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Abstract. The clustered chromatic number of a class of graphs is the minimum integer k
such that for some integer c every graph in the class is k-colourable with monochromatic
components of size at most c. We determine the clustered chromatic number of any
minor-closed class with bounded treedepth, and prove a best possible upper bound
on the clustered chromatic number of any minor-closed class with bounded pathwidth.
As a consequence, we determine the fractional clustered chromatic number of every
minor-closed class.

1 Introduction

This paper studies improper vertex colourings of graphs with bounded monochromatic
degree or bounded monochromatic component size. This topic has been extensively
studied recently [1, 3, 4, 7, 9, 11–20, 22–24]; see [25] for a survey.

A k-colouring of a graph G is a function that assigns one of k colours to each vertex
of G. In a coloured graph, a monochromatic component is a connected component of
the subgraph induced by all the vertices of one colour.

A colouring has defect d if each monochromatic component has maximum degree at
most d. The defective chromatic number of a graph class G, denoted by χ∆( G), is the
minimum integer k such that, for some integer d, every graph in G is k-colourable with
defect d.

A colouring has clustering c if each monochromatic component has at most c vertices.
The clustered chromatic number of a graph class G, denoted by χ?( G), is the minimum
integer k such that, for some integer c, every graph in G has a k-colouring with
clustering c. We shall consider such colourings, where the goal is to minimise the
number of colours, without optimising the clustering value.

Every colouring of a graph with clustering c has defect c − 1. Thus χ∆( G) 6 χ?( G)

for every class G.

The following is a well-known and important example in defective and clustered graph
colouring. Let T be a rooted tree. The depth of T is the maximum number of vertices
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on a root–to–leaf path in T . The closure of T is obtained from T by adding an edge
between every ancestor and descendent in T . For h, k > 1, let C〈h, k〉 be the closure
of the complete k-ary tree of depth h, as illustrated in Figure 1.

Figure 1: The standard example C〈4, 2〉.

It is well known and easily proved (see [25]) that there is no (h − 1)-colouring of
C〈h, k〉 with defect k − 1, which implies there is no (h− 1)-colouring of C〈h, k〉 with
clustering k. This says that if a graph class G includes C〈h, k〉 for all k, then the
defective chromatic number and the clustered chromatic number are at least h. Put
another way, define the tree-closure-number of a graph class G to be

tcn( G) := min{h : ∃k C〈h, k〉 6∈ G} = max{h : ∀k C〈h, k〉 ∈ G}+ 1;

then
χ?( G) > χ∆( G) > tcn( G)− 1.

Our main result, Theorem 1 below, establishes a converse result for minor-closed
classes with bounded treedepth. First we explain these terms. A graph H is a minor
of a graph G if a graph isomorphic to H can be obtained from some subgraph of G
by contracting edges. A class of graphs M is minor-closed if for every graph G ∈M

every minor of G is in M, and M us proper minor-closed if, in addition, some graph is
not in M. The connected treedepth of a graph H , denoted by td(H), is the minimum
depth of a rooted tree T such that H is a subgraph of the closure of T . This definition
is a variant of the more commonly used definition of the treedepth of H , denoted by
td(H), which equals the maximum connected treedepth of the connected components
of H . (See [21] for background on treedepth.) If H is connected, then td(H) = td(H).
In fact, td(H) = td(H) unless H has two connected components H1 and H2 with
td(H1) = td(H2) = td(H), in which case td(H) = td(H) + 1. It is convenient to
work with connected treedepth to avoid this distinction. A class of graphs has bounded
treedepth if there exists a constant c such that every graph in the class has treedepth
at most c.
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Theorem 1. For every minor-closed class G with bounded treedepth,

χ∆( G) = χ?( G) = tcn( G)− 1.

Our second result concerns pathwidth. A path-decomposition of a graph G consists of
a sequence (B1, . . . , Bn), where each Bi is a subset of V (G) called a bag, such that for
every vertex v ∈ V (G), the set {i ∈ [1, n] : v ∈ Bi} is an interval, and for every edge
vw ∈ E(G) there is a bag Bi containing both v and w. Here [a, b] := {a, a+ 1, . . . , b}.
The width of a path decomposition (B1, . . . , Bn) is max{|Bi| : i ∈ [1, n]} − 1. The
pathwidth of a graph G is the minimum width of a path-decomposition of G. Note
that paths (and more generally caterpillars) have pathwidth 1. A class of graphs has
bounded pathwidth if there exists a constant c such that every graph in the class has
pathwidth at most c.

Theorem 2. For every minor-closed class G with bounded pathwidth,

χ∆( G) 6 χ?( G) 6 2 tcn( G)− 2.

Theorems 1 and 2 are respectively proved in Sections 2 and 3. These results are best
possible and partially resolve a number of conjectures from the literature, as we now
explain.

Ossona de Mendez et al. [23] studied the defective chromatic number of minor-closed
classes. For a graph H , let MH be the class of H-minor-free graphs (that is, not
containing H as a minor). Ossona de Mendez et al. [23] proved the lower bound,
χ∆(MH) > td(H)− 1 and conjectured that equality holds.

Conjecture 3 ([23]). For every graph H ,

χ∆(MH) = td(H)− 1.

Note that Conjecture 3 is known to hold in some special cases. Edwards et al. [9]
proved it if H = Kt; that is, χ∆(MKt) = t− 1, which can be thought of as a defective
version of Hadwiger’s Conjecture; see [24] for an improved bound on the defect in this
case. Ossona de Mendez et al. [23] proved Conjecture 3 if td(H) 6 3 or if H is a
complete bipartite graph. In particular, χ∆(MKs,t) = min{s, t}.

Norin et al. [22] studied the clustered chromatic number of minor-closed classes. They
showed that for each k > 2, there is a graph H with treedepth k and connected
treedepth k such that χ?(MH) > 2k − 2. It is easily seen that the corresponding
graphs have bounded pathwidth (at most 2k − 3 to be precise). Thus the upper bound
on χ?( G) in Theorem 2 is best possible.

Norin et al. [22] conjectured the following converse upper bound (analogous to Con-
jecture 3):

Conjecture 4 ([22]). For every graph H ,

χ?(MH) 6 2 td(H)− 2.
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While Conjectures 3 and 4 remain open, Norin et al. [22] showed in the following
theorem that χ∆(MH) and χ?(MH) are controlled by the treedepth of H :

Theorem 5 ([22]). For every graph H , χ?(MH) is tied to the (connected) treedepth of
H . In particular,

td(H)− 1 6 χ?(MH) 6 2td(H)+1 − 4.

Theorem 1 gives a much more precise bound than Theorem 5 under the extra assumption
of bounded treedepth.

Our third main result concerns fractional colourings. For real t > 1, a graph G is
fractionally t-colourable with clustering c if there exist Y1, Y2, . . . , Ys ⊆ V (G) and
α1, . . . , αs ∈ [0, 1] such that1:

• Every component of G[Yi] has at most c vertices,
•
∑s

i=1 αi 6 t,
•
∑

i:v∈Yi αi > 1 for every v ∈ V (G).

The fractional clustered chromatic number χf?( G) of a graph class G is the infimum
of t > 0 such that there exists c = c(t, G) such that every G ∈ G is fractionally t-
colourable with clustering c. Fractional defective chromatic number χf∆( G) is defined
in exactly the same way, except the condition on the component size is replaced by
“the maximum degree of G[Yi] is at most d”. The following theorem determines the
fractional clustered chromatic number and fractional defective chromatic number of any
proper minor-closed class.

Theorem 6. For every proper minor-closed class G,

χf
∆( G) = χf?( G) = tcn( G)− 1.

This result is proved in Section 4.

We now give an interesting example of Theorem 6.

Corollary 7. For every surface Σ, if GΣ is the class of graphs embeddable in Σ, then

χf
∆( GΣ) = χf?( GΣ) = 3.

Proof. Note that C〈3, k〉 is planar for all k. Thus tcn( GΣ) > 4. Say Σ has Euler genus
g. It follows from Euler’s formula that K3,2g+3 6∈ GΣ. Since K3,2g+3 ⊆ C〈4, 2g + 3〉, we
have C〈4, 2g + 3〉 6∈ GΣ. Thus tcn( GΣ) 6 4. The result follows from Theorem 6.

In contrast to Corollary 7, Dvǒrák and Norin [7] proved that χ?( GΣ) = 4. Note that
Archdeacon [2] proved that χ∆( GΣ) = 3; see [5] for an improved bound on the defect.
1 If c = 1, then this corresponds to a (proper) fractional t-colouring, and if the αi are integral, then this

yields a t-colouring with clustering c.
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2 Treedepth

Say G is a subgraph of the closure of some rooted tree T . For each vertex v ∈ V (T ),
let Tv be the subtree of T rooted at v (consisting of v and all its descendents), and let
G[Tv] be the subgraph of G induced by V (Tv).

The weak closure of a rooted tree T is the graph G with vertex set V (T ), where two
vertices v, w ∈ V (T ) are adjacent in G whenever v is a leaf of T and w is an ancestor
of v in T . As illustrated in Figure 2, let W 〈h, k〉 be the weak closure of the complete
k-ary tree of height h.

Figure 2: The weak closure W 〈4, 2〉.

Note that W 〈h, k〉 is a proper subgraph of C〈h, k〉 for h > 3. On the other hand,
Norin et al. [22] showed that W 〈h, k〉 contains C〈h, k − 1〉 as a minor for all h, k > 2.
Therefore Theorem 1 is an immediate consequence of the following lemma.

Lemma 8. For all d, k ∈ N there exists c = c(d, k) ∈ N such that for every h ∈ N and
for every graph G with treedepth at most d, either G contains a W 〈h, k〉-minor or G
is (h− 1)-colourable with clustering c.

Proof. Throughout this proof, d is fixed, and we make no attempt to optimise c.

We may assume that G is connected. So G is a subgraph of the closure of some rooted
tree of depth at most d. Choose a tree T of depth at most d rooted at some vertex r,
such that G is a subgraph of the closure of T , and subject to this,

∑
v∈V (T ) distT (v, r)

is minimal. Suppose that G[Tv] is disconnected for some vertex v in T . Choose
such a vertex v at maximum distance from r. Since G is connected, v 6= r. By the
choice of v, for each child w of v, the subgraph G[Tw] is connected. Thus, for some
child w of v, there is no edge in G joining v and G[Tw]. Let u be the parent of
v. Let T ′ be obtained from T by deleting the edge vw and adding the edge uw, so
that w is a child of u in T ′. Note that G is a subgraph of the closure of T ′ (since
v has no neighbour in G[Tw]). Moreover, distT ′(x, r) = distT (x, r) − 1 for every
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vertex x ∈ V (Tw), and distT ′(y, r) = distT (y, r) for every vertex y ∈ V (T ) \ V (Tw).
Hence

∑
v∈V (T ′) distT ′(v, r) <

∑
v∈V (T ) distT (v, r), which contradicts our choice of T .

Therefore G[Tv] is connected for every vertex v of T .

Consider each vertex v ∈ V (T ). Define the level `(v) := distT (r, v) ∈ [0, d − 1]. Let
T+
v be the subtree of T consisting of Tv plus the vr-path in T , and let G[T+

v ] be the
subgraph of G induced by V (T+

v ). For a subtree X of T rooted at vertex v, define the
level `(X) := `(v).

A ranked graph (for fixed d) is a triple (H,L,≺) where:

• H is a graph,
• L : V (H)→ [0, d− 1] is a function,
• ≺ is a partial order on V (H) such that L(v) < L(w) whenever v ≺ w.

Up to isomorphism, the number of ranked graphs on n vertices is at most 2(n2) dn 3(n2).
For a vertex v of T , a ranked graph (H,L,≺) is said to be contained in G[T+

v ] if there
is an isomorphism φ from H to some subgraph of G[T+

v ] such that:

(A) for each vertex v ∈ V (H) we have L(v) = `(φ(v)), and
(B) for all distinct vertices v, w ∈ V (H) we have that v ≺ w if and only if φ(v) is

an ancestor of φ(w) in T .

If (H,L,≺) is a ranked graph and i ∈ [0, d− 1], then define the i-splice of (H,L,≺)

to be the ranked graph (H ′, L′,≺′) obtained from (H,L,≺) by taking k copies of the
subgraph at levels greater than i. More formally, let

V (H ′) :={(v, 0) : v ∈ V (H), L(v) ∈ [0, i]} ∪
{(v, j) : v ∈ V (H), L(v) ∈ [i+ 1, d], j ∈ [1, k]}.

E(H ′) :={(v, 0)(w, 0) : vw ∈ E(H), L(v) ∈ [0, i], L(w) ∈ [0, i]} ∪
{(v, 0)(w, j) : vw ∈ E(H), L(v) ∈ [0, i], L(w) ∈ [i+ 1, d], j ∈ [1, k]} ∪
{(v, j)(w, j) : vw ∈ E(H), L(v) ∈ [i+ 1, d], L(w) ∈ [i+ 1, d], j ∈ [1, k]}.

Define L′((v, j)) := L(v) for every vertex (v, j) ∈ V (H ′). Now define the following
partial order ≺′ on V (H ′):

• If v ≺ w and L(v), L(w) ∈ [0, i], then (v, 0) ≺′ (w, 0).
• If v ≺ w and L(v) ∈ [0, i] and L(w) ∈ [i + 1, d], then (v, 0) ≺′ (w, j) for all
j ∈ [1, k].
• If v ≺ w and L(v), L(w) ∈ [i+ 1, d], then (v, j) ≺′ (w, j) for all j ∈ [1, k].

Note that if (v, a) ≺′ (w, b), then a 6 b and v ≺ w (implying (L(v) < L(w)). It
follows that ≺′ is a partial order on V (H ′) such that L′((v, a)) < L′((w, b)) whenever
(v, a) ≺′ (w, b). Thus (H ′, L′,≺′) is a ranked graph.

For ` ∈ [0, d− 1], let
N` := (d+ 1)(h− 1)(k + 1)d−1−`.
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For each vertex v of T , define the profile of v to be the set of all ranked graphs (H,L,≺)

contained in G[T+
v ] such that |V (H)| 6 N`(v). Note that if v is a desecendant of u,

then the profile of v is a subset of the profile of u. For ` ∈ [0, d− 1], if N = N` then
let

M` := 22(
N
2 ) dN 3(

N
2 )
.

Then there are at most M` possible profiles of a vertex at level `.

We now partition V (T ) into subtrees. Each subtree is called a group. (At the end
of the proof, vertices in a single group will be assigned the same colour.) We assign
vertices to groups in non-increasing order of their distance from the root. Initialise
this process by placing each leaf v of T into a singleton group. We now show how to
determine the group of a non-leaf vertex. Let v be a vertex not assigned to a group at
maximum distance from r. So each child of v is assigned to a group. Let Yv be the set
of children y of v, such that the number of children of v that have the same profile as
y is in the range [1, k − 1]. If Yv = ∅ start a new singleton group {v}. If Yv 6= ∅ then
merge all the groups rooted at vertices in Yv into one group including v. This defines
our partition of V (T ) into groups. Each group X is rooted at the vertex in X closest
to r in T . A group Y is above a distinct group X if the root of Y is on the path in T
from the root of X to r.

The next claim is the key to the remainder of the proof.

Claim 1. Let uv ∈ E(T ) where u is the parent of v, and u is in a different group to v.
Then for every ranked graph (H,L,≺) in the profile of v, the `(u)-splice of (H,L,≺)

is in the profile of u.

Proof. Since (H,L,≺) is in the profile of v, there is an isomorphism φ from H to some
subgraph of G[T+

v ] such that for each vertex x ∈ V (H) we have L(x) = `(φ(x)), and
for all distinct vertices x, y ∈ V (H) we have that x ≺ y if and only if φ(x) is an
ancestor of φ(y) in T .

Since u and v are in different groups, there are k children y1, . . . , yk of u (one of which
is v) such that the profiles of y1, . . . , yk are equal. Thus (H,L,≺) is in the profile of
each of y1, . . . , yk . That is, for each j ∈ [1, k], there is an isomorphism φj from H to
some subgraph of G[T+

yj ] such that for each vertex x ∈ V (H) we have L(x) = `(φj(x)),
and for all distinct vertices x, y ∈ V (H) we have that x ≺ y if and only if φj(x) is an
ancestor of φj(y) in T .

Let (H ′, L′,≺′) be the `(u)-splice of (H,L,≺). We now define a function φ′ from V (H ′)

to V (G[T+
u ]). For each vertex (x, 0) of H ′ (thus with x ∈ V (H) and L(x) ∈ [0, `(u)]),

define φ′((x, 0)) := φ(x). For every other vertex (x, j) of H ′ (thus with x ∈ V (H) and
L(x) ∈ [`(u) + 1, d− 1] and j ∈ [1, k]), define φ′((x, j)) := φj(x).

We now show that φ′ is an isomorphism from H ′ to a subgraph of G[T+
u ]. Consider an

edge (x, a)(y, b) of H ′. Thus xy ∈ E(H). It suffices to show that φ′((x, a))φ′((y, b)) ∈
E(G[T+

u ]). First suppose that a = b = 0. So L(x) ∈ [0, `(u)] and L(y) ∈ [0, `(u)].
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Thus φ′((x, a)) = φ(x) and φ′((y, b)) = φ(y). Since φ is an isomorphism to a subgraph
of G[T+

v ], we have φ(x)φ(y) ∈ E(G[T+
v ]), which is a subgraph of G[T+

u ]. Hence
φ′((x, a))φ′((y, b)) ∈ E(G[T+

u ]), as desired. Now suppose that a = 0 and b ∈ [1, k].
Thus φ′((x, a)) = φ(x) and φ′((y, b)) = φb(y). Moreover, both `(φ(x)) and `(φb(x))

equal L(x) ∈ [0, `(u)]. There is only vertex z in T+
v with `(z) equal to a specific

number in [0, `(u)]. Thus φ′((x, a)) = φ(x) = φb(x) (= z). Since φb is an isomorphism
to a subgraph of G[T+

yb
], we have φb(x)φb(y) ∈ E(G[T+

yb
]), which is a subgraph of

G[T+
u ]. Hence φ′((x, a))φ′((y, b)) ∈ E(G[T+

u ]), as desired. Finally, suppose that
a = b ∈ [1, k]. Thus φ′((x, a)) = φa(x) and φ′((y, b)) = φb(y) = φa(y). Since φa is
an isomorphism to a subgraph of G[T+

ya ], we have φa(x)φa(y) ∈ E(G[T+
ya ]), which is

a subgraph of G[T+
u ]. Hence φ′((x, a))φ′((y, b)) ∈ E(G[T+

u ]), as desired. This shows
that φ′ is an isomorphism from H ′ to a subgraph of G[T+

u ].

We now verify property (A) for (H ′, L′,≺′). For each vertex (x, 0) of H ′ (thus with
x ∈ V (H) and L(x) ∈ [0, `(u)]) we have L′((x, 0)) = L(x) = `(φ(x)) = `(φ′((x, 0))),
as desired. For every other vertex (x, j) of H ′ (thus with x ∈ V (H) and L(x) ∈
[`(u) + 1, d − 1] and j ∈ [1, k]) we have L′((x, j)) = L(x) = `(φj(x)) = `(φ′((x, j))),
as desired. Hence property (A) is satisfied for (H ′, L′,≺′).

We now verify property (B) for (H ′, L′,≺′). Consider distinct vertices (x, a), (y, b) ∈
V (H ′). First suppose that a = 0 and b = 0. Then (x, a) ≺′ (y, b) if and only if
x ≺ y if and only if φ(x) is an ancestor of φ(y) in T if and only if φ′((x, a)) is an
ancestor of φ′((y, b)) in T , as desired. Now suppose that a = 0 and b ∈ [1, k]. Then
(x, a) ≺′ (y, b) if and only if x ≺ y if and only if φ(x) is an ancestor of φb(y) in T

if and only if φ′((x, a)) is an ancestor of φ′((y, b)) in T , as desired. Now suppose
that a = b ∈ [1, k]. Then (x, a) ≺′ (y, b) if and only if x ≺ y if and only if φa(x)

is an ancestor of φb(y) in T if and only if φ′((x, a)) is an ancestor of φ′((y, b)) in
T , as desired. Finally, suppose that a, b ∈ [1, k] and a 6= b. Then (x, a) and (y, b)

are incomparable under ≺′, and φ′((x, a)) and φ′((y, b)) in T are unrelated in T , as
desired. Hence property (B) is satisfied for (H ′, L′,≺′).

So φ′ is an isomorphism from H ′ to a subgraph of G[T+
u ] satisfying properties (A) and

(B). Thus (H ′, L′,≺′) is contained inG[T+
u ], as desired. Since (H,L,≺) is in the profile

of v, we have |V (H)| 6 (d + 1)(h − 1)(k + 1)h−`(v). Since |V (H ′)| 6 (k + 1)|V (H)|
and `(u) = `(v)− 1, we have |V (H ′)| 6 (d+ 1)(h− 1)(k + 1)h+1−`(v) = (d+ 1)(h−
1)(k + 1)h−`(u). Thus (H ′, L′,≺′) is in the profile of u.

The proof now divides into two cases. If some group X0 is adjacent in G to at least
h − 1 other groups above X0, then we show that G contains W 〈h, k〉 as a minor.
Otherwise, every group X is adjacent in G to at most h− 2 other groups above X , in
which case we show that G is (h− 1)-colourable with bounded clustering.
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Finding the Minor

Suppose that some group X0 is adjacent in G to at least h − 1 other groups
X1, . . . , Xh−1 above X0. We now show that G contains W 〈h, k〉 as a minor; refer
to Figure 3.

For i ∈ [0, h− 1], let vi be the root of Xi. For i ∈ [1, h− 1], let wi be a vertex in Xi

adjacent to some vertex zi in X0; since G is a subgraph of the closure of T , wi and
thus vi are on the v0r-path in T . For i ∈ [0, h − 2], let ui be the parent of vi in T

(which exists since vh−2 6= r). So ui is not in Xi (but may be in Xi+1). Note that
v0, u0, w1, v1, u1, . . . , wh−2, vh−2, uh−2, wh−1, vh−1 appear in this order on the v0r-path
in T , where v0, v1, . . . , vh−1 are distinct (since they are in distinct groups).

b b b b b b

b b b

b b b b b b

b b b

b b b

u2

X3

v3

w3

z1
z2
z3X0

X1

X2

v0

u0

w1

v1

u1

v2

w2

Figure 3: Construction of a W 〈4, k〉 minor (where ui might be in Xi+1).

Let Pj be the zjr-path in T for j ∈ [1, h − 1]. Let H0 be the graph with V (H0) :=

V (P1 ∪ · · · ∪ Ph−1) and E(H0) := {zjwj : j ∈ [1, h − 1]}. Define the function
L0 : V (H0)→ [0, d−1] by L0(x) := `(x) for each x ∈ V (H0). Define the partial order
≺0 on V (H0), where x ≺0 y if and only if x is ancestor of y in T . Thus (H0, L0,≺0)

is a ranked graph. By construction, (H0, L0,≺0) is contained in G[T+
v0 ]. Since H0 has

less than (d+ 1)(h− 1) vertices, H0 is in the profile of v0. For i = 0, 1, . . . , h− 2, let
(Hi+1, Li+1,≺i+1) be the `(ui)-splice of (Hi, Li,≺i).

By induction, using Claim 1 at each step and since G[T+
ui ] ⊆ G[T+

vi+1
], we conclude that

for each i ∈ [0, h−1], the ranked graph (Hi, Li,≺i) is in the profile of vi. In particular,
(Hh−1, Lh−1,≺h−1) is in the profile of vh−1, and Hh−1 is isomorphic to a subgraph of
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G. Note that each vertex of Hh−1 is of the form (((. . . (x, d1), d2), . . . ), dh−1) for some
x ∈ V (H0) and d1, . . . , dh−1 ∈ [0, k]. For brevity, call such a vertex x〈d1, . . . , dh−1〉.
Note that if x = wj for some j ∈ [1, h− 1], then d1 = · · · = dj = 0 (since wj is above
ui whenever i < j, and (Hi+1, Li+1,≺i+1) is the `(ui)-splice of (Hi, Li,≺i)).

For x ∈ V (H0), let Λx be the set of vertices x〈d1, . . . , dh−1〉 in Hh−1. By construction,
no two vertices in Λx are comparable under ≺h−1. Therefore, by property (B), V (Ta)∩
V (Tb) = ∅ for all distinct a, b ∈ Λx. In particular, V (Ta) ∩ V (Tb) = ∅ for all distinct
a, b ∈ Λv0 . As proved above, G[Ta] is connected for each a ∈ V (T ). Let G′ be the
graph obtained from G by contracting G[Ta] into a single vertex α〈d1, . . . , dh−1〉, for
each a = v0〈d1, . . . , dh−1〉 ∈ Λv0 . So G′ is a minor of G.

Let U be the tree with vertex set {〈d1, . . . , dh−1〉 : ∃j ∈ [0, h − 1] d1 = · · · = dj =

0 and dj+1, . . . , dh−1 ∈ [1, k]}, where the parent of (0, . . . , 0, dj+1, dj+2, . . . , dh−1) is
(0, . . . , 0, dj+2, . . . , dh−1). Then U is isomorphic to the complete k-tree of height h
rooted at 〈0, . . . , 0〉. We now show that the weak closure of U is a subgraph of G’,
where each vertex 〈0, . . . , 0, dj+1, . . . , dh−1〉 of U with j ∈ [1, h − 1] is mapped to
vertex wj〈0, . . . , 0, dj+1, . . . , dh−1〉 of G′, and each other vertex 〈d1, . . . , dh−1〉 of U
is mapped to α〈d1, . . . , dh−1〉 of G′. For all d1, . . . , dh−1 ∈ [1, k] and j ∈ [1, h − 1]

the vertex zj〈d1, . . . , dh−1〉 of G is contracted into the vertex α〈d1, . . . , dh−1〉 of G′.
By construction, zj〈d1, . . . , dh−1〉 is adjacent to wj〈0, . . . , 0, dj+1, . . . , dh−1〉 in G. So
α〈d1, . . . , dh−1〉 is adjacent to wj〈0, . . . , 0, dj+1, . . . , dh−1〉 in G′. This implies that the
weak closure of U (that is, W 〈h, k〉) is isomorphic to a subgraph of G’, and is therefore
a minor of G.

Finding the Colouring

Now assume that every group X is adjacent in G to at most h− 2 other groups above
X . Then (h− 1)-colour the groups in order of distance from the root, such that every
group X is assigned a colour different from the colours assigned to the neighbouring
groups above X . Assign each vertex within a group the same colour as that assigned
to the whole group. This defines an (h− 1)-colouring of G.

Consider the function s : [0, d− 1]→ N recursively defined by

s(`) :=

{
1 if ` = d− 1

(k − 1) ·M`+1 · s(`+ 1) if ` ∈ [0, d− 2].

Then every group at level ` has at most s(`) vertices. By construction, our (h − 1)-
colouring of G has clustering s(0), which is bounded by a function of d and k, as
desired.

3 Pathwidth

The following lemma of independent interest is the key to proving Theorem 2. Note
that Eppstein [10] independently discovered the same result (with a slighly weaker
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bound on the path length). The decomposition method in the proof has been previously
used, for example, by Dujmović, Joret, Kozik, and Wood [6, Lemma 17].

Lemma 9. Every graph with pathwidth at most w has a vertex 2-colouring such that
each monochromatic path has at most (w + 3)w vertices.

Proof. We proceed by induction on w > 1. Every graph with pathwidth 1 is a cater-
pillar, and is thus properly 2-colourable. Now assume w > 2 and the result holds for
graphs with pathwidth at most w− 1. Let G be a graph with pathwidth at most w. Let
(B1, . . . , Bn) be a path-decomposition of G with width at most w. Let t0, t1, t2, . . . , tm
be a maximal sequence such that t0 = 0, t1 = 1, and for each i > 2, ti is the minimum
integer such that Bti∩Bti−1 = ∅. For odd i, colour every vertex in Bti ‘red’. For even i,
colour every vertex in Bti ‘blue’. Since Bti∩Bti−1 = ∅, no vertex is coloured twice. Let
G′ be the subgraph of G induced by the uncoloured vertices. By the choice of Bti , each
bag Bj with j ∈ [ti−1 + 1, ti− 1] intersects Bti−1 . Thus (B1 ∩V (G′), . . . , Bn ∩V (G′))

is a path-decomposition of G′ of width at most w − 1. By induction, G′ has a vertex
2-colouring such that each monochromatic path has at most (w+3)w−1 vertices. Since
Bti ∪ Bti+2 separates Bti+1 ∪ · · · ∪ Bti+2−1 from the rest of G, each monochromatic
component of G is contained in Bti+1∪· · ·∪Bti+2−1 for some i ∈ [0, n−2]. Consider a
monochromatic path P in G[Bti+1 ∪ · · · ∪Bti+2−1]. Then P has at most w+ 1 vertices
in Bti+1 . Note that P − Bti+1 is contained in G′. Thus P consists of up to w + 2

monochromatic subpaths in G′ plus w + 1 vertices in Bti+1 . Hence P has at most
(w + 2)(w + 3)w−1 + (w + 1) < (w + 3)w vertices.

Nešeťril and Ossona de Mendez [21] showed that if a graph G contains no path on k
vertices, then td(G) < k (since G is a subgraph of the closure of a DFS spanning tree
with height at most k). Thus Lemma 9 implies:

Corollary 10. Every graph with pathwidth at most w has a vertex 2-colouring such
that each monochromatic component has treedepth at most (w + 3)w .

Proof of Theorem 2. Let G be a minor-closed class of graphs, each with pathwidth at
most w. Let h be the minimum integer such that C〈h, k〉 6∈ G for some k ∈ N. Consider
G ∈ G. By Corollary 10, G has a vertex 2-colouring such that each monochromatic
component H of G has treedepth at most (w + 3)w . Since C〈h, k〉 is not a minor
of H , by Lemma 8, H is (h − 1)-colourable with clustering c((w + 3)w, k). Taking
a product colouring, G is (2h − 2)-colourable with clustering c((w + 3)w, k). Hence
χ∆( G) 6 χ?( G) 6 2h− 2.

Note that Lemma 9 cannot be extended to the setting of bounded tree-width graphs:
Esperet and Joret (see [16, Theorem 4.1]) proved that for all positive integers w and d
there exists a graph G with tree-width at most w such that for every w-colouring of G
there exists a monochromatic component of G with diameter greater than d (and thus
with a monochromatic path on more than d vertices, and thus with treedepth at least
log2 d).
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4 Fractional Colouring

This section proves Theorem 6. The starting point is the following key result of Dvǒrák
and Sereni [8].2

Theorem 11 ([8]). For every proper minor-closed class G and every δ > 0 there
exists d ∈ N satisfying the following. For every G ∈ G there exist s ∈ N and
X1, X2, . . . , Xs ⊆ V (G) such that:

• td(G[Xi]) 6 d, and
• every v ∈ V (G) belongs to at least (1− δ)s of these sets.

We now prove a lower bound on the fractional defective chromatic number of the closure
of complete trees of given height.

Lemma 12. Let Ch := {C〈h, k〉}k∈N. Then χf∆( Ch) > h.

Proof. We show by induction on h that if C〈h, k〉 is fractionally t-colourable with
defect d, then t > h − (h − 1)d/k. This clearly implies the lemma. The base case
h = 1 is trivial.

For the induction step, suppose that G := C〈h, k〉 is fractionally t-colourable with
defect d. Thus there exist Y1, Y2, . . . , Ys ⊆ V (G) and α1, . . . , αs ∈ [0, 1] such that:

• every component of G[Yi] has maximum degree at most d,
•

∑s
i=1 αi 6 t, and

•
∑

i:v∈Yi αi > 1 for every v ∈ V (G).

Let r be the vertex of G corresponding to the root of the complete k-ary tree and let
H1, . . . ,Hk be the components of G − r. Then each Hi is isomorphic to C〈h − 1, k〉.
Let J0 := {j : r ∈ Yj}, and let Ji := {j : Yj ∩ V (Hi) 6= ∅} for i ∈ [1, k]. Denote∑

j∈Ji αj by α(Ji) for brevity. Thus α(J0) > 1. For i ∈ [1, k], the subgraph Hi is
α(Ji)-colourable with defect d, and thus α(Ji) > h− 1− (h− 2)d/k by the induction
hypothesis. Thus

(k − d)α(J0) +
k∑
i=1

α(Ji) > (k − d) + k(h− 1)− (h− 2)d = kh− (h− 1)d.

If j ∈ J0 then Yj intersects at most d of H1, . . . ,Hk (since G[Yj ] has maximum degree
at most d). Thus every αj appears with coefficient at most k in the left side of the
above inequality, implying

(k − d)α(J0) +
k∑
i=1

α(Ji) 6 k
s∑
i=1

αi 6 kt.

2 Dvǒrák and Sereni [8] expressed their result in the terms of “treedepth fragility”. The sentence “proper
minor-closed classes are fractionally treedepth-fragile” after Theorem 31 in [8] is equivalent to The-
orem 11. Informally speaking, Theorem 11 shows that the fractional “treedepth” chromatic number of
every minor-closed class equals 1.
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Combining the above inequalities yields the claimed bound on t.

Proof of Theorem 6. By Lemma 12,

χf
?( G) > χf∆( G) > tcn( G)− 1.

It remains to show that χf?( G) 6 tcn( G)− 1. Equivalently, we need to show that for
all h, k ∈ N and ε > 0, if C〈h, k〉 6∈ G then there exists c such that every graph in G

is fractionally (h− 1 + ε)-colourable with clustering c. This is trivial for h = 1, and so
we assume h > 2.

Let d ∈ N satisfy the conclusion of Theorem 11 for the class G and δ = 1− 1
1+ε/(h−1) .

Choose c = c(d, k + 1) to satisfy the conclusion of Lemma 8. We show that c is as
desired.

Consider G ∈ G. By the choice of d there exists s ∈ N and X1, X2, . . . , Xs ⊆ V (G)

such that:

• td(G[Xi]) 6 d, and
• every v ∈ V (G) belongs to at least (1− δ)s of these sets.

Since C〈h, k〉 6∈ G, we have W 〈h, k + 1〉 6∈ G, and by the choice of c, for each i ∈ [1, s]

there exists a partition (Y 1
i , Y

2
i , . . . , Y

h−1
i ) of Xi such that every component of G[Y j

i ]

has at most c vertices. Every vertex of G belongs to at least (1 − δ)s sets Y j
i where

i ∈ [1, s] and j ∈ [1, h−1]. Considering these sets with equal coefficients αji := 1
(1−δ)s ,

we conclude that G is fractionally h−1
1−δ -colourable with clustering c, as desired (since

h−1
1−δ = h− 1 + ε).
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