−7 , H6, H6 and F6.

Proof. If |H| ≤ 4 the claim is clear, and if |H| = 5 the claim follows from 9.1.3 (that is, from the
third statement of 9.1; we will use this notation again). Thus we may assume that |H| = 6, and
there are at least four backedges.

Suppose that B[{v2, . . . , v6}] has at least three edges. By 9.1.3 it has exactly three, and they are
v2v5, v2v6 and v3v6. All other edges of B are incident with v1. By 9.1.1, v1 is not B-adjacent to v6
or to v2, so the only possible further edges of B are v1v3, v1v4 and v1v5. By 9.1.1 at most two of
them are present; and also by 9.1.1, not both v1v3, v1v4 are backedges. If v1v5 and one of v1v3, v1v4
are both present then the numbering

(v3, v4, v5, v1, v6, v2)

has fewer backedges, a contradiction. So exactly one of v1v3, v1v4, v1v5 is present. If v1v3 is a backedge
then

(v3, v1, v4, v5, v6, v2)

has fewer backedges; if v1v4 is a backedge then

(v4, v1, v5, v6, v2, v3)

has fewer backedges; and if v1v5 is a backedge then

(v5, v1, v6, v2, v3, v4)

has fewer backedges, a contradiction.
Thus we may assume that B[{v2, . . . , v6}] has at most two edges. Since by 9.1.1, v1 is incident

with at most two edges of B, and B has at least four edges, it follows that exactly two are incident
with b1, and B has four edges altogether. Similarly, exactly two are incident with v6.

Suppose that v1, v6 are not B-adjacent. Since v1 has two B-neighbours in {v2, . . . , v5}, and at
most one in {v2, v3, v4} by 9.1.1, it follows that v1v5 is a backedge, and similarly so is v2v6. Each of
v1, v6 has one further B-neighbour; let v1va and vbv6 be backedges, where a, b ∈ {3, 4}. Now there
are four cases, (a, b) = (3, 4), (3, 3), (4, 4), (4, 3).

• If (a, b) = (3, 4), then
(v3, v5, v1, v6, v2, v4)

has fewer backedges.
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• If (a, b) = (3, 3) then H is isomorphic to H6 (the numbering

(v2, v3, v5, v1, v4, v6)

gives the backedge graph of figure 4). Similarly if (a, b) = (4, 4) then H is isomorphic to H6.

• If (a, b) = (4, 3) then H is isomorphic to F6 (B itself is the graph of figure 6).

Thus we may assume that v1v6 is a backedge. More, we may assume that for every optimal
numbering of H, the first and last vertices are adjacent and both are incident with two backedges
for that numbering. Suppose that v1v3 ∈ E(B). Then

(v1, v2, v3, v4, v5, v6)

(v2, v3, v1, v4, v5, v6)

(v3, v1, v2, v4, v5, v6)

are all optimal numberings, and so v6 is B-adjacent to each of v1, v2, v3, contrary to 9.1.1.
Thus we may assume that v1v3 is not a backedge, and similarly v4v6 is not a backedge. Suppose

that v3v5 is a backedge. Since v6 is incident with two backedges, and 9.1.2 implies that v6 has no
B-neighbour in {v3, v4, v5}, it follows that v2v6 is a backedge. Also one of v1v4, v1v5 is a backedge.
If v1v4 is a backedge, then H is isomorphic to H6; and if v1v5 is a backedge, then the numbering

(v1, v2, v4, v5, v3, v6)

shows that again H is isomorphic to H6.
Thus we may assume that v3v5 is not a backedge, and similarly v2v4 is not a backedge. But

there is a backedge with both ends in {v2, v3, v4, v5}, and so v2v5 is a backedge. Also v1vb is a
backedge for some b ∈ {4, 5}, and vav6 is a backedge for some a ∈ 2, 3. There are four cases,
(a, b) = (2, 5), (3, 5), (2, 4), (3, 4).

• If (a, b) = (2, 5), then H is isomorphic to F6, as we see from the numbering

(v1, v3, v4, v5, v6, v2).

• If (a, b) = (3, 5), the numbering
(v5, v1, v2, v3, v4, v6)

is optimal and yet the first and last vertices are not joined by a backedge of this numbering, a
contradiction. Similarly (a, b) 6= (2, 4).

• If (a, b) = (3, 4), then H is isomorphic to P−7 .

This proves 9.2.

Let us observe also that:

9.3 The tournament F6 has the RSEH-property.

Proof. Every component of the backedge graph shown in figure 6 is a left-star or right-star. Let
(v1, . . . , v6) be the corresponding numbering: then the non-singleton component of the backedge
graph of the numbering (v3, v2, v4, v5, v6, v1) is a clique, so the result follows from 5.1. This proves
9.3.
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We deduce our main result 1.7, which we restate in a slightly strengthened form:

9.4 Let H be a tournament with at most six vertices. If H is different from P−7 , H6 and H6 then
H has the strong EH-property; and if in addition H is D5-free then H has the rainbow strong EH-
property.

This is immediate from 9.2, 8.3, 6.1 and 9.3.

10 Forests and the Paley tournament P7

We promised earlier to show that P7 does not have the strong EH-property. For that, we use a
variant of a theorem of Erdős [10], which we shall also need in the next section:

10.1 Let c > 0, g > 0; then there exists an integer d > 0 such that for all sufficiently large integers
n, there is a graph G with n vertices, such that:

• every cycle of G has length more than g;

• there do not exist anticomplete A,B ⊆ V (G) with |A|, |B| ≥ cn; and

• G has maximum degree less than d.

Proof. Choose an integer d > 0 with (dc2/(8e))d ≥ 6 (where e is Euler’s constant). Let n be some
(sufficiently) large number, and let us take a random graph G with vertex set {1, . . . , 2n}, where i, j
are adjacent independently with probability p = 4/(c2n). Let x1 be the number of pairs (A,B) with
A,B ⊆ V (G), such that A,B are anticomplete, and |A|, |B| ≥ cn. Let x2 be the number of cycles
in G of length at most g; and let x3 be the number of vertices with degree at least d. We need to
estimate the expected value E(xi) of xi for i = 1, 2, 3.

First, let A,B ⊆ V (G) be disjoint, with |A|, |B| ≥ cn. The probability that there are no edges
of G between A,B is at most (1− p)(cn)2 ≤ e−pc

2n2
; and the number of choices of (A,B) is at most

32n. So
E(x1) ≤ e−pc

2n2
32n ≤ n/3

if n is sufficiently large (since p = 4/(c2n)).
The expected number of cycles of length i in G is at most pi(2n)i/(2i), so

E(x2) ≤
∑

3≤i≤g
pi(2n)i/(2i) ≤ pg(2n)g/2 ≤ (8/c2)g/2 ≤ n/3.

For a vertex v, the probability that v has degree at least d is at most
(
2n
d

)
pd ≤ (2pn)d/d!; and

since d! ≥ (d/e)d by Stirling’s formula, it follows that the probability that v has degree at least d is
at most (8e/(c2d))d ≤ 1/6. So E(x3) ≤ n/3.

Hence the expected value of x1 + x2 + x3 is at most n; and so there is a choice of G where
x1 + x2 + x3 ≤ n. Hence by deleting n vertices appropriately we obtain a graph with n vertices as
in the theorem. This proves 10.1.
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Now we can prove 1.4, which we restate:

10.2 Let H be a tournament with the strong EH-property. Then there is a numbering of H such
that the backedge graph is a forest. Consequently there is a partition of V (H) into two subsets both
inducing transitive tournaments.

Proof. Choose c > 0 such that every H-free tournament G with |G| > 1 admits a pure pair with
order at least c|G|. Choose d satisfying 10.1 with c replaced by c/2 and g replaced by |H|. Let
n ≥ 2d/c be some large number, large enough that there is a graph J with n vertices, satisfying the
three bullets of 10.1 with c replaced by c/2 and g replaced by |H|. Take a numbering (v1, . . . , vn)
of J , and let G be the tournament such that J is the backedge graph of G under this numbering.
Suppose that there is a pure pair (X,Y ) in G with |X|, |Y | ≥ cn. Choose i minimum such that
|{v1, . . . , vi} ∩ X| ≥ cn/2, and let A = {v1, . . . , vi} ∩ X and B = Y ∩ {vi+1, . . . , vn}. Since J has
maximum degree less than d ≤ cn/2, and vi ∈ X is J-adjacent to every vertex in Y \ B, it follows
that |B| ≥ cn/2; and yet A,B are anticomplete, contrary to the choice of J .

Thus G has no pure pair (X,Y ) in G with |X|, |Y | ≥ cn. From the definition of c, it follows
that G contains H. The backedge graph for H under the numbering induced by (v1, . . . , vn) has no
cycles, since all cycles of J have length more than |H|. Hence it is a forest.

This forest is two-colourable; and each colour class induces a transitive subtournament of H,
since it is a stable set of a backedge graph of H. This proves 1.4.

We deduce:

10.3 P7 does not have the strong EH-property.

Proof. It suffices to show that the vertex set of P7 cannot be partitioned as in 1.4, and to show
that it suffices to show that P7 has no four-vertex transitive subtournament. But for every vertex of
P7, its three out-neighbours form a cyclic triangle. This proves 10.3.

In [8] we mentioned 1.4 and several other conditions that were necessary if a tournament is to have
the strong EH-property. But we subsequently observed that each of the other conditions was implied
by the first; and at the moment, 1.4 is the only necessary condition we know. As we mentioned in
the introduction, it might be that having a backedge graph that is a forest is necessary and sufficient
for a tournament to have the strong EH-property. One piece of evidence in favour of this is the
following, which follows from results of [18]:

10.4 For a tournament H, the following are equivalent:

• some backedge graph of H is a forest;

• for every c > 0 there exists ε > 0 such that for every H-free tournament G with |G| > 1, there
is a pure pair in G of order at least ε|G|1−c.

Proof. It is shown in [18] that:

(1) If J is an ordered forest, then for all c > 0, there exists ε > 0 such that if G is an ordered
graph with |G| > 1 that is both J-free and J-free, then G contains a pure pair of order at least
ε|G|1−c.
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Now let H be a tournament. Suppose first that some backedge graph J of H is a forest. Then
J is also a backedge graph of H (reversing the numbering); and if G is an H-free tournament, and
B is its backedge graph, then B contains neither J nor J , and so (1) implies that B has the desired
pure pair, and hence, by 2.1, so does G.

For the converse, let H be a tournament for which no backedge graph is a forest. Let c < 1/|H|;
we claim there is no ε satisfying the second bullet of the theorem. Let ε > 0. An argument like that
of 10.1 shows that if we take a random graph J on n vertices where n is sufficiently large, in which
every edge is present independently with probability 1

2n
−1+1/|H|, then with high probability, there

will be a set X of at least n/2 vertices in which J [X] has no cycle of length at most |H| and has no
pure pair of order at least ε|X|1−c/2. Number X arbitrarily, and let G be the tournament with J
(and this numbering) as a backedge graph. Then G does not contain H, since if it did, the induced
numbering of H would have backedge graph contained in J with a cycle of length at most |H|. And
yet G has no pure pair of order at least ε|G|1−c, by 2.1, and so ε does not satisfy the second bullet
of the theorem. This proves 10.4.

11 D5 and P−7 do not have the rainbow strong EH-property

We claimed earlier that D5 does not have the RSEH-property. The same holds for P−7 , and even
excluding them both simultaneously is not enough. We will show:

11.1 For all c > 0, and infinitely many integers n, there is a tournament G with n vertices, and a
blockade B in G of length at least 1/c, such that G has no pure pair of order at least cW (B), and
contains no B-rainbow copy of either of D5, P

−
7 .

To show this we need a construction as follows. Let G be an ordered graph. A walk in G is a
sequence

p0, p1, . . . , , pr,

where p0, . . . , pr ∈ V (G) and there is an edge of G with ends pi−1, pi for 1 ≤ i ≤ r. (We do not require
p0, . . . , pr all to be distinct, but consecutive terms are distinct.) Its length is r, and its imbalance is
N1−N2, where N1 is the number of i ∈ {1, . . . , r} such that pi−1 is before pi in the numbering of G,
and N2 is the number of i such that pi−1 is after pi. A walk is balanced if its imbalance is zero, and
unbalanced otherwise; and closed if p0 = pr.

11.2 Let k ≥ 1 be an integer, and let c > 0. Then there is an integer D, such that for all sufficiently
large integers W , there is an ordered graph J with kW vertices, and the following properties:

• every vertex has degree at most D;

• G admits a respectful blockade B = (B1, . . . , Bk) of width W ;

• G has no pure pair of order at least cW ;

• every closed walk in J of length at most six is balanced;

• there is no B-rainbow copy in J of any of the ordered graphs shown in figure 7.
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Figure 7: Ordered graphs for 11.2.

Proof. Let c′ = c/k, and g = 6 · 3k. Choose d to satisfy 10.1 with c replaced by c′. Let D = d3
k
.

Let W be a sufficiently large integer. Then by 10.1 there is a graph Jk with kW vertices v1, . . . , vkW ,
such that

• every cycle of Jk has length more than g;

• there is no anticomplete pair in Jk of order at least c′kW = cW ; and

• Jk has maximum degree less than d.

For 1 ≤ i ≤ k let Bi = {vj : (i − 1)W < j ≤ iW}, and B = (B1, . . . , Bk). If u, v ∈ V (Jk), and
u ∈ Bi, v ∈ Bj , we define the B-length of the pair (u, v) to be |j − i|, and the B-length of an edge uv
is the B-length of (u, v). We say P is a welcoming path if

• P is a path of length three with V (P ) ⊆ V (Jk), with ends s, t where s is before t in the
numbering (v1, . . . , vkW ),

• the B-length of (s, t) is at least one;

• every edge of P has B-length strictly greater than the B-length of (s, t); and

• the walk of length three from s to t in P has imbalance one (note that this is different from
having imbalance −1).

For i = k − 1, . . . , 1 we define Ji as follows. We say a pair (s, t) of vertices of Ji+1 is i-good
if s is before t in the numbering (v1, . . . , vkW ), and the B-length of (s, t) is exactly i, and s, t are
nonadjacent in Ji+1, and there is a welcoming path in Ji+1 (not necessarily induced) with ends s, t.
We construct Ji from Ji+1 by adding an edge between s, t for every i-good pair (s, t).

Let J = J1; we claim that J satisfies the theorem. First, let di denote the maximum degree of
Ji; then since each vertex of Ji is an end vertex of at most di+1(di+1 − 1)2 paths of length three, it
follows that di ≤ di+1(di+1 − 1)2 + di+1 ≤ d3i+1. Since dk ≤ d, it follows that J has maximum degree

at most d3
k

= D.
Second, since Jk has no anticomplete pair of order at least c′kW , the same holds for J . Third,

for every closed walk of Ji, we can replace each edge e of Ji not in Ji+1 by a three-edge walk along
the corresponding welcoming path P of Ji+1; and since this three-edge walk has imbalance the same
as the corresponding one-edge walk along e, it follows that there is a closed walk of Ji+1 with the
same imbalance and with length at most three times as great. Since every cycle of Jk has length
more than g, and so every closed walk in Jk with length at most g is balanced, it follows that every
closed walk of Ji of length at most g3i−k is balanced, and in particular every closed walk of J with
length at most g3−k = 6 is balanced.

Fourth, we must show that J contains no B-rainbow copy of any of the four graphs in figure 7.
For this we use:
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(1) For every welcoming path of J , its ends are adjacent in J .

Let P be a welcoming path of J , with ends s, t where s is earlier than t. Let i be the B-length
of (s, t). Since every edge of P has B-length more than i, it follows that every such edge is an edge of
Ji+1 (because all edges added later have B-length at most i), and so P is a welcoming path of Ji+1.
But then s, t are adjacent in Ji and hence in J . This proves (1).

Suppose that J contains a B-rainbow copy H of one of the four graphs in figure 7. (Thus H is
induced.) Suppose first that |H| = 4, and let its numbering be (u1, u2, u3, u4). Thus its edges are
u1u3, u2u4, u1u4. Let i be the B-length of (u2, u3); thus i ≥ 1 since H is B-rainbow, and for the same
reason, all three edges of H have B-length at least i+ 1. But then H is a welcoming path of J and
its ends are nonadjacent, contrary to (1).

Now suppose that |H| = 5, and so its edges are u2-u5-u3-u1-u4, where (u1, . . . , u5) is its num-
bering. Let the B-length of (u1, u2) be i1, and that of (u4, u5) be i2. From the symmetry we may
assume that i1 ≤ i2. But then all edges of the path u1-u3-u5-u2 have B-length strictly more than i1,
since H is B-rainbow; so it is welcoming, contrary to (1).

Finally, suppose that |H| = 6; and from the symmetry, we may assume that its edges are
u2-u4-u6-u3-u1-u5, where (u1, . . . , u6) is its numbering. Let the B-length of (u2, u3) be i1, and that
of (u5, u6) be i2. If i1 ≤ i2, then the path u2-u4-u6-u3 is welcoming, and if i2 ≤ i1 then the path
u5-u1-u3-u6 is welcoming, and in either case we have a contradiction to (1). This proves 11.2.

We deduce 11.3, which we restate:

11.3 For all c > 0, and infinitely many integers n, there is a tournament G with n vertices, and a
blockade B in G of length at least 1/c, such that G has no pure pair of order at least cW (B), and
there is no B-rainbow copy of either of D5, P

−
7 . Conequently D5, P

−
7 do not have the RSEH-property.

Proof. Let k = d2/ce, and choose D, and W > 2D/c sufficiently large that the construction J of
11.2 exists with c replaced by c/2. Let G be the tournament with backedge graph J . Since every
vertex of J has degree at most D < cW/2, it follows that J has no pure pair of order at least cW/2,
and so G has no pure pair of order at least cW , by 2.1. By examining all the backedge graphs of D5

(there are 24 of them) and all the backedge graphs of P−7 (there are 240 of them) we observe that
each of them contains an unbalanced cycle of length at most five, or one of the ordered graphs of
figure 7. Consequently there is no B-rainbow copy in J of any backedge graph of D5 or of P−7 , and
so G contains no B-rainbow copy of D5 or of P−7 . This proves 11.3.
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[15] V. Rödl, “On universality of graphs with uniformly distributed edges”, Discrete Math., 59
(1986), 125–134.
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[20] S. Zayat and S. Ghazal, “Erdős-Hajnal conjecture for new infinite families of tournaments”, J.
Graph Theory, 102 (2022), 388–417.

31


