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Abstract. We prove that, for r ≥ 2 and n ≥ n(r), every directed
graph with n vertices and more edges than the r-partite Turán
graph T (r, n) contains a subdivision of the transitive tournament
on r + 1 vertices. Furthermore, the extremal graphs are the orien-
tations of T (r, n) induced by orderings of the vertex classes.

1. Introduction

A subdivision of a graph G is any graph obtained by replacing some of
the edges of G by paths. A graph G with at least c(r)|G| edges contains
a subdivision of Kr+1 (see Mader [7], Bollobás and Thomason [3], [4]
and Komlós and Szemerédi [6]). A subdivision of a directed graph D
is any graph obtained by replacing directed edges by directed paths
(in the same direction as the corresponding edges). Jagger [5] proved
a variety of extremal results concerning subdivisions of digraphs, and
asked for the maximal number of edges in a directed graph of order n
that does not contain a subdivision of Tr+1, the transitive tournament
on r+ 1 vertices. (For further discussion on definitions, and for related
problems for directed graphs, see Jagger [5].)

A lower bound is given by t(r, n) = e(T (r, n)), where T (r, n) is the
complete r-partite Turán graph on n vertices, in which each vertex class
has size bn/rc or dn/re. Indeed, any orientation of T (r, n) induced
by an ordering of the vertex classes (thus we order the vertex classes
V1 < · · · < Vr and an edge is oriented from v ∈ Vi to w ∈ Vj if i < j)
contains no directed path with more than r vertices and therefore no
subdivision of Tr+1. Jagger proved an upper bound of form

(1− 1

r
+ o(1))

(
n

2

)
= t(r, n) + o(n2)

on the size of a directed graph of order n that contains no subdivision
of Tr+1, and asked whether in fact t(r, n) is the correct bound for suffi-
ciently large n. To this end he proved that, if there is n ≥ 3r such that
any extremal graph of order n is obtained by an orientation of T (r, n)
(induced by an ordering of the vertex classes) then any extremal graph
of order n′ ≥ n is obtained by orienting T (r, n′). (Jagger claimed that

1



2 A.D. SCOTT

there is then a unique extremal graph. However, if n = pr + q, where
0 ≤ q ≤ r, then there are

(
r
q

)
distinct oriented graphs that can be

induced by ordering the vertex classes, since the vertex classes may be
of two different sizes.)

The aim of this paper is to answer Jagger’s question in the affirma-
tive.

Theorem 1. For every r ≥ 2 there is N(r) such that every digraph with
n ≥ N(r) vertices and more than t(r, n) edges contains a subdivision
of Tr+1. The extremal graphs are the orientations of T (r, n) induced by
ordering the vertex classes.

2. Proof of Theorem 1

A subdivision of Tr+1 in a directed graph D consists of r+ 1 vertices
v1, . . . , vr+1 and internally disjoint directed paths Pij from vi to vj for
1 ≤ i < j ≤ r + 1. We shall refer to this as a subdivision of Tr+1 with
vertices v1, . . . , vr+1. Thus in order to demonstrate the presence of a
subdivision of Tr+1 with vertices v1, . . . , vr+1, we need to specify paths
Pij from vi to vj for each 1 ≤ i < j ≤ r + 1 for which the edge vivj is
not present.

We begin with two straightforward lemmas, which are implicitly
stated in [5]. We write Kr(s) for the complete r-partite graph with
s vertices in each vertex class.

Lemma 1. For r, s ≥ 1 there is an integer q = q(r, s) such that every
orientation of Kr(q) contains a copy of Kr(s) with the edges between
any two classes all oriented in the same direction.

Proof. LetG be an r-partite oriented complete graph with vertex classes
V1, . . . , Vr. For 1 ≤ i < j ≤ r, colour an edge between Vi and Vj red
if it is oriented from Vi to Vj and blue otherwise. The result follows
easily by repeatedly choosing monochromatic bipartite graphs between
vertex classes. �

Lemma 2. For every integer r ≥ 2 there is an integer s such that
every orientation of Kr+1(s) contains a subdivision of Tr+1.

Proof. Let t =
(
r+1
2

)
. By Lemma 1, if s is large enough then every

orientation of Kr+1(s) contains an oriented Kr+1(t) in which the edges
between any two classes are all oriented in the same direction. If this
orientation is transitive, then picking one vertex from each class gives a
copy of Tr+1. Otherwise, there are distinct vertex classes Vi, Vj and Vk
such that edges are oriented from Vi to Vj, from Vj to Vk, and from Vk
to Vi. Pick vertices v1, . . . , vr+1 in Vi, w1, . . . , wt in Vj, and x1, . . . , xt in
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Vk. Then, for each i and j with 1 ≤ i < j ≤ r + 1, we can join vi to vj
by a path of form viwlxlvj, where each wl and xl is used exactly once.
Thus we obtain a subdivision of Tr+1 with vertices v1, . . . , vr+1. �

Now for the proof of the main result.

Proof. Fix r; let ε > 0 be small and n > n(ε) (we shall not attempt
to determine appropriate values of ε and n: we need only that ε is
smaller than a constant dependent on r, while n(ε) depends on r and
ε). Suppose D is a digraph of order n with no subdivision of Tr+1

and the maximal number of edges. We shall prove that D is the Turán
graph, with a transitive orientation induced by an ordering of the vertex
classes.

As noted in [5], there is a constant K = K(r) such that D has at
most Kn pairs {x, y} of vertices for which both xy and yx are edges.
Otherwise, letG0 be the graph with vertex set V (D), where two vertices
x and y are adjacent in G0 if and only if there are edges both from x to
y and from y to x in D. Then G0 has at least Kn edges and so contains
a subdivision of Kr+1, which implies that D contains a subdivision of
Tr+1.

Let G be the underlying graph of D: we define V (G) = V (D), and
vertices x and y are adjacent in G if either xy or yx is present in D.
Then e(G) ≥ tr(n) −Kn, and G does not contain a copy of Kr+1(s),
where s is given by Lemma 2. It follows from a result of Bollobás,
Erdős, Simonovits and Szemerédi ([2], see also [1]) that, provided n(ε)
is sufficiently large, there is a vertex partition V (G) = V0 ∪ · · · ∪ Vr,
with |V0| < εn and (1 − ε)n

r
< |Vi| < (1 + ε)n

r
for i ≥ 1, such that

e(G[Vi]) < εn2, e(Vi, Vj) > (1− ε)n2

r2
and every vertex in Vi has at least

(1− ε)n
r

neighbours in Vj for i and j distinct and nonzero.
Pick a set R1 of q vertices in V1, where q = q(r, r2) is the minimal

integer satisfying Lemma 1. These have at least (1 − 1
r
− (2q − 1)ε)n

common neighbours in V2. Let R2 ⊂ V2 be a set of q common neigh-
bours of R1. Continuing in the same way, providing ε is sufficiently
small, for 1 ≤ i ≤ r we can pick sets Ri ⊆ Vi for 1 ≤ i ≤ r such that
|Ri| = q for each i and R1, . . . , Rr span a complete r-partite graph.
Orient each of the edges to agree with an edge of D (there may be two
choices). It follows from Lemma 1 that, for 1 ≤ i ≤ r, we can find
Si ⊂ Ri with |Si| = r2, such that, for 1 ≤ i < j ≤ r, the edges between
Si and Sj are all oriented in the same direction. Let S =

⋃r
i=1 Si. Now

we claim that, permuting subscripts if necessary, we may assume that,
for 1 ≤ i < j ≤ r, all edges between Si and Sj are oriented from Si
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to Sj. Otherwise we obtain a subdivision of Tr+1 as in the proof of
Lemma 2, which gives a subdivision of Tr+1 in D.

Now consider V0, . . . , Vr, S1, . . . , Sr as sets of vertices in D. For 1 ≤
i < j ≤ r, there is a directed edge from every vertex of Si to every
vertex of Sj. Let S =

⋃r
i=1 Si. Suppose that there is a directed path

P from v to w where v ∈ Si, and w ∈ Sj for some 1 ≤ j ≤ i ≤ r + 1,
and all the internal vertices of P lie outside S. For 1 ≤ p ≤ r, pick
sp 6= v, w in Sp. Then if j < i, we obtain a subdivision of Tr+1 with
vertices s1, . . . , sj, w, sj+1, . . . , sr, where all edges are present, except
that sj and w are joined by the path sjvPw. If j = i then we obtain a
subdivision of Tr+1 with vertices s1, . . . , sj−1, v, w, sj+1, . . . , sr, where v
and w are joined by P and all other edges are present.

Now suppose that D contains a directed path P from v ∈ Si to
w ∈ Sj, where 1 ≤ j ≤ i ≤ r + 1. We may assume that P , v, w have
been chosen such that P is of minimal length. If all internal vertices of
P lie outside S then we can find a subdivision of Tr+1. Otherwise, we
can write the path as vP1xP2w, where x is the first vertex on P after v
that belongs to S. But x cannot belong to S1∪· · ·∪Sj, since vP1x then
contradicts the minimality of P ; while x cannot belong to Sj+1∪· · ·∪Sr,
since xP2w then contradicts the minimality of P . Therefore D contains
no paths from v ∈ Si to w ∈ Sj for 1 ≤ j ≤ i ≤ r + 1.

For i = 1, . . . , r, we let Ci be the set of common neighbours of
⋃

j 6=i Si

in Vi \ Si:

Ci = (Vi \ Si) ∩
⋂
j 6=i

⋂
v∈Sj

(Γ+(v) ∪ Γ−(v)).

Clearly |Ci| ≥ (1 − 2r3ε)n
r
. Pick v ∈ Ci. Then, for j 6= i, all edges

between v and Sj must be oriented in the same direction, or we obtain
a path between two vertices of Sj. Furthermore, there must be some k
such that edges are oriented from Sj to v for j ≤ k and from v to Sj

for j > k (j 6= i): otherwise, we obtain a directed path from Sp to Sq,
where p > q.

We claim that in fact edges are oriented from Sj to v for j < i and
from v to Sj for j > i. If there is j 6= i, i − 1 such that edges are
oriented from Sj to v and from v to Sj+1 then pick vertices sl ∈ Sl for
1 ≤ l ≤ r, and distinct vertices t1, . . . , tj−1 ∈ Sj and tj+2, . . . , tr ∈ Sj+1.
We obtain a subdivision of Tr+1 with vertices s1, . . . , sj, v, sj+1, . . . , sr,
where the subdivided edges between sl and v are given by sltlv for
l < j and vtlsl for l > j + 1; all other edges are present. It follows
that all edges between v and

⋃
j<i Sj are oriented in the same direction,

and similarly all edges between v and
⋃

j>i Sj are oriented in the same
direction.
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Now suppose that either edges are oriented from v to S1, or edges are
oriented from Sr to v. In the first case, pick sl ∈ Sl for 1 ≤ l ≤ r and
distinct vertices t2, . . . , tr ∈ S1. We obtain a subdivision of Tr+1 with
vertices v, s1, . . . , sr, where the subdivided edges are vt2s2, . . . , vtrsr;
all other edges are present. In the second case, pick sl ∈ Sl for
1 ≤ l ≤ r and distinct vertices t1, . . . , tr−1 ∈ Sr. We obtain a sub-
division of Tr+1 with vertices s1, . . . , sr, v, where the subdivided edges
are s1t1v, . . . , sr−1tr−1v; all other edges are present. It follows that, for
v ∈ Ci, all edges are oriented from Sj to v for j < i and from v to Sj

for j > i.
Now suppose that there is a directed path P , with more than one

vertex, from Cj ∪ Sj to Ci ∪ Si, where i ≤ j. As before, we may pick
i, j, P such that P is of minimal length. We may then assume that
P runs from v ∈ Cj ∪ Sj to w ∈ Ci ∪ Si, where i ≤ j, and that all
interior vertices of P lie outside

⋃r
k=1(Ck ∪ Sk). If i < j then pick

vertices si 6= v, w in Si for i = 1, . . . , r. We obtain a subdivision
of Tr with vertices s1, . . . , si, w, si+1, . . . , sr, where we have the path
sivPw from si to w, and all other edges are present. If i = j then,
for each l 6= i, pick sl ∈ Sl. We obtain a copy of Tr+1 with vertices
s1, . . . , si−1, v, w, si+1, . . . , sr, where v and w are joined by P and all
other edges are present. It follows in particular that Ci ∪ Si is an
independent set for every i and that edges are oriented from Ci ∪Si to
Cj ∪ Sj for 1 ≤ i < j ≤ r.

Now |
⋃r

i=1Ci∪Si| ≥ (1−2r3ε)n, so there are at most 2r3εn vertices
in X = V (D) \

⋃r
i=1(Ci ∪ Si). Suppose first that a vertex x ∈ X is

adjacent to at least 2εn vertices in Ci ∪ Si for every i. If there is i ≤ j
such that there is an edge oriented from x to Ci∪Si and an edge oriented
from Cj∪Sj to x then we obtain a directed path from Cj∪Sj to Ci∪Si,
which we have already ruled out. So there is i with 0 ≤ i ≤ r such that
edges are oriented from Cj ∪Sj to x for j ≤ i and from x to Cj ∪Sj for
j > i. Since every vertex in Ci∪Si is adjacent to all but at most 2εn/r
vertices in Cj ∪ Sj for j 6= i, it is straightforward to find a copy of Tr
that has one vertex si in Γ(x) ∩ (Ci ∪ Si) for each i: pick one vertex
at a time, and pick each new vertex from the common neighbours of
the vertices already chosen. Then the vertices s1, . . . , si, x, si+1, . . . , sr
span a copy of Tr+1. It follows that every vertex of X has fewer than
2εn neighbours in some Ci ∪ Si.

For 1 ≤ i ≤ r, let Xi be the set of vertices in X with fewer than 2εn
neighbours in Ci ∪ Si and at least (1 − 2r4ε)n

r
neighbours in Cj ∪ Sj

for every j 6= i. Let X0 = X \
⋃r

i=1Xi. Note that X0 ⊆ V0 and
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Ci ∪ Si ∪ Xi ⊇ Vi for 1 ≤ i ≤ r, so |X0| ≤ εn and |Ci ∪ Si ∪ Xi| ≥
(1− ε)n/r.

We claim that edges are oriented from Cj ∪ Sj to Xi, for j < i, and
from Xi to Cj ∪ Sj for j > i. Otherwise, pick x ∈ Xi for which this
is not true. Since there is no directed path from Cj ∪ Sj to Ck ∪ Sk

for k ≤ j, there must be j with 0 ≤ j ≤ r and j 6= i, i − 1 such that
edges are oriented from Ck ∪ Sk to x for k ≤ j and from x to Ck ∪ Sk

for k > j. If j < i− 1 then we can find a copy of Tr−1 that contains a
vertex sl in (Cl ∪ Sl) ∩ Γ(x) for each l 6= i. Pick a vertex w 6= sj+1 in
Cj+1 ∪ Sj+1 that has x as a neighbour and a vertex si ∈ Si. Then we
have a copy of Tr+1 with vertices s1, . . . , sj−1, x, sj, . . . , sr, where there
is a path xwsi from x to si and all other edges are present. Similarly,
if j ≥ i + 1 then pick a vertex w in Cj ∪ Sj that has x as a neighbour
and a vertex vi ∈ Si: we can find a copy of Tr−1 that, for each l 6= i,
contains a vertex vl 6= w in Cl∪Sl that is adjacent to x. Once again, we
have a subdivision of Tr+1 with vertices v1, . . . , vj−1, x, vj, . . . , vr, with
a path viwx from vi to x and all other edges present. Thus j = i−1 or
j = i, and in particular edges are oriented from Cl ∪ Sl to Xi for l < i
and from Xi to Cl ∪ Sl for l > i.

If Xi ∪ Ci ∪ Si contains an edge vw then, since v and w are both
adjacent to all but at most 3r4εn/r vertices in Cj ∪ Sj for each j 6= i,
we can find a copy of Tr−1 with vertices sj ∈ Cj ∪ Sj for each j 6= i,
among the common neighbours of v and w: adding v and w gives a
copy of Tr+1. Thus we may assume that Xi∪Ci∪Si contains no edges.
If there is an edge xjxi where i < j and xi ∈ Xi, xj ∈ Xj, then pick
a vertex vi ∈ Ci ∪ Si that has xj as a neighbour. Among the common
neighbours of xi and vi we can find a copy of Tr−1 that does not contain
xj and has a vertex in Cl ∪ Sl for each l 6= i. Adding vi and wi gives a
subdivision of Tr+1 with a path vixjxi from vi to xi and all other edges
present.

We have shown thatXi∪Ci∪Si contains no edges and, for i < j, edges
are oriented from Xi∪Ci∪Si to Xj ∪Cj ∪Sj. Now each vertex v in X0

has at most 2εn neighbours in one class Ci∪Si and at most (1−2r4ε)n/r
neighbours in some other class. Furthermore, v has at most one double
edge to any class, or else we obtain a directed path between two vertices
in Ci∪Si. Thus v has degree less than (1− 1

r
−r3ε)n. If X0 is nonempty

then, deleting all edges incident with vertices in X0 and adding edges
from every vertex in X0 to every vertex in

⋃r
i=2(Xi ∪ Ci ∪ Si) gives a

graph with more edges than D and no subdivision of Tr+1. Thus we
must have X0 = ∅. Finally, since we can now see that our graph is a
subgraph of a complete r-partite graph, it follows that D is a Turán
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graph with vertex classes W1, . . . ,Wr, say, and edges oriented from Wi

to Wj for 1 ≤ i < j ≤ r.
�
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