SUBDIVISIONS OF TRANSITIVE TOURNAMENTS

A.D. SCOTT

Abstract

We prove that, for $r \geq 2$ and $n \geq n(r)$, every directed graph with n vertices and more edges than the r-partite Turán graph $T(r, n)$ contains a subdivision of the transitive tournament on $r+1$ vertices. Furthermore, the extremal graphs are the orientations of $T(r, n)$ induced by orderings of the vertex classes.

1. Introduction

A subdivision of a graph G is any graph obtained by replacing some of the edges of G by paths. A graph G with at least $c(r)|G|$ edges contains a subdivision of K_{r+1} (see Mader [7], Bollobás and Thomason [3], [4] and Komlós and Szemerédi [6]). A subdivision of a directed graph D is any graph obtained by replacing directed edges by directed paths (in the same direction as the corresponding edges). Jagger [5] proved a variety of extremal results concerning subdivisions of digraphs, and asked for the maximal number of edges in a directed graph of order n that does not contain a subdivision of T_{r+1}, the transitive tournament on $r+1$ vertices. (For further discussion on definitions, and for related problems for directed graphs, see Jagger [5].)

A lower bound is given by $t(r, n)=e(T(r, n))$, where $T(r, n)$ is the complete r-partite Turán graph on n vertices, in which each vertex class has size $\lfloor n / r\rfloor$ or $\lceil n / r\rceil$. Indeed, any orientation of $T(r, n)$ induced by an ordering of the vertex classes (thus we order the vertex classes $V_{1}<\cdots<V_{r}$ and an edge is oriented from $v \in V_{i}$ to $w \in V_{j}$ if $i<j$) contains no directed path with more than r vertices and therefore no subdivision of T_{r+1}. Jagger proved an upper bound of form

$$
\left(1-\frac{1}{r}+o(1)\right)\binom{n}{2}=t(r, n)+o\left(n^{2}\right)
$$

on the size of a directed graph of order n that contains no subdivision of T_{r+1}, and asked whether in fact $t(r, n)$ is the correct bound for sufficiently large n. To this end he proved that, if there is $n \geq 3 r$ such that any extremal graph of order n is obtained by an orientation of $T(r, n)$ (induced by an ordering of the vertex classes) then any extremal graph of order $n^{\prime} \geq n$ is obtained by orienting $T\left(r, n^{\prime}\right)$. (Jagger claimed that
there is then a unique extremal graph. However, if $n=p r+q$, where $0 \leq q \leq r$, then there are $\binom{r}{q}$ distinct oriented graphs that can be induced by ordering the vertex classes, since the vertex classes may be of two different sizes.)

The aim of this paper is to answer Jagger's question in the affirmative.

Theorem 1. For every $r \geq 2$ there is $N(r)$ such that every digraph with $n \geq N(r)$ vertices and more than $t(r, n)$ edges contains a subdivision of T_{r+1}. The extremal graphs are the orientations of $T(r, n)$ induced by ordering the vertex classes.

2. Proof of Theorem 1

A subdivision of T_{r+1} in a directed graph D consists of $r+1$ vertices v_{1}, \ldots, v_{r+1} and internally disjoint directed paths $P_{i j}$ from v_{i} to v_{j} for $1 \leq i<j \leq r+1$. We shall refer to this as a subdivision of T_{r+1} with vertices v_{1}, \ldots, v_{r+1}. Thus in order to demonstrate the presence of a subdivision of T_{r+1} with vertices v_{1}, \ldots, v_{r+1}, we need to specify paths $P_{i j}$ from v_{i} to v_{j} for each $1 \leq i<j \leq r+1$ for which the edge $v_{i} v_{j}$ is not present.

We begin with two straightforward lemmas, which are implicitly stated in [5]. We write $K_{r}(s)$ for the complete r-partite graph with s vertices in each vertex class.

Lemma 1. For $r, s \geq 1$ there is an integer $q=q(r, s)$ such that every orientation of $K_{r}(q)$ contains a copy of $K_{r}(s)$ with the edges between any two classes all oriented in the same direction.

Proof. Let G be an r-partite oriented complete graph with vertex classes V_{1}, \ldots, V_{r}. For $1 \leq i<j \leq r$, colour an edge between V_{i} and V_{j} red if it is oriented from V_{i} to V_{j} and blue otherwise. The result follows easily by repeatedly choosing monochromatic bipartite graphs between vertex classes.

Lemma 2. For every integer $r \geq 2$ there is an integer such that every orientation of $K_{r+1}(s)$ contains a subdivision of T_{r+1}.
Proof. Let $t=\binom{r+1}{2}$. By Lemma 1, if s is large enough then every orientation of $K_{r+1}(s)$ contains an oriented $K_{r+1}(t)$ in which the edges between any two classes are all oriented in the same direction. If this orientation is transitive, then picking one vertex from each class gives a copy of T_{r+1}. Otherwise, there are distinct vertex classes V_{i}, V_{j} and V_{k} such that edges are oriented from V_{i} to V_{j}, from V_{j} to V_{k}, and from V_{k} to V_{i}. Pick vertices v_{1}, \ldots, v_{r+1} in $V_{i}, w_{1}, \ldots, w_{t}$ in V_{j}, and x_{1}, \ldots, x_{t} in
V_{k}. Then, for each i and j with $1 \leq i<j \leq r+1$, we can join v_{i} to v_{j} by a path of form $v_{i} w_{l} x_{l} v_{j}$, where each w_{l} and x_{l} is used exactly once. Thus we obtain a subdivision of T_{r+1} with vertices v_{1}, \ldots, v_{r+1}.

Now for the proof of the main result.

Proof. Fix r; let $\epsilon>0$ be small and $n>n(\epsilon)$ (we shall not attempt to determine appropriate values of ϵ and n : we need only that ϵ is smaller than a constant dependent on r, while $n(\epsilon)$ depends on r and ϵ). Suppose D is a digraph of order n with no subdivision of T_{r+1} and the maximal number of edges. We shall prove that D is the Turán graph, with a transitive orientation induced by an ordering of the vertex classes.

As noted in [5], there is a constant $K=K(r)$ such that D has at most $K n$ pairs $\{x, y\}$ of vertices for which both $x y$ and $y x$ are edges. Otherwise, let G_{0} be the graph with vertex set $V(D)$, where two vertices x and y are adjacent in G_{0} if and only if there are edges both from x to y and from y to x in D. Then G_{0} has at least $K n$ edges and so contains a subdivision of K_{r+1}, which implies that D contains a subdivision of T_{r+1}.

Let G be the underlying graph of D : we define $V(G)=V(D)$, and vertices x and y are adjacent in G if either $x y$ or $y x$ is present in D. Then $e(G) \geq t_{r}(n)-K n$, and G does not contain a copy of $K_{r+1}(s)$, where s is given by Lemma 2. It follows from a result of Bollobás, Erdős, Simonovits and Szemerédi ([2], see also [1]) that, provided $n(\epsilon)$ is sufficiently large, there is a vertex partition $V(G)=V_{0} \cup \cdots \cup V_{r}$, with $\left|V_{0}\right|<\epsilon n$ and $(1-\epsilon) \frac{n}{r}<\left|V_{i}\right|<(1+\epsilon) \frac{n}{r}$ for $i \geq 1$, such that $e\left(G\left[V_{i}\right]\right)<\epsilon n^{2}, e\left(V_{i}, V_{j}\right)>(1-\epsilon) \frac{n^{2}}{r^{2}}$ and every vertex in V_{i} has at least $(1-\epsilon) \frac{n}{r}$ neighbours in V_{j} for i and j distinct and nonzero.

Pick a set R_{1} of q vertices in V_{1}, where $q=q\left(r, r^{2}\right)$ is the minimal integer satisfying Lemma 1 . These have at least $\left(1-\frac{1}{r}-(2 q-1) \epsilon\right) n$ common neighbours in V_{2}. Let $R_{2} \subset V_{2}$ be a set of q common neighbours of R_{1}. Continuing in the same way, providing ϵ is sufficiently small, for $1 \leq i \leq r$ we can pick sets $R_{i} \subseteq V_{i}$ for $1 \leq i \leq r$ such that $\left|R_{i}\right|=q$ for each i and R_{1}, \ldots, R_{r} span a complete r-partite graph. Orient each of the edges to agree with an edge of D (there may be two choices). It follows from Lemma 1 that, for $1 \leq i \leq r$, we can find $S_{i} \subset R_{i}$ with $\left|S_{i}\right|=r^{2}$, such that, for $1 \leq i<j \leq r$, the edges between S_{i} and S_{j} are all oriented in the same direction. Let $S=\bigcup_{i=1}^{r} S_{i}$. Now we claim that, permuting subscripts if necessary, we may assume that, for $1 \leq i<j \leq r$, all edges between S_{i} and S_{j} are oriented from S_{i}
to S_{j}. Otherwise we obtain a subdivision of T_{r+1} as in the proof of Lemma 2, which gives a subdivision of T_{r+1} in D.

Now consider $V_{0}, \ldots, V_{r}, S_{1}, \ldots, S_{r}$ as sets of vertices in D. For $1 \leq$ $i<j \leq r$, there is a directed edge from every vertex of S_{i} to every vertex of S_{j}. Let $S=\bigcup_{i=1}^{r} S_{i}$. Suppose that there is a directed path P from v to w where $v \in S_{i}$, and $w \in S_{j}$ for some $1 \leq j \leq i \leq r+1$, and all the internal vertices of P lie outside S. For $1 \leq p \leq r$, pick $s_{p} \neq v, w$ in S_{p}. Then if $j<i$, we obtain a subdivision of T_{r+1} with vertices $s_{1}, \ldots, s_{j}, w, s_{j+1}, \ldots, s_{r}$, where all edges are present, except that s_{j} and w are joined by the path $s_{j} v P w$. If $j=i$ then we obtain a subdivision of T_{r+1} with vertices $s_{1}, \ldots, s_{j-1}, v, w, s_{j+1}, \ldots, s_{r}$, where v and w are joined by P and all other edges are present.
Now suppose that D contains a directed path P from $v \in S_{i}$ to $w \in S_{j}$, where $1 \leq j \leq i \leq r+1$. We may assume that P, v, w have been chosen such that P is of minimal length. If all internal vertices of P lie outside S then we can find a subdivision of T_{r+1}. Otherwise, we can write the path as $v P_{1} x P_{2} w$, where x is the first vertex on P after v that belongs to S. But x cannot belong to $S_{1} \cup \cdots \cup S_{j}$, since $v P_{1} x$ then contradicts the minimality of P; while x cannot belong to $S_{j+1} \cup \cdots \cup S_{r}$, since $x P_{2} w$ then contradicts the minimality of P. Therefore D contains no paths from $v \in S_{i}$ to $w \in S_{j}$ for $1 \leq j \leq i \leq r+1$.

For $i=1, \ldots, r$, we let C_{i} be the set of common neighbours of $\bigcup_{j \neq i} S_{i}$ in $V_{i} \backslash S_{i}$:

$$
C_{i}=\left(V_{i} \backslash S_{i}\right) \cap \bigcap_{j \neq i} \bigcap_{v \in S_{j}}\left(\Gamma^{+}(v) \cup \Gamma^{-}(v)\right) .
$$

Clearly $\left|C_{i}\right| \geq\left(1-2 r^{3} \epsilon\right) \frac{n}{r}$. Pick $v \in C_{i}$. Then, for $j \neq i$, all edges between v and S_{j} must be oriented in the same direction, or we obtain a path between two vertices of S_{j}. Furthermore, there must be some k such that edges are oriented from S_{j} to v for $j \leq k$ and from v to S_{j} for $j>k(j \neq i)$: otherwise, we obtain a directed path from S_{p} to S_{q}, where $p>q$.

We claim that in fact edges are oriented from S_{j} to v for $j<i$ and from v to S_{j} for $j>i$. If there is $j \neq i, i-1$ such that edges are oriented from S_{j} to v and from v to S_{j+1} then pick vertices $s_{l} \in S_{l}$ for $1 \leq l \leq r$, and distinct vertices $t_{1}, \ldots, t_{j-1} \in S_{j}$ and $t_{j+2}, \ldots, t_{r} \in S_{j+1}$. We obtain a subdivision of T_{r+1} with vertices $s_{1}, \ldots, s_{j}, v, s_{j+1}, \ldots, s_{r}$, where the subdivided edges between s_{l} and v are given by $s_{l} t_{l} v$ for $l<j$ and $v t_{l} s_{l}$ for $l>j+1$; all other edges are present. It follows that all edges between v and $\bigcup_{j<i} S_{j}$ are oriented in the same direction, and similarly all edges between v and $\bigcup_{j>i} S_{j}$ are oriented in the same direction.

Now suppose that either edges are oriented from v to S_{1}, or edges are oriented from S_{r} to v. In the first case, pick $s_{l} \in S_{l}$ for $1 \leq l \leq r$ and distinct vertices $t_{2}, \ldots, t_{r} \in S_{1}$. We obtain a subdivision of T_{r+1} with vertices v, s_{1}, \ldots, s_{r}, where the subdivided edges are $v t_{2} s_{2}, \ldots, v t_{r} s_{r}$; all other edges are present. In the second case, pick $s_{l} \in S_{l}$ for $1 \leq l \leq r$ and distinct vertices $t_{1}, \ldots, t_{r-1} \in S_{r}$. We obtain a subdivision of T_{r+1} with vertices s_{1}, \ldots, s_{r}, v, where the subdivided edges are $s_{1} t_{1} v, \ldots, s_{r-1} t_{r-1} v$; all other edges are present. It follows that, for $v \in C_{i}$, all edges are oriented from S_{j} to v for $j<i$ and from v to S_{j} for $j>i$.

Now suppose that there is a directed path P, with more than one vertex, from $C_{j} \cup S_{j}$ to $C_{i} \cup S_{i}$, where $i \leq j$. As before, we may pick i, j, P such that P is of minimal length. We may then assume that P runs from $v \in C_{j} \cup S_{j}$ to $w \in C_{i} \cup S_{i}$, where $i \leq j$, and that all interior vertices of P lie outside $\bigcup_{k=1}^{r}\left(C_{k} \cup S_{k}\right)$. If $i<j$ then pick vertices $s_{i} \neq v, w$ in S_{i} for $i=1, \ldots, r$. We obtain a subdivision of T_{r} with vertices $s_{1}, \ldots, s_{i}, w, s_{i+1}, \ldots, s_{r}$, where we have the path $s_{i} v P w$ from s_{i} to w, and all other edges are present. If $i=j$ then, for each $l \neq i$, pick $s_{l} \in S_{l}$. We obtain a copy of T_{r+1} with vertices $s_{1}, \ldots, s_{i-1}, v, w, s_{i+1}, \ldots, s_{r}$, where v and w are joined by P and all other edges are present. It follows in particular that $C_{i} \cup S_{i}$ is an independent set for every i and that edges are oriented from $C_{i} \cup S_{i}$ to $C_{j} \cup S_{j}$ for $1 \leq i<j \leq r$.

Now $\left|\bigcup_{i=1}^{r} C_{i} \cup S_{i}\right| \geq\left(1-2 r^{3} \epsilon\right) n$, so there are at most $2 r^{3} \epsilon n$ vertices in $X=V(D) \backslash \bigcup_{i=1}^{r}\left(C_{i} \cup S_{i}\right)$. Suppose first that a vertex $x \in X$ is adjacent to at least $2 \epsilon n$ vertices in $C_{i} \cup S_{i}$ for every i. If there is $i \leq j$ such that there is an edge oriented from x to $C_{i} \cup S_{i}$ and an edge oriented from $C_{j} \cup S_{j}$ to x then we obtain a directed path from $C_{j} \cup S_{j}$ to $C_{i} \cup S_{i}$, which we have already ruled out. So there is i with $0 \leq i \leq r$ such that edges are oriented from $C_{j} \cup S_{j}$ to x for $j \leq i$ and from x to $C_{j} \cup S_{j}$ for $j>i$. Since every vertex in $C_{i} \cup S_{i}$ is adjacent to all but at most $2 \epsilon n / r$ vertices in $C_{j} \cup S_{j}$ for $j \neq i$, it is straightforward to find a copy of T_{r} that has one vertex s_{i} in $\Gamma(x) \cap\left(C_{i} \cup S_{i}\right)$ for each i : pick one vertex at a time, and pick each new vertex from the common neighbours of the vertices already chosen. Then the vertices $s_{1}, \ldots, s_{i}, x, s_{i+1}, \ldots, s_{r}$ span a copy of T_{r+1}. It follows that every vertex of X has fewer than $2 \epsilon n$ neighbours in some $C_{i} \cup S_{i}$.

For $1 \leq i \leq r$, let X_{i} be the set of vertices in X with fewer than $2 \epsilon n$ neighbours in $C_{i} \cup S_{i}$ and at least $\left(1-2 r^{4} \epsilon\right) \frac{n}{r}$ neighbours in $C_{j} \cup S_{j}$ for every $j \neq i$. Let $X_{0}=X \backslash \bigcup_{i=1}^{r} X_{i}$. Note that $X_{0} \subseteq V_{0}$ and
$C_{i} \cup S_{i} \cup X_{i} \supseteq V_{i}$ for $1 \leq i \leq r$, so $\left|X_{0}\right| \leq \epsilon n$ and $\left|C_{i} \cup S_{i} \cup X_{i}\right| \geq$ $(1-\epsilon) n / r$.

We claim that edges are oriented from $C_{j} \cup S_{j}$ to X_{i}, for $j<i$, and from X_{i} to $C_{j} \cup S_{j}$ for $j>i$. Otherwise, pick $x \in X_{i}$ for which this is not true. Since there is no directed path from $C_{j} \cup S_{j}$ to $C_{k} \cup S_{k}$ for $k \leq j$, there must be j with $0 \leq j \leq r$ and $j \neq i, i-1$ such that edges are oriented from $C_{k} \cup S_{k}$ to x for $k \leq j$ and from x to $C_{k} \cup S_{k}$ for $k>j$. If $j<i-1$ then we can find a copy of T_{r-1} that contains a vertex s_{l} in $\left(C_{l} \cup S_{l}\right) \cap \Gamma(x)$ for each $l \neq i$. Pick a vertex $w \neq s_{j+1}$ in $C_{j+1} \cup S_{j+1}$ that has x as a neighbour and a vertex $s_{i} \in S_{i}$. Then we have a copy of T_{r+1} with vertices $s_{1}, \ldots, s_{j-1}, x, s_{j}, \ldots, s_{r}$, where there is a path $x w s_{i}$ from x to s_{i} and all other edges are present. Similarly, if $j \geq i+1$ then pick a vertex w in $C_{j} \cup S_{j}$ that has x as a neighbour and a vertex $v_{i} \in S_{i}$: we can find a copy of T_{r-1} that, for each $l \neq i$, contains a vertex $v_{l} \neq w$ in $C_{l} \cup S_{l}$ that is adjacent to x. Once again, we have a subdivision of T_{r+1} with vertices $v_{1}, \ldots, v_{j-1}, x, v_{j}, \ldots, v_{r}$, with a path $v_{i} w x$ from v_{i} to x and all other edges present. Thus $j=i-1$ or $j=i$, and in particular edges are oriented from $C_{l} \cup S_{l}$ to X_{i} for $l<i$ and from X_{i} to $C_{l} \cup S_{l}$ for $l>i$.

If $X_{i} \cup C_{i} \cup S_{i}$ contains an edge $v w$ then, since v and w are both adjacent to all but at most $3 r^{4} \epsilon n / r$ vertices in $C_{j} \cup S_{j}$ for each $j \neq i$, we can find a copy of T_{r-1} with vertices $s_{j} \in C_{j} \cup S_{j}$ for each $j \neq i$, among the common neighbours of v and w : adding v and w gives a copy of T_{r+1}. Thus we may assume that $X_{i} \cup C_{i} \cup S_{i}$ contains no edges. If there is an edge $x_{j} x_{i}$ where $i<j$ and $x_{i} \in X_{i}, x_{j} \in X_{j}$, then pick a vertex $v_{i} \in C_{i} \cup S_{i}$ that has x_{j} as a neighbour. Among the common neighbours of x_{i} and v_{i} we can find a copy of T_{r-1} that does not contain x_{j} and has a vertex in $C_{l} \cup S_{l}$ for each $l \neq i$. Adding v_{i} and w_{i} gives a subdivision of T_{r+1} with a path $v_{i} x_{j} x_{i}$ from v_{i} to x_{i} and all other edges present.

We have shown that $X_{i} \cup C_{i} \cup S_{i}$ contains no edges and, for $i<j$, edges are oriented from $X_{i} \cup C_{i} \cup S_{i}$ to $X_{j} \cup C_{j} \cup S_{j}$. Now each vertex v in X_{0} has at most $2 \epsilon n$ neighbours in one class $C_{i} \cup S_{i}$ and at most $\left(1-2 r^{4} \epsilon\right) n / r$ neighbours in some other class. Furthermore, v has at most one double edge to any class, or else we obtain a directed path between two vertices in $C_{i} \cup S_{i}$. Thus v has degree less than $\left(1-\frac{1}{r}-r^{3} \epsilon\right) n$. If X_{0} is nonempty then, deleting all edges incident with vertices in X_{0} and adding edges from every vertex in X_{0} to every vertex in $\bigcup_{i=2}^{r}\left(X_{i} \cup C_{i} \cup S_{i}\right)$ gives a graph with more edges than D and no subdivision of T_{r+1}. Thus we must have $X_{0}=\emptyset$. Finally, since we can now see that our graph is a subgraph of a complete r-partite graph, it follows that D is a Turán
graph with vertex classes W_{1}, \ldots, W_{r}, say, and edges oriented from W_{i} to W_{j} for $1 \leq i<j \leq r$.

References

[1] B. Bollobás, Extremal Graph Theory, Academic Press, New York, 1978
[2] B. Bollobás, P. Erdős, M. Simonovits and E. Szemerédi, Extremal graphs without large forbidden subgraphs, in Advances in Graph Theory, B. Bollobás, ed., North-Holland, 1978, 29-41
[3] B. Bollobás and A.G. Thomason, Highly linked graphs, Combinatorica 16 (96), 313-320
[4] B. Bollobás and A.G. Thomason, Proof of a conjecturte of Mader, Erdős and Hajnal on topological complete subgraphs, European J. Comb., to appear
[5] C. Jagger, Extremal digraph results for topological complete tournaments, European J. Comb. 19 (98), 687-694
[6] J. Komlós and E. Szemerédi, Topological cliques in graphs, II, Combin., Prob. and Comput. 5 (96), 79-90
[7] W. Mader, Homomorphieeigenschaften und mittlere Kantendichte von Graphen, Math. Annalen 174 (67), 265-268

Department of Mathematics, University College London, Gower Street, London WC1E 6BT, England

E-mail address: scott@math.ucl.ac.uk

