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Models of parking in which cars are placed randomly and then move ac-
cording to a deterministic rule have been studied since the work of Konheim
and Weiss in the 1960s. Recently, Damron, Gravner, Junge, Lyu, and Sivakoff
((2019) Ann. Appl. Probab. 29 2089–2113) introduced a model in which cars
are both placed and move at random. Independently at each point of a Cayley
graph G, we place a car with probability p, and otherwise an empty parking
space. Each car independently executes a random walk until it finds an empty
space in which to park. In this paper we introduce three new techniques for
studying the model, namely the space-based parking model, and the strategies
for parking and for car removal. These allow us to study the original model by
coupling it with models where parking behaviour is easier to control. Apply-
ing our methods to the one-dimensional parking problem in Z, we improve
on previous work, showing that for p < 1/2 the expected journey length of a
car is finite, and for p = 1/2 the expected journey length by time t grows like
t3/4 up to a polylogarithmic factor.

1. Introduction. Let n ≥ 1 and let Pn be a directed path on [n] = {1,2, . . . , n} with
directed edges from i to i − 1 for i = 2,3, . . . , n. Let 1 ≤ m ≤ n and assume that m drivers
arrive at vertex n one by one, with the ith driver willing to park in vertex Xi ∈ [n]. If the ith
driver finds Xi empty, they park there. If not, they continue their drive towards 1, parking
in the first available parking space. If no such spot can be found, the driver leaves the path
without parking. We say that (x1, . . . , xm), with x1, . . . , xm ∈ [n], is a parking function for Pn

if for Xi = xi for 1 ≤ i ≤ m, all m drivers park on the path.
Parking functions were first studied in the 1960s by [10]. They evaluated the number of

parking functions, which is equivalent to evaluating the probability that an m-tuple of inde-
pendent random variables uniformly distributed on [n] gives a parking function. A similar
model, with Pn replaced by a uniform random rooted Cayley tree on [n] was studied by
[11]. Motivated by finding a probabilistic explanation for some phenomenons observed in [7,
11] analyzed the parking processes on critical Galton–Watson trees, as well as on trees with
Poisson(1) offspring distribution conditioned on nonextinction, in both cases with the edges
directed towards the root. Note that in all the setups above, drivers have only one choice of
route at any time of the process.

In this paper, we are concerned with a related model, introduced by [4], in which the cars
move at random. Let L = (V ,E) be a Cayley graph on a group V with generating set R, and
let μ be a probability distribution on R: we will refer to such a triple (L,R,μ) as a parking
triple. At time 0, each position v ∈ V is independently assigned a car with probability p

or a parking space with probability 1 − p. The cars follow independent random walks with
increments μ and each car continues to follow the random walk until it finds a free space
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where it parks (if more than one car arrives at a free space at the same time, then one is
chosen to park according to some rule).1

There is a wide range of well studied models of a flavour similar to parking functions. In
particular we note various gas particle models which track the movement and annihilation
of particles in a system. Of particular note are annihilating random walks (see [5] or [1],
e.g.) where particles move according to some random path and annihilate upon collision with
another particle; and two-type diffusion limited annihilating systems where particles of two
types move according to some random path and annihilate upon collision with a particle of
the other type (see [2] or [8], e.g.). Results analogous to those proven here are well known
in both of these settings. Another related model is the one of the so-called activated random
walks on Z

d . We discuss that model in more detail following the statements of Lemmas 1.5
and 1.6 below.

We are interested in the distribution of journey lengths of cars. We introduce the stopping
time τ v where τ v = 0 if position v is a parking space, and otherwise τ v is the time the car
starting at v takes to park (τ v = ∞ if the car never parks). We also write τ = τ 0 (by symmetry
we only need to consider v = 0). Given t ≥ 0 and a vertex v, let

V v(t) = ∣∣{(u, s) ∈ V × [t] : car u visits v at time s
}∣∣ + 1{v is a car}

be the number of cars that visit v up to time t .
In the particular case of the lattice Z

d (with edges joining lattice points at Euclidean dis-
tance 1), [4] prove the following theorem.

THEOREM 1.1. Consider the parking process on Z
d with simple symmetric random

walks.

1. If p ≥ 1/2 then E[τ ] = ∞ with E[min{τ, t}] = (2p − 1)t + o(t).
2. If p < 1/2 then τ is almost surely finite. Moreover, if p < (256d6e2)−1 then E[τ ] <

∞.

For p > 1/2, Theorem 1.1 gives good asymptotics for E[min{τ, t}]. However, for p = 1/2
Theorem 1.1 only tells us that E[min{τ, t}] is o(t), while following the seminar by [9] we
know that the authors of [4] conjecture that for d = 1 and p = 1/2 we have E[min{τ, t}] =
�(t3/4). Moreover, for d = 1, Theorem 1.1 only gives E[τ ] < ∞ for p < 0.000528, while it
is conjectured that this holds for all p < 1/2.

Here, we address both conjectures of the authors of [4] when d = 1, and prove the follow-
ing two theorems. The first considers the parking problem on Z with p = 1/2 where we give
strong bounds on the asymptotic growth of E[min{τ, t}] by showing that it indeed equals t3/4

up to a fractional power of log t .

THEOREM 1.2. For the parking problem on Z, when p = 1/2, there exist constants
C,c > 0 such that

ct3/4(log t)−1/4 ≤ E
[
min{τ, t}] ≤ Ct3/4.

REMARK 1.3. Through the expression

E
[
min{τ, t}] =

t−1∑
s=0

P[τ > s],

1We note that [4] work in a slightly more general setting, see Section 2 in [4]. While our results in Section 2
also hold in the setting in [4], we believe that the class of Cayley graphs is a fairly general setting and the link
with lattices is a little clearer.
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Theorem 1.2 gives bounds for the tail P[τ > t], that is, Theorem 1.2 implies the existence of
constants C′, c′ > 0 such that

c′t−1/4(log t)−1/4 ≤ P[τ > t] ≤ C′t−1/4.

This interpretation additionally allows us to present some heuristics for the conjectured ex-
ponent 3/4.

Consider an interval [−Ct1/2,Ct1/2] around 0, for some C > 0 large. By the properties of
the simple symmetric random walk, we would not expect too many cars starting in that inter-
val to exit it by time t . By the properties of the binomial distribution, with some uniformly
positive probability we can also expect at least Ct1/2 + t1/4 cars to start in this interval.
Since every car that parks occupies exactly one parking space, and we only have Ct1/2 − t1/4

such spaces to start with, that surplus of 2t1/4 cars will not find a parking space by time t ,
consequently suggesting that P[τ > t] ≈ t1/4/t1/2 = t−1/4, and this corresponds to an ap-
proximate guess of E[min{τ, t}] ≈ �(t3/4). In the proof of the lower bound in Theorem 1.2
we will follow a similar line of thought, filling in the gaps left in the intuitions above.

The second theorem considers the parking problem on Z with p < 1/2 where we confirm
that the expected journey length of a car is finite as predicted. [4] also ask whether (for a large
family of parking processes) there is a critical exponent γ > 0 such that, for some constant
C > 0, E[τ ] ∼ C(1/2 − p)−γ as p increases to 1/2. For the parking problem on Z, we have
a partial result in this direction.

THEOREM 1.4. For the parking problem on Z, when p < 1/2 we have E[τ ] < ∞. More-
over E[τ ] = O((1/2 − p)−6) as p ↗ 1/2.

We remark that since the completion of this work, [8] showed that the critical exponent
is −3 + o(1) (see Theorems 3 and 4 in [8]) for the continuous time-base parking problem
where cars move at exponentially distributed times. The proof they give involves a coupling
where they release cars one-by-one, seeing if they park within the first T moves, and finally
asserting that it takes on average time T for a car to move T times. As such, their proof also
applies to the discrete time-base parking problem analysed in this paper with the last step no
longer necessary.

In this paper, we will consider strategies that modify the car-parking process. We will
introduce two types of strategy: parking strategies where we allow cars to choose whether
or not to park in an available space, and car removal strategies where we remove cars from
the parking process (we defer formal definitions to Section 2). In each case the strategies will
be previsible in the sense that no future information may be used when choosing whether or
not a car parks at a particular point in time. For a parking triple (L,R,μ) and a strategy S,
we will write V v

S (t) for the value of V v(t) when strategy S is followed, and similarly τ v
S ; we

write G for the greedy strategy (i.e., the original process).
The key properties of parking and car removal strategies that we shall use are given in the

following lemmas, which show that no parking strategy is quicker than the greedy one, and
that adding car removal makes parking easier. We note that these results hold in the more
general setting of Cayley graphs.

LEMMA 1.5. Let S be a parking strategy on the parking triple (L,R,μ). Then for all
t, k ≥ 0 and vertices v,

P
[
V v

G(t) ≤ k
] ≥ P

[
V v

S (t) ≤ k
]
.
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LEMMA 1.6. Let Q be a car removal strategy on the parking triple (L,R,μ). Then
τ v
Q ≤ τv

G, and for all t ≥ 0 we have V v
Q(t) ≤ V v

G(t).

We note that results similar to Lemmas 1.5 and 1.6 have previously been observed in the
related context of the activated random walks. In the ARW model particles perform inde-
pendent continuous-time random walks on Z

d ; active particles that are alone at a site can
fall asleep at some rate λ > 0, and they remain asleep until another particle arrives at that
site, at which point they deterministically activate (see, e.g., [15] and [14], and the refer-
ences therein). The case λ = ∞ is the one that is the closest to the model considered in this
paper.

In order to prove Lemma 1.5 we introduce a different construction of the model, in which
the cars follow directions stored at the vertices they visit, rather than their own individual
random walks. We will refer to this as the space-based model, in contrast to the car-based
model described above. Even though the stochastic properties of the two models are equiv-
alent, the new model allows us to control the quantity V v(t) better, and we are then able to
easily deduce the desired result for the original parking problem. Again, similar ideas have
been explored in the ARW literature (see, e.g., [3]).

The paper is organised as follows. In Section 2 we define the parking processes, introduce
the notions of parking strategies and car removal, and prove Lemmas 1.5 and 1.6. This al-
lows us to consider both more and less restrictive parking problems, which we use in our
arguments. In Section 3 we recall some known probability bounds that are used in this paper.
In Section 4 we prove the upper bound on E[min{τ, t}] in Theorem 1.2, and in Section 5 we
prove the lower bound. In Section 6 we prove Theorem 1.4. Finally in Section 7 we conclude
the paper with some related problems and open questions.

Throughout this paper, we use the notation a ∧ b = min{a, b}. For a normally distributed
random variable Z with mean 0 and variance 1, we write �(x) = P[Z ≤ x].

2. Model specifics, parking strategies, and car removal. We will want to consider
slight modifications of the original parking problem on Z. In this section, we introduce new
notation for these modifications and also compare these modifications to the original problem.
The first modification is the addition of parking strategies. The second is the addition of car
removal to the process. We compare the expected journey length of a car by time t , showing
that nontrivial parking strategies increase expected journey times while car removal decreases
them. In fact, we are able to show that these bounds hold for any parking triple.

2.1. The car-based parking model. Let us recall some definitions. Let H be a group and
R be a generating set for H . The Cayley graph of H with respect to R is the edge-coloured
directed graph L = (H,E) where

E := {
(h,hr) : h ∈ H,r ∈ R

}
,

and the edge (h,hr) is coloured r . Note that if R is closed under taking inverses then (x, y) ∈
E if and only if (y, x) ∈ E, and so we can just consider the underlying graph. For example,
the d-dimensional integer-lattice Z

d can be thought of as the abelian group with generating
set {e1,−e1, . . . , ed,−ed} ⊂ Z

d where the ith coordinate of ei is 1 and all others are 0.
A parking triple is an ordered triple (L,R,μ), where L = (V ,E) is a Cayley graph on a

group V with generating set R and μ is a probability distribution on R. (In later sections we
will be interested in the parking problem on Z, namely the parking triple (Z, {−1,+1},μZ)

where μZ(−1) = μZ(+1) = 1/2. However, the results in this section hold in the more general
model.)

We define the parking problem on the parking triple (L,R,μ) as follows.
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DEFINITION 2.1. Independently for each vertex v ∈ V , let:

• Xv = (Xv
0,Xv

1, . . .) be a Markov chain on L with Xv
0 = v, and transition matrix (pu,w)

where pu,ur = μ(r) for each u ∈ V and r ∈ R, and pu,w = 0 otherwise.
• (Uv

s )s∈N be a sequence of independent Unif([0,1]) random variables.
• Bv be a Bernoulli(p) random variable. We initially place a car at v when Bv = 1 and

otherwise a parking space with the capacity for one car.

A car starting at vertex v moves according to the Markov chain Xv until it finds a free
parking space and parks there. (We do not use the random walks Xv for those v where we
initially place a parking space; we define them just for the simplicity of the model.) If cars
v1, . . . , vk all arrive at the same free parking space at time s, we park car vj with smallest
U

vj
s .

We shall sometimes refer to the model in Definition 2.1 as the car-based parking model.
We remark that we generate new independent tie-splitting values (the (Uv

s )v∈V ) for each s to
maintain fairness. Indeed, had we relied on a single value Uv for a car v throughout the whole
history of the parking process, the cars that had encountered more cars and lost the tie-splits
initially would be more likely to keep losing them, and consequently not parking, later in the
process.

Let (�,F,P) be a probability space. A filtration is a sequence F0 ⊆ F1 ⊆ . . . of σ -
algebras. A random variable τ : ω → N is a stopping time with respect to a filtration (Ft )

∞
t=0

if τ−1({t}) ∈ Ft for each t ∈ N. In the car-based model, for the parking problem on the park-
ing triple (L,R,μ), we consider the probability space (�,F, (Ft )t≥0,P), where an elemen-
tary event ω ∈ � is of the form ω = ((Bv)v∈V , (Xv

s )v∈V,s∈N, (Uv
s )v∈V,s∈N), and the filtration

(Ft )t≥0 is defined by

Ft = σ
((

Bv)
v∈V ,

(
Xv

s

)
v∈V,0≤s≤t ,

(
Uv

s

)
v∈V,1≤s≤t

)
for all t ≥ 0.

2.2. Parking strategies and the space-based model. In the model we have defined, all
cars try to park as soon as they reach a free parking space. This can be thought of as a park-
ing strategy. Let G denote this “greedy” parking strategy: a car parks as soon as it can. It
will be useful to consider different (possibly random) parking strategies as a way of control-
ling where cars park. In the definition below we introduce parking strategies more formally;
St (v,w) = 1 should be thought of as the event that the car starting from v parks in w at time t .

DEFINITION 2.2. Let (L,R,μ) be a parking triple. A parking strategy S = (St (v,

w))t≥1,v,w∈V for the car-based model on (L,R,μ) is a sequence of random variables tak-
ing values in {0,1} with the following properties:

• St (v,w) is Ft -measurable for each v,w ∈ V and t ≥ 1.
• ∑

t≥1,w∈Z St (v,w) ≤ 1 (a car parks at most once).
• ∑

t≥1,v∈Z St (v,w) ≤ 1 (a parking space can hold only one car).
• St (v,w) = 0 whenever Bv = 0 (a parking space cannot be filled by a nonexistent car).
• St (v,w) = 0 whenever Bw = 1 (a car cannot park where there is no parking space).
• St (v,w) = 0 whenever Xv

t �= w (a car cannot park in a space which is not its current
position).

A car starting at v parks in space w at time t if and only if St (v,w) = 1.
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Note that St (v,w) being Ft -measurable means that our parking strategy is previsible, and
that the parking time of a car is a stopping time.

For a parking strategy S and an event E we let PS[E] denote the probability of E when
all cars follow strategy S (note that P = P

G). We will also allow random parking strategies,
which require suitable adjustments to the σ -algebra and the filtration (e.g., we may indepen-
dently flip a coin at the start and choose different parking strategies depending on whether
the coin is heads or tails).

Equipped with these new definitions, we are nearly ready to prove Lemma 1.5. The final
element we shall need is a stochastically equivalent parking process, where the moves of cars
are attached to spaces rather than the cars; we shall refer to this model as the space-based
parking model.

DEFINITION 2.3. Let (L,R,μ) be a parking triple. Independently for each vertex v ∈ V ,
let:

• (Ev
n)n∈N be a sequence of independent μ-random variables,

• (Ũ v
s )s∈N be a sequence of independent Unif([0,1]) random variables.

• B̃v be a Bernoulli(p) random variable. We initially place a car at v when B̃v = 1 and
otherwise a parking space with the capacity for one car.

When a single car arrives (but does not park) at position v, it leaves in the next time step
according to the first unused Ev

n . If the set of cars {w1, . . . ,wr} arrives at v at time s and
do not park, they collect the next r unused directions Ev

n,Ev
n+1, . . . ,E

v
n+r−1, in the order

determined by their increasing values of U
w

s .

For the space-based parking model on the parking triple (L,R,μ) it is less obvious what
the the probability space (�̃, F̃, (F̃t )t≥0, P̃) should be. This is because the number of direc-
tions collected from Ev by cars that visit v by time t but do not park there depends on the
behaviour of cars starting at distance at most t from v in the first t steps of the process. Hence,
we can define the filtration (F̃t )t≥0 to be

F̃t = σ
((

B̃v)
v∈V ,

(
Ev

n

)
(v,n)∈{V ×Z+:n≤Dv(t)},

(
Ũ v

s

)
v∈V,1≤s≤t

)
for all t ≥ 0, where

Dv(t) = ∣∣{(u, s) ∈ V × {0, . . . , t − 1} : car u visits v at time s but does not park there
}∣∣

is the number of departures from v before time t . In other words F̃t contains exactly the parts
of (B,E,U) which determine the movements of cars up to time t , including which cars have
parked. Although at first sight the Reader might find the random nature of F̃t confusing, we
hope that it will not cause difficulties when following the proofs.

DEFINITION 2.4. Let (L,R,μ) be a parking triple. A parking strategy S̃ = (S̃t (v,

w))t≥1,v,w∈V for the space-based model on (L,R,μ) is a sequence of random variables
taking values in {0,1} with the following properties:

• S̃t (v,w) is F̃t -measurable for each v,w ∈ V and t ≥ 1.
• ∑

t≥1,w∈Z S̃t (v,w) ≤ 1 (a car parks at most once).
• ∑

t≥1,v∈Z S̃t (v,w) ≤ 1 (a parking space can hold only one car).
• S̃t (v,w) = 0 whenever B̃w = 1 (a car cannot park where there is no parking space).
• S̃t (v,w) = 0 whenever B̃v = 0 (a parking space cannot be filled by a nonexistent car).
• For all v ∈ L such that:

– B̃v = 1, and
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– for all u ∈ L and s ≤ t − 1 we have S̃s(v, u) = 0,
let E

v1
n1,E

v2
n2, . . . ,E

vt
nt be the directions selected by v in the first t steps of its walk (note

that we have v1 = v). Then S̃t (v,w) = 0 if the walk obtained by starting at v and following
these directions does not end at w (a car cannot park in a space which is not its current
position).

A car starting at v parks in space w at time t if and only if S̃t (v,w) = 1.

We let G̃ denote the greedy parking strategy in the space-based model. In the following
proposition we show that parking strategies in the car-based parking process are stochastically
equivalent to corresponding parking strategies in the space-based parking proces.

PROPOSITION 2.5. Let (L,R,μ) be a parking triple. Let S and S̃ be parking strategies
for the car-based model and the space-based model on (L,R,μ) respectively, and assume
that for all t ≥ 1 and v,w ∈ L we have St (v,w) = S̃t (v,w) whenever the following condi-
tions hold:

1. Bv = B̃v for all v ∈ L (the same cars appear in both models),
2. for all 1 ≤ s < t and v,w ∈ L we have Ss(v,w) = S̃s(v,w) (at every time 1 ≤ s < t ,

the same cars park in the same parking places in both models), and
3. for all 1 ≤ s ≤ t , every car that does not park before time s, occupies the same posi-

tion at time s in both models

(i.e., the strategies S and S̃ behave identically whenever the cars behave identically up to
time t in the two processes). Then for any two sets X ⊂ L × L ×N, Y ⊂ L, and the event

AX,Y = [
for all (vi,wi, ti) ∈ X, car vi is in wi at time ti;

for all wj ∈ Y,wj is a parking space
]

we have P
S[AX,Y ] = P̃

S̃[AX,Y ].

PROOF. We have P
S[AX,Y ],PS̃[AX,Y ] ≤ (1 − p)|Y |, so if |Y | = ∞ then P

S[AX,Y ],
P

S̃[AX,Y ] = 0 and the proposition holds.
If |X| = ∞ then AX,Y must either describe the moves of infinitely many cars, or there must

be a car v such that AX,Y gives the position of v at infinitely many times, or there are some
w1 �= w2 and some v ∈ L, t ∈ N, such that (v,w1, t), (v,w2, t) ∈ X. In all of these cases we
have P

S[AX,Y ],PS̃[AX,Y ] = 0.
Hence we can assume that |X|, |Y | < ∞. Then, let

U = {
v : (v,w, t) ∈ X

} ∪ {
w : (v,w, t) ∈ X

} ∪ Y,

and let T = max{t : (v,w, t) ∈ X}. Then, in the car-based model, we can express AX,Y as a
finite union of finite events concerning the variables Bv , Xv

t , Uv
t , for t ≤ T and v at distance

at most T from some element in U , describing the car/parking space status and the step-by-
step moves of cars in the T -neighbourhood of the elements if U . Analogously, in the space-
based model, we can express AX,Y as a finite union of finite events concerning the variables
B̃v , Ev

n , Ũ v
t , for t ≤ T , n ≤ T 2, and v at distance at most T from some element in U . The

proposition now follows from the properties of S and S̃, from the identical distributions and
independence of (Bv)v∈V and (B̃v)v∈V , of the (Uv

t )v∈V,t≥0 and (Ũv
t )v∈V,t≥0, as well as of

(Xv)v∈Z and ((Ev
n)n∈N)v∈Z (observe that each of Ev

n is used at most once in the process). �

Proposition 2.5 will allow us to deduce Lemma 1.5 from the following lemma.
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LEMMA 2.6. Let S̃ be a parking strategy for the space-based parking process on the
parking triple (L,R,μ). For a vertex v, we write V v

S̃
(t) for the value of V v(t) when strategy

S̃ is followed, and V v

G̃
(t) for the value of V v(t) when the greedy strategy is followed. Then

for all t ≥ 0, we have V v

S̃
(s) ≥ V v

G̃
(s).

PROOF. Consider the space-based parking process on a parking triple (L,R,μ). Let
T v,r−1

(t − 1) be the number of cars that arrived at vr−1 in the first t − 1 time steps and then
picked up Evr−1

n = r . Observe that V v(t) is equal to the sum over r ∈ R of T v,r−1
(t − 1),

plus 1 if a car started at v initially. By induction on t we prove the following claim: for

all t ≥ 0 we simultaneously have T
v,r−1

S̃
(t − 1) ≥ T

v,r−1

G̃
(t − 1) and V v

S̃
(t) ≥ V v

G̃
(t), for all

r ∈ R (where again T
S̃

and T
G̃

denote the quantities when all cars follow strategy S̃ or G̃

respectively).
If a car parks at v in the first t time steps under S̃ then v must have initially been a parking

space; then, if at least one car drove to v under G̃, it follows that some car parked in v under
G̃ as well. Hence if the number of cars arriving at any vertex in the first t time steps is at least
as large under S̃ as under G̃, the same applies to the number of cars leaving v in the first t + 1
time steps. Moreover, for each r ∈ R, since the directions Evr−1

n are selected one-by-one in a

fixed order, V vr−1

S̃
(t) ≥ V vr−1

G̃
(t) implies T

v,r−1

S̃
(t) ≥ T

v,r−1

G̃
(t).

The base case t = 0 of the induction is trivial. Hence suppose that our claim is true for
t = s − 1 ≥ 0. By induction, for each r ∈ R, we have V vr−1

S̃
(s − 1) ≥ V vr−1

G̃
(s − 1); hence we

have T
v,r−1

S̃
(s − 1) ≥ T

v,r−1

G̃
(s − 1). We then obtain

V v

S̃
(s) = ∑

r∈R

T
v,r−1

S̃
(s − 1) + 1{v is a car}

≥ ∑
r∈R

T
v,r−1

G̃
(s − 1) + 1{v is a car}

= V v

G̃
(s).

This completes the proof of Lemma 2.6. �

REMARK 2.7. We observe that this pathwise dominance in the space-based parking pro-
cess does not in general hold for the car-based parking process. Suppose that cars are ini-
tially only located at {1,2,4}, that cars 2 and 4 always go left, and that the path of car 1 is
+1,+1,−1,+1,−1,+1, . . ., that is, two steps to the right followed by an infinite sequence of
pairs −1, +1. In the greedy strategy, car 2 parks at 0 and car 4 parks at 3, while 1 never parks
alternating between positions 2 and 3 forever. Consequently we have V 2

G̃
(s),V 3

G̃
(s) ≈ s/2.

On the other hand, if we ban all cars from parking on the first time steps, car 2 still parks
at 0, car 4 parks at −1, and 1 parks at 3, and all vertices are visited only finitely many
times.

PROOF OF LEMMA 1.5. Let S be a parking strategy for the car-based model on the
parking triple (L,R,μ), let v ∈ L, and let t, k ≥ 0. Observe that for parking strategies in the
space-based model, the filtration F̃t carries all the information about the moves of all cars up
to time t . Therefore we can design a parking strategy S̃ for the space-based model, such that
the assumptions of Proposition 2.5 are satisfied for S and S̃.

Next, we can express the event [V v
S (t) ≤ k] as a finite union of events AX,Y , defined as

in Proposition 2.5, describing the car/parking space status and movements of cars starting
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at distance at most t from v, such that at most k cars arrive at v by time t under S. By
Proposition 2.5, we have P

S[AX,Y ] = P̃
S̃[AX,Y ]. By Lemma 2.6 we have V v

S̃
(s) ≥ V v

G̃
(s)

deterministically, hence if AX,Y ⊆ [V v

S̃
(t) ≤ k], then also AX,Y ⊆ [V v

G̃
(t) ≤ k]. Thus we

have P[V v

G̃
(t) ≤ k] ≥ P̃[V v

S̃
(t) ≤ k], and since by applying Proposition 2.5 again we find

that PG[AX,Y ] = P̃
G̃[AX,Y ], we finally obtain P[V v

G(t) ≤ k] ≥ P[V v
S (t) ≤ k] as claimed. �

In the rest of this paper, we shall consider the car-based parking model only. We remark
that for parking times we may not make a conclusion similar to Lemma 1.5. For example,
consider the parking strategy where all but one car is instructed to never park. The chosen
car will have a much easier job of finding a parking space. To combat this, we need some
symmetry that will allow us to compare visits to a space and parking times of cars, and
therefore make use of Lemma 1.5

We say that a parking strategy S on the parking triple (L,R,μ) is weakly translation
invariant if for all v,w ∈ V , r ∈ R, and t ≥ 0,

P
S[

St (v,w) = 1
] = P

S[
St (vr,wr) = 1

]
.

An equivalent property is that for all v,w ∈ V , r ∈ R and t ≥ 1,

P
S[car v arrives at spot w at time t ] = P

S[car vr arrives at spot wr at time t ].

REMARK 2.8. This is a rather weak form of translation invariance—it does not control
joint events in any sense. Since in this paper we are predominantly working with expectations,
we do not need to worry about this. A more natural form of translation invariance is the
following form: a parking strategy S on the parking triple (L,R,μ) is strongly translation
invariant if for any r ∈ R, the probability measure P is invariant with respect to a translation
by r . (The same is true for car removal strategies which we introduce later.) We note that
the parking strategy (respectively, car removal strategy) we use in Section 4 (respectively,
Section 5) are in fact strongly translation invariant.

Weak translation invariance allows us to equate car journey lengths with total number of
visits to a position in V .

LEMMA 2.9. Let S be a weakly translation invariant strategy on the parking triple
(L,R,μ). Then for all t ≥ 0 and v ∈ V ,

E
S[τ ∧ t] = E

S[
V v(t)

]
.

One can observe that the equality in Lemma 2.9 only holds for expectation, since these are
very distinct random variables: for instance, τ ∧ t is bounded by t , while V v(t) could reach
the order t2.

We remark that Lemma 2.9 is a special case of the well known and more general mass-
transport principle [12], Theorem 8.7, and a similar result was noted at [4], Lemma 4.1. Since
the proof is very short in our setting, we include it for self-containment.

PROOF. Let t ≥ 0 and fix an arbitrary v ∈ V . Write Bt(v) for the vertices of L connected
to v by a path of length at most t . By translation invariance

E
S[τ ∧ t] = E

S[
τ v ∧ t

]
= ∑

s∈[t]

∑
w∈Bt (0)

P
S[car v arrives at spot vw at time s]
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= ∑
s∈[t]

∑
w∈Bt (0)

P
S[

car vw−1 arrives at spot v at time s
]

= E
S[

V v(t)
]
. �

The following easy corollary of Lemma 1.5 and Lemma 2.9 is crucial for our arguments,
and considers the expected journey of a car up to time t under different parking strategies. It
will allow us to derive upper bounds on E

G[τ ∧ t] by considering a different parking strategy
which is easier to control.

COROLLARY 2.10. Let S be a weakly translation invariant parking strategy on the park-
ing triple (L,R,μ). Then for all t ≥ 0,

E
S[τ ∧ t] ≥ E

G[τ ∧ t].

2.3. Car removal strategies. Another way to modify the car parking problem is through
car removal strategies. Under certain circumstances it will be helpful to pretend that a car has
been removed from the process. A car is removed during a step, and it is parked off V . So
if car v is at position w at time t , and is removed during step t + 1, we remove the car from
the process without it taking up a parking space and set τv = t + 1. We remark that we will
always assume a greedy parking strategy when we have a nontrivial car removal strategy.

DEFINITION 2.11. Let (L,R,μ) be a parking triple. A car removal strategy Q =
(Qt(v))t≥1,v∈V on (L,R,μ) is a sequence of random variables taking values in {0,1} with
the following properties:

• Qt(v) is Ft -measurable for each v ∈ V and t ≥ 1.
• Qt(v) = 0 whenever Bv = 0 (a nonexistent car cannot be removed).
• ∑

t≥1 Qt(v) ≤ 1 (a car can only be removed once).

A car starting at v is removed in the t th time step if and only if Qt(v) = 1.

As we did for parking strategies, we define P
Q for a car removal strategy Q. Whenever

we explicitly consider a process involving car removal strategies, we assume that all vehicles
follow the greedy parking strategy.

We are now ready to prove Lemma 1.6. In the one-dimensional setting this will allow us
to derive lower bounds on E[τ ∧ t] by considering an interval and removing cars that enter
or leave the interval.

PROOF OF LEMMA 1.6. For each w ∈ V and t ≥ 0, let Ww
Q(t) be the set of unparked cars

at position w at time t under Q, and let Ww
G(t) denote the same quantity under G (recall that

under G, which is the greedy parking strategy, there is no car removal). We start by showing
that at every position w ∈ V and for every time t ≥ 0 we have Ww

Q(t) ⊆ Ww
G(t). We prove

this by induction on t ≥ 0. The base case t = 0 is trivial, hence suppose that the claim is true
up to and including time t − 1.

Fix a position w and observe first that if a parking space w is filled at time t under Q,
then a car v from Wwr−1

Q (t − 1) must arrive at w at time t for some r ∈ R. By the inductive

hypothesis, v must be in the appropriate set in Wwr−1

G (t − 1), and so it must arrive at w at
time t under G (note that we are in the original parking process, where cars have random
walks attached to them, rather than the space-based parking process considered in the proof
of Lemma 2.6). Therefore under G either spot w must already be filled before t , or a car must
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park in spot w at time t . Therefore any parking space filled under Q at time t must be filled
under G at time not later than t .

Now, by the inductive hypothesis, any car arriving at position w under Q at time t must
arrive at position w under G at time t . If w is not a free parking space under G at time t − 1,
then Ww

Q(t) ⊆ Ww
G(t) and the claim holds. Thus suppose that w is a free parking space at

time t − 1 under G. Then by the argument above, w must be a free parking space at time
t − 1 under Q. Further, if under G a car not from Ww

Q(t) parks at w at time t , then again
Ww

Q(t) ⊆ Ww
G(t) and again we are done. So suppose that under G a car v ∈ Ww

Q(t) parks at
position w at time t . By the tie-breaking procedure, v must have the smallest Ux

t value over
the cars x that arrive at w under G, and so must have the smallest Ux

t value over cars x that
arrive at w under Q. Therefore under Q the car v must also park at w at time t , and so once
again we have Ww

Q(t) ⊆ Ww
G(t).

Now, consider that the set of unparked cars at time t is the union
⋃

w∈V Ww(t), hence if
a car v is still unparked under Q at time t , then there is some w ∈ L such that v ∈ Ww

Q(t).
But we know that Ww

Q(t) ⊆ Ww
G(t), therefore we have v ∈ Ww

G(t), implying that τ v
Q ≤ τ v

G as
desired.

Also, the number of visits to w at time t is∣∣Ww(t)
∣∣ + 1{a car parks at w at time t}.

Since Ww
Q(t) ⊆ Ww

G(t), and additionally we know that

t∑
s=1

1{a car parks under Q at w at time s} ≤
t∑

s=1

1{a car parks under G at w at time s},

the inequality V v
Q(t) ≤ V v

G(t) follows. �

3. Probabilistic bounds. In this section, we state some probabilistic bounds that are
needed for the proofs in Sections 4, 5, and 6.

We make use of the following variant of the Chernoff bound (see [13], Chapter 4).

LEMMA 3.1. Let p ∈ (0,1), N ∈ N, and ε > 0. Then

P
[
Bin(N,p) ≥ N(p + ε)

] ≤ e−2ε2N.

We need some facts about hitting times of the simple symmetric random walk.

LEMMA 3.2. Let a, b > 0 be positive integers. Let {Xn}n≥0 be a simple symmetric ran-
dom walk on Z with X0 = 0. For i ∈ Z, let Hi = min{s : Xs = i}. Then:

(i) P[Hb < H−a] = a
a+b

.

(ii) E[Hb|Hb < H−a] = b(b+2a)
3 .

(iii) E[H−a ∧ Ha] = a2.

PROOF. All of this is standard. Part (i) is Gambler’s ruin (see [6], XIV.2). Part (iii) fol-
lows from (ii) by symmetry and a simple calculation.

For part (ii), we first prove the statement in a slightly different setup. Let c, d be positive
integers with 0 < c < d and assume that X0 = c. We show that

E[Hd |Hd < H0] = (d − c)(d + c)

3
.
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Part (ii) of the lemma then follows immediately by taking d = a + b and c = a. Let Zn =
X3

n − 3nXn and let S = Xn+1 − Xn ∈ {−1,1}. Then, since S2 = 1 and S3 = S, we have

Zn+1 = (Xn + S)3 − 3(n + 1)(Xn + S)

= Zn + 3X2
nS + 3XnS

2 + S3 − 3nS − 3Xn − 3S

= Zn + S
(
3X2

n − 2 − 3n
)
.

Since Xn+1 − Xn takes values in {−1,+1} with mean 0 independently of Fn, and since
Xn is Fn-measurable, we have

E[Zn+1|Fn] = E
[
Zn + (Xn+1 − Xn)

(
3X2

n − 2 − 3n
)|Fn

]
= Zn + (

3X2
n − 2 − 3n

)
E[Xn+1 − Xn] = Zn,

and so Z is a martingale.
For n ∈ N, Doob’s optional stopping theorem gives E[Zn∧H0∧Hd

] = E[Z0] = c3. At the
same time, |Zn∧H0∧Hd

| is bounded by 3d3 + 3(H0 ∧ Hd)d for all n. Additionally, H0 ∧ Hd

is integrable and so by the dominated convergence theorem we have

E[ZH0∧Hd
] = lim

n→∞E[Zn∧H0∧Hd
] = c3.

But ZH0∧Hd
= 1Hd<H0(d

3 − 3dHd). Therefore

c3 = E[ZH0∧Hd
]

= E
[
1Hd<H0

(
d3 − 3dHd

)]
= P[Hd < H0](d3 − 3dE[Hd |Hd < H0]).

By (i), P[Hd < H0] = c/d , and so E[Hd |Hd < H0] = d3−c2d
3d

= d2−c2

3 . �

Let Mn denote the maximum value in the first n time steps of the simple symmetric
random walk starting at 0, and let mn denote its corresponding minimum value. Define
pn,r = ( n

n+r
2

)
2−n. It can be shown (see, e.g., [6], Theorem III.7.1) that for r ≥ 0 we have

P[Mn = r] = P[mn = −r] =
{
pn,r if n − r is even,

pn,r+1 otherwise.

Let Y ∼ Bin(n,1/2), where we will assume that n is even, so that for k ≤ n/2, P[Y =
n+2k

2 ] = pn,2k . We now conclude this section with some tail bounds for the maximum of the
random walk. We remark that the analogous results hold for mn by symmetry.

LEMMA 3.3.

(i) P[Mn ≥ 2α
√

n logn] ≤ 2n−2α2
.

(ii) P[Mn ≥ c
√

n] and P[Mn ≤ c
√

n] are bounded away from zero for each c > 0.

PROOF. For (i) we have

P[Mn ≥ 2k] = P[Mn = 2k] +
n/2∑


=k+1

(
P[Mn = 2
 − 1] + P[Mn = 2
])

= pn,2k +
n/2∑


=k+1

(pn,2
−1 + pn,2
)
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= pn,2k + 2
n/2∑


=k+1

pn,2
(3.1)

= P

[
Y = n + 2k

2

]
+ 2

n/2∑

=k+1

P

[
Y = n + 2


2

]

≤ 2P
[
Y ≥ n + 2k

2

]
.

The same holds for odd n, and so we see that P[Mn ≥ 2k] ≤ 2P[Y ≥ n(1/2 + k/n)].
Setting k = α

√
n logn and applying Lemma 3.1 gives

P[Mn ≥ 2α
√

n logn] ≤ 2n−2α2
.

For (ii), setting k = c
√

n we get

P[Mn ≤ 2k] ≥ 1 − P[Mn ≥ 2k]
≥ 1 − 2P

[
Y ≥ n(1/2 + k/n)

]
= 1 − 2P

[
Y − n/2√

n/4
≥ 2c

]
→ 1 − 2

(
1 − �(2c)

)
,

= 2�(2c) − 1,

as n → ∞ by the central limit theorem. Since c > 0 we have �(c) > 1/2, and so P[Mn ≤
c
√

n] is bounded away from zero for each c > 0.
From (3.1), we may read off P[Mn ≥ 2k] ≥ 2P[Y ≥ n+2k+2

2 ] = 2P[Y ≥ n+2k
2 ]−O(n−1/2),

and so again for k = c
√

n,

P[Mn ≥ 2k] ≥ 2P
[
Y ≥ n + 2k

2

]
− o(1)

= 2P
[
Y − n/2√

n/4
≥ 2c

]
− o(1)

→ 2 − 2�(2c) > 0

as n → ∞ by the central limit theorem. Therefore P[Mn ≥ c
√

n] is bounded away from zero
for each c > 0. �

We remark that Lemma 3.3 part (ii) also follows naturally from the convergence of the
simple symmetric random walk to Brownian motion in the uniform topology.

4. Upper bound on E[τ ∧ t]. In this section, we prove the upper bound in Theorem 1.2.
We fix a target time t and consider a particular weakly translation invariant parking strategy
(specific to t) with additional properties. The parking strategy assigns (at time 0) a parking
space to most of the cars and tells the other cars they can never park. Each car then drives until
it reaches its assigned parking place (or just keeps driving if it has no assigned space). The
work left to do is to show that many cars are assigned parking spaces that they will reach in a
short expected amount of time. We split this section into two parts; the first one detailing the
parking strategy and showing some of its properties, and the second one bringing everything
together to prove the desired upper bound.
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4.1. The parking strategy. Fix t ≥ 1. We define the parking strategy T = Tt as follows.
We first divide Z into intervals of length �√t�. On each interval I , we run through the loca-
tions from right to left, attempting to assign to each car i a parking space P(i) somewhere
in I and to the left of i. If there is no unassigned parking space available within distance
O(t1/4) then car i will not try to park, and we set P(i) = ; and if i is a parking space we
set P(i) = i. This defines a strategy that is periodic, but not weakly translation invariant (be-
cause the intervals have specified endpoints). So we begin by applying a random shift to our
intervals to make the strategy weakly translation invariant.

More formally, let ζ = �√t� and ν = �t1/4�. First let Z be uniformly distributed on [ζ ]
independently from the original model. Then, given Z = z, for each interval [z+ kζ, z+ (k +
1)ζ − 1] we assign specific parking spaces to cars as follows:

Initialization Set m = z + (k + 1)ζ − 1, W =∅;
while m ≥ z + kζ do

if There is initially a parking space at m then
Set P(m) = m;
if W �= ∅ then

Let v be the largest element of W . Remove v from W and set P(v) = m;
end

else
There is initially a car at m. Add m to W ;

end
if |W | = ν then

Let v be the largest element of W . Remove v from W and set P(v) = ;
end
Set m := m − 1;

end
Finalization For all v ∈ W , set P(v) = .

The strategy T is defined as follows: for each car i:

• if P(i) = , then St (i, j) = 0 for all t ≥ 1, j ∈ Z (car i never parks).
• if P(i) �= , then St (i,P (i)) = 1 for the first time t when car i visits P(i), and St (i, j) = 0

otherwise.

Note that the random variable Z causes this parking strategy to be weakly translation
invariant, and so it is sufficient to show that ET [τ ∧ t] = O(t3/4) to prove the upper bound in
Theorem 1.2.

The benefit of this parking strategy is that it is much easier to give bounds on the expected
hitting time of a fixed vertex rather than an arbitrary empty parking space. However, there
are a couple of potential problems: the parking strategy might assign cars to distant parking
spaces; and the parking strategy might dictate that many cars never park (P(v) =  for too
many v). The next two lemmas resolve these problems.

LEMMA 4.1. For all i we have P(i) =  or i − P(i) ≤ 2ν − 1.

LEMMA 4.2. For all i ∈ Z, P[P(i) = ] = O(t−1/4).

Lemma 4.1 follows from our choice to abandon the oldest car when the queue is too long.

PROOF OF LEMMA 4.1. Suppose that i is a car and that after it joins the queue W we
have |W | = q . Further let r be the number of cars assigned a parking space or removed from



1090 M. PRZYKUCKI, A. ROBERTS AND A. SCOTT

W and having P set as  in the next 2ν − 1 loops. If r ≥ q then we are done since i is
qth in the queue to either be assigned a parking space or removed and have P(i) set as .
Otherwise, if r < q , the queue is never emptied in the next 2ν − 1 loops and we must see at
most q − 1 parking spaces which implies that we have at least 2ν − q new cars added to the
queue. Thus after those next 2ν − 1 loops the number of cars in the queue must be at least
q + (2ν − q) − (q − 1) = 2ν + 1 − q > ν. This is a contradiction since the queue can never
be longer than ν cars. �

The proof of Lemma 4.2 is a little more involved. We use some elementary properties of
irreducible, aperiodic Markov chains.

PROOF OF LEMMA 4.2. We may assume without loss of generality that Z is 0, and we
consider the interval obtained by taking k = 0. By symmetry and translation invariance, we
see that for any i ∈ Z

(4.1) P
T [

P(i) = 
] = ζ−1

E
T [∣∣{j ∈ [0, ζ − 1] : P(j) = 

}∣∣].
Let Cn be the size of W just before the last if clause of the loop when m = ζ − n, and

set C0 = 0. In most situations we can only have Cn+1 − Cn equal to either 1 (if ζ − n − 1
is a car) or −1 (if ζ − n − 1 is a parking space). However, there are two exceptions to that
rule. If Cn = 0, that is, if W = ∅ after we observe ζ − n, and if ζ − n − 1 is a parking
space, then Cn+1 = 0 as well. Moreover, if Cn = ν then in the last if clause of the loop
we deterministically remove one element from W . Thus depending on the value of whether
ζ −n− 1 is a car or a parking space, we might have either Cn+1 = ν or Cn+1 = ν − 2. Hence
C = (C0,C1, . . .) is a Markov chain with transition probabilities (pk,l)k,l∈{0,...,ν} satisfying:

• p0,0 = 1/2 (there is a parking space but no queue),
• p0,1 = 1/2 (a car joins an empty queue),
• pk,k−1 = 1/2 when i ∈ {1, . . . , ν − 1} (a car in the queue is assigned a parking space),
• pk,k+1 = 1/2 when i ∈ {1, . . . , ν − 1} (a new car joins the queue),
• pν,ν−2 = 1/2 (we tell an old car to leave the queue, and assign another queueing car to a

parking space),
• pν,ν = 1/2 (we tell an old car to leave the queue, and a new car joins the queue),
• pk,l = 0 otherwise.

We see that some vertex gets assigned  each time C hits ν. Additionally, the Cζ vertices
remaining in W at the end of the execution of the algorithm also get assigned P(v) = .
Therefore

(4.2)
∣∣{j ∈ [0, ζ − 1] : P(j) = 

}∣∣ = Cζ + ∑
n=0,...,ζ−1

1Cn=ν.

In our algorithm, we initially impose that W = ∅. If, however, we started the algorithm with
W ′ containing some cars, then at every step in the algorithm, we would have W ′ ⊇ W . Let
C′

n be the size of W ′ just before the last if clause of the loop when m = ζ − n. Then we see
that {C ′

n} is a Markov chain with transition probabilities (pk,l)k,l∈{0,...,ζ } such that C′
n ≥ Cn

for all n. Thus, if |W ′| initially has distribution μ, we see

P[Cn = ν] ≤ P
[
C′

n = ν
] = PC0∼μ[Cn = ν].

In particular, if we let π be a stationary distribution of C, then for all n

PC0=0[Cn = ν] ≤ PC0∼π [Cn = ν] = π(ν).

Hence if we take the expectation of (4.2) we obtain

E
T [∣∣{j ∈ [0, ζ − 1] : P(j) = 

}∣∣] ≤ E
T [Cζ ] + ζπ(ν).
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Since C is irreducible and aperiodic, and has a finite state space, it has a unique stationary
distribution π . One can then verify that π(k) = 1

ν
for k = 0, . . . ν − 2, and π(k) = 1

2ν
for

k = ν − 1, ν. Since C takes values in 0, . . . , ν, we may bound E[Cζ ] by ν to find

E
T [∣∣{j ∈ [0, ζ − 1] : P(j) = 

}∣∣] ≤ ν + ζ

2ν
.

Together with (4.1) we obtain P
T [P(i) = ] ≤ ν

ζ
+ 1

2ν
= O(t−1/4). �

4.2. Proof of the upper bound. We now have all the ingredients necessary to prove the
upper bound in Theorem 1.2. We will do this by bounding E

T [τ ∧ t] and then appealing to
Corollary 2.10.

PROOF OF THE UPPER BOUND IN THEOREM 1.2. Let t ≥ 0. Without loss of generality
we can consider τ = τ 0. Then

E
T [τ ∧ t] = E

T [
τ 0 ∧ t

]
= E

T [
τ 0 ∧ t |P(0) = 

]
P

T [
P(0) = 

] +E
T [

τ 0 ∧ t |P(0) �= 
]
P

T [
P(0) �= 

]
≤ tPT [

P(0) = 
] +E

T [
τ 0 ∧ t |P(0) �= 

]
.

Lemma 4.2 gives PT [P(v) = ] = O(t−1/4) and so

(4.3) E
T [

τ 0 ∧ t
] ≤ E

T [
τ 0 ∧ t |P(0) �= 

] + O
(
t3/4)

.

Let a = 2ν = 2�t1/4�, b = ζ = �√t�. For an integer m, let Hm be the first hitting time of
the random walk X0 to m. Lemma 4.1 tells us that if P(0) �= , then P(0) ≥ −a. We therefore
see τ 0 ∧ t = HP(0) ∧ t ≤ H−a . When H−a > Hb, we may trivially bound τ 0 ∧ t by t . Putting
this into (4.3) gives

E
T [

τ 0 ∧ t
] ≤ E

T [
H−a|H−a < Hb,P (0) �= 

]
P

T [
H−a < Hb|P(0) �= 

]
+ tPT [

H−a > Hb|P(0) �= 
] + O

(
t3/4)

.

Clearly X0 is independent from P(0), which only depends on the initial configuration, and
so

E
T [

τ 0 ∧ t
] ≤ E[H−a|H−a < Hb] + tP[H−a > Hb] + O

(
t3/4)

.

Lemma 3.2(i) and (ii) tells us that P[Hb < H−a] = O(t−1/4) and E[H−a|H−a < Hb] =
O(t3/4). We therefore see that

E
T [

τ 0 ∧ t
] ≤ O

(
t3/4) + tO

(
t−1/4) + O

(
t3/4) = O

(
t3/4)

.

Finally, we appeal to Corollary 2.10 to obtain

E[τ ∧ t] = E
G[τ ∧ t] ≤ E

T [τ ∧ t] = O
(
t3/4)

. �

5. Lower bound on E
T [τ ∧ t]. In this section, we prove the lower bound in Theo-

rem 1.2. We do this by considering a parking process on an interval, and appealing to various
properties of the simple symmetric random walk. While the underlying ideas are relatively
simple, proving them rigorously requires a number of steps and some new ideas. We start
with an outline of the proof.
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5.1. Outline of proof. Instead of considering the expected journey length up to time t ,
we consider the expected proportion of cars that have parked by time t . It is helpful to restrict
ourselves to a finite interval, and this is where car removal strategies become useful. We know
by Lemma 1.6 that by removing cars from the process we make it easier for the remaining
cars to park. Therefore, any lower bound over an interval for the proportion of unparked cars
gives a lower bound for E[τ ∧ t].

From here, we consider a long interval L ∪ M ∪ R, where L, M , R are the left, middle,
and right subintervals respectively. We will choose the sizes of L and R so that with high
probability no car from M leaves L ∪ M ∪ R by time t . The idea is that with positive proba-
bility the number of cars starting in M is a few standard deviations above the mean, creating
an excess of cars, and that this excess is not relieved by what happens in L and R. To be able
to quantify this, we introduce swapping: this is a way of switching positions of cars so that
at any time, from left to right, we see the cars that started in L, then M , and then R. This
modification does not change the stochastic properties of the process, but does allow us to
say how much relief L and R provide by way of parking spaces available to cars starting in
M .

Finally, we will bring everything together and appeal to Lemma 1.6 to obtain the desired
lower bound on E[τ ∧ t].

5.2. The car removal strategy and the swap-modification. We define the car removal
strategy Q as follows. Fix integers k > 8 and 
 > 4. Let ζ = �√t log t�. Then for each integer
r ∈ Z we remove any car which attempts to make a step (in either direction) between r(2(k +

)ζ + 1) and r(2(k + 
)ζ + 1) + 1.

We show that a proportion (t log t)−1/4 of cars remains active (i.e., unparked and not re-
moved) at time t under the car removal strategy Q. To establish this, it is sufficient to consider
the parking process on an interval of length 2(k + 
)ζ + 1 where we assume that cars leaving
the interval at either end are removed. Let L = Z∩ [−(k + 
)ζ,−kζ ), let M = Z∩ [−kζ, kζ ]
and R = Z∩ (kζ, (k + 
)ζ ].

We want to show that with positive probability we start with an excess of cars in M which
do not escape L ∪ M ∪ R and that L and R do not offer up enough spare parking capacity.
It turns out that quantifying what capacity R and L provide is not straightforward since
one cannot easily separate what happens to the cars with respect to their starting positions.
Particularly problematic is that cars starting in different sections (L, M , or R) may swap
positions. The following modification of the process ensures that at any given time the active
cars, as seen from left to right, started their journeys in L, then in M , and finally in R, and
will prove very useful.

DEFINITION 5.1 (The modified parking process). Given the parking process X, we de-
fine a modified process Y as follows. At time 0, label cars according to their starting intervals
L, M , or R. For s ≥ 0 we write C(s) for the set of starting positions (in L ∪ M ∪ R) of the
cars that are still active at time s (hence C(0) is the set of i such that we initially place an
active car at i). Further we write CL(s) for the set of starting positions of the cars that started
in L and are still active at time s; we similarly define CM(s) and CR(s). For a car starting at
i which is still active at time s we write Y i(s) to denote its position at time s.

Given the set C(s) of cars active at time s, and their positions (Y i(s) : i ∈ C(s)), we want
to define C(s + 1) and the positions (Y i(s + 1) : i ∈ C(s + 1)). We do this in several steps:
at each step, we move the cars around in a way that preserves the number of cars at each
location. We use Zi

1, Zi
2, and Zi

3 to denote intermediate rearrangements, preserving Y i for
the final position.

Roughly speaking: Z1 is where the cars move according to their respective random walks.
From Z1 to Z2 we swap cars so that no L-car is to the right of an R-car. From Z2 to Z3 we
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swap cars so that no L-car is to the right of an M-car. Finally, from Z3 to Y we swap cars so
that no M-car is to the right of an R-car. The end result is a swapping of cars which preserves
the number of cars at each vertex, is such that cars move by at most one in a single time step,
and is such that from left to right the cars have labels L, then M , and then R.

• For any car active at time s, define Zi
1(s + 1) = Y i(s) + (Xi(s + 1) − Xi(s)).

• Let i1, . . . , ix ∈ L (with Z
ik
1 (s +1) increasing in k) be the starting positions of cars labelled

L that are active at time s and such that the move at time s + 1 places them to the right of
some active car labelled R. Similarly, let j1, . . . , jy ∈ R (with Z

jk

1 (s + 1) increasing in k)
be the starting positions of cars labelled R that are active at time s and such that the move
at time s + 1 places them to the left of some active car labelled L.

We rearrange the cars as follows: for all i /∈ {i1, . . . , ix, j1, . . . , jy} let Zi
2(s + 1) =

Zi
1(s +1). Let (m1, . . . ,mx+y) be a permutation of {i1, . . . , ix, j1, . . . , jy} with Z

mk

1 (s +1)

increasing in k. Then, for 1 ≤ 
 ≤ x, let Z
i

2 (s + 1) = Z

m


1 (s + 1), and for 1 ≤ 
 ≤ y, let

Z
j


2 (s + 1) = Z
mx+


1 (s + 1). After this procedure, no car labelled L is to the right of a car
labelled R.

• Given Zi
2(s + 1) for all i ∈ C(s), we define Zi

3(s + 1) by reordering in a similar way the
positions Zi

2(s + 1) of the cars that started in L or in M in such a way that no car that
started in L has a car that started in M to its left:

Let i1, . . . , ix ∈ L (with Z
ik
2 (s + 1) increasing in k) be the starting positions of cars

labelled L that are active at time s and such that the move at time s + 1 and the previ-
ous rerrangement places them to the right of some active car labelled M . Similarly, let
j1, . . . , jy ∈ M (with Z

jk

2 (s + 1) increasing in k) be the starting positions of cars labelled
M that are active at time s and such that the move at time s +1 and previous rearrangement
places them to the left of some active car labelled L.

We rearrange the cars as follows: for all i /∈ {i1, . . . , ix, j1, . . . , jy} let Zi
3(s + 1) =

Zi
2(s +1). Let (m1, . . . ,mx+y) be a permutation of {i1, . . . , ix, j1, . . . , jy} with Z

mk

2 (s +1)

increasing in k. Then, for 1 ≤ 
 ≤ x, let Z
i

3 (s + 1) = Z

m


2 (s + 1), and for 1 ≤ 
 ≤ y, let

Z
j


3 (s + 1) = Z
mx+


2 (s + 1).
Note that this operation can only move cars labelled L to the left; hence we still have no

car labelled L to the right of a car labelled R.
• Finally, given Zi

3(s + 1) for all i ∈ C(s), we define Y i(s + 1) by reordering in a similar
way the positions Zi

3(s + 1) of the cars that started in M or in R in such a way that no car
that started in R has a car that started in M to its right. Again, note that this operation only
moves cars labelled R to the right, hence we still have no car labelled L to the right of a
car labelled R. Moreover, a car labelled M can only be moved to a position Zi

3 previously
occupied by a car labelled M or R, which we know has no car labelled L to its right; hence
the same holds about cars labelled M after the rearrangement.

If a single car starting at i reaches an empty parking space at Y i(t), then it parks there.
When at least two cars simultaneously arrive at a parking space v at time t , we choose the
car i labelled L with smallest Ui

t to park there; in the absence of a car labelled L, the car i

labelled R with smallest Ui
t parks there; finally, if only cars labelled M meet at v, the car i

with smallest Ui
t parks there. When a car leaves L ∪ M ∪ R, we say it is inactive and remove

it from the process. We say that a car becomes left-inactive if it reaches minL − 1, and it
becomes right-inactive if it reaches maxR + 1. Finally, let C(s + 1) ⊆ C(s) be the set of cars
active at time s that have neither parked nor become inactive at time s + 1.

REMARK 5.2. In the process described in Definition 5.1, for any i ∈ Z, Y i(s + 1) −
Y i(s) ∈ {−1,0,+1}—the total move of a car in a step is at most one. Indeed, consider an
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arbitrary car i labelled M with Y i(s) = j . At time s it has no cars labelled L strictly to its
right and no cars labelled R strictly to its left. At time s + 1, all cars labelled L can only drive
to positions at most j + 1 (so Zk

1(s + 1) ≤ j + 1 for each k ∈ CL(s)), and cars labelled R

drive to positions at least j − 1 (so Zk
1(s + 1) ≥ j − 1 for each k ∈ CR(s)). It is not possible

to move i to a position strictly to the left of the left-most (according to Z1) car labelled R

so that Y i(s) ≥ j − 1. Similarly it is not possible to move i to a position strictly to the right
of the right-most (according to Z1) car labelled L so that Y i(s) ≤ j + 1. Similar arguments
apply to cars labelled L or R.

Let P̃ be the probability measure with respect to the modified parking process. If we ignore
the labels of the cars, then the difference from the original parking process under Q is that we
swap some future trajectories of cars. Since the swapping is determined by past trajectories,
the unlabelled modified process has the same distribution as the original parking process with
car removal strategy Q. Thus

Ẽ[#active cars in L ∪ M ∪ R at time t]
= E

Q[#active cars in L ∪ M ∪ R at time t].
(5.1)

5.3. Proof of the lower bound. Before completing the proof of Theorem 1.2, we prove
some preliminary lemmas concerning the modified parking process. Unless stated otherwise,
we assume that we are dealing with the modified parking process (Definition 5.1) throughout
this section.

First we consider how many cars from L and R become inactive. Intuitively this should be
maximised if the cars drive monotonically towards the ends of the interval. Given the initial
arrangement of cars and parking spaces on L, let DL = DL(t) be the number of cars starting
in L which would become left-inactive by time t should all cars with label L move left deter-
ministically. Similarly let DR = DR(t) denote the number of cars with label R that become
right-inactive by time t in the process where all cars with label R move right deterministically.
The next lemma shows that this intuition is correct.

LEMMA 5.3. The number of cars with label L which become left-inactive by time t is at
most DL.

We prove this by considering parking spaces v left unfilled or filled by a car with label M

or R. Any car with label L starting to the right of v cannot venture to the left of such v as it
would have parked there. This restricts the cars with label L which become left-inactive.

PROOF. Under P̃, suppose that j is the smallest integer which has a parking space either
unfilled or filled by a car labelled M or R by time t . Let J = L ∩ [−(k + 
)ζ, j − 1]. We
claim that the only cars labelled L that can become left-inactive are the cars from J , and
only cars originating in J park in J . First suppose that j is unfilled. No car from the right of
j passes through j (else it would park there) and so no car from the right of j can become
left-inactive.

So suppose that car w (labelled M or R) parks in j . Under P̃ at any time, from left to
right, the unparked cars have labels L, then M , and then R. Therefore, any car v labelled
L originating from an integer greater than j , before it parks, must stay to the left of the car
w which parks in j . Since cars in the modified process move at most one step at each time,
the car v cannot be unparked at time t since it would have visited j before w parks there.
Similarly, v cannot park to the left of j since it would first pass through j (before w parks
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there). Therefore, any car labelled L originating from an integer greater than j must have
parked in a spot greater than j .

Suppose that cars starting at positions i1 < · · · < iN < j become left-inactive starting
from J . Observe that every parking space to the left of iN must be filled by a car origi-
nating from J (otherwise, the car starting in iN must reach a free parking space on its route
to minL− 1). Let p = j − 1 if all parking places in J are filled in the process, and otherwise
let p + 1 be the leftmost empty parking space in J at time t . We see that all parking spaces
to the left of p + 1 must be filled by cars originating from the left of p + 1 (a car starting to
the right of p would fill p + 1 first). But then there must be a surplus of N cars to the left of
p + 1.

If all the cars drove left deterministically, this surplus would result in at least N cars,
starting to the left of p + 1, becoming left-inactive. Thus we have DL ≥ N , proving the
claim. �

REMARK 5.4. Clearly, the analogous claim that the number of cars from R becoming
right-inactive is bounded by DR , also holds.

Note that DL and DR are dependent only on the initial car configuration (Bi)i∈Z. Let SL

be the number of cars which start in L and let PL be the number of parking spaces in L

(hence clearly SL + PL = |L|). Similarly define SR and PR .

LEMMA 5.5. There exists ε > 0 (independent of t) such that

P
[
SL − PL − DL ≥ −(t log t)1/4]

> ε.

For this lemma we consider the random walk defined by the number of cars minus the
number of parking spaces we see in the initial configuration in L while going from right to
left through the subinterval, and the relation between the minimum value of this random walk
and the process where all cars in L deterministically drive left.

PROOF. Consider the simple symmetric random walk starting at 0 which increases at
time i ≥ 1 if the ith rightmost point in L initially contains a car, and decreases if the ith
rightmost point in L contains a parking space. Suppose that while traversing L, the walk last
attains its minimum value −m ≤ 0 at time j , and let x be the j th rightmost point in L. Then,
in the process where all cars in L deterministically drive left, every car starting to the right
of x finds a parking place, the process ends with m empty spots to the right of x − 1, every
spot to the left of x is filled by a car, and all the cars that do not park reach the left end of the
interval and become left-inactive.

The number of parked cars in this process is SL −DL, and so the number of unfilled park-
ing spaces is PL − SL + DL. Therefore SL − PL − DL = −m. From the previous paragraph,
we see that SL − PL − DL is distributed like the minimum of a simple symmetric random
walk of length 
ζ . So by Lemma 3.3(ii) it is at least −(t log t)1/4 with probability bounded
away from zero. �

REMARK 5.6. An analogous claim holds if we replace SL, PL, DL with SR , PR , DR

respectively.

We would like to say that no car from L becomes right-inactive. Indeed, we could then
say that at time t , the number of cars from L (possibly parked) still in L ∪ M ∪ R minus the
number of parking spaces (filled or unfilled) in L is at least SL − PL − DL ≥ −(t log t)1/4

with probability at least ε. The next result shows that this occurs, and also that no car from
M becomes inactive.
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LEMMA 5.7. With probability 1 − o(1/t), the random walks (Xi)i∈L∪M∪R are such that
for all possible starting configurations of active cars and parking places in L∪M ∪R, in the
first t time steps the following holds: no car starting in M becomes inactive, no car starting
in L reaches R, and no car starting in R reaches L.

To prove this Lemma we combine the results concerning the maximum value of a simple
symmetric random walk given in Section 3 and the effects of the swaps. Roughly speaking
we note that the swaps respectively push cars from L, M , and R to the left, middle, and right.

PROOF. For each i ∈ L ∪ M ∪ R, let Mi be the maximum of {Xi
s − i : s ≤ t}, and mi the

minimum of {Xi
s − i : s ≤ t}. By Lemma 3.3(i), P[mi ≤ −4

√
t log t] = P[Mi ≥ 4

√
t log t] ≤

2t−8. Hence by the union bound, with failure probability o(t−1), for all i ∈ L ∪ M ∪ R the
random walks Xi are at distance at most 4ζ from their corresponding starting point i until
time t .

Assume that for all i ∈ L ∪ M ∪ R, Xi is at distance at most 4ζ from i until time t . We
now show that for all starting configurations of active cars and parking places in L ∪ M ∪ R,
in the first t time steps, no car starting in M becomes inactive, no car starting in L reaches R,
and no car starting in R reaches L.

Consider a car starting at i ∈ L. If the car is still active at time s in the modified parking
process, then Y i(s) ≤ Xi(s), as if the position of the car is ever changed as a result of landing
to the right of a car labelled M or R, then it can only be pushed further left. Therefore it stays
to the left of (4 − k)ζ . Similarly all cars labelled R stay to the right of (k − 4)ζ . Since k > 8,
no car from L reaches R, and vice versa.

Now consider a car starting at i ∈ M . If the position of the car is never changed due to
moving past a car labelled L or R, then it never reaches a point more than 4ζ from i and so
cannot become inactive (recall that 
 > 4).

Hence suppose the car at some point has its position changed due to finding itself to the
left of a car labelled L. This implies that the car must at some point be to the left of (4 − k)ζ

(or else it cannot pass a car labelled L). If the car reaches (k − 4)ζ + 1 at some point, then
there must be a passage of the car between (4 − k)ζ and (k − 4)ζ contained within [(4 −
k)ζ, (k − 4)ζ ]. In this segment, the position of the car cannot be changed as it keeps all cars
labelled L to its left, and all cars labelled R to its right. Therefore it moves according to Xi ,
and so Xi reaches points 2(k − 4)ζ > 8ζ apart (recall that k > 8). This cannot happen since
the maximum modulus of Xi − i is at most 4ζ .

Therefore the car does not have its position changed due to being to the right of a car
labelled R. So while the car remains active, its position is bounded below by Xi (having its
position changed can only push its the car to the right). Since the car does not reach (k − 4)ζ ,
we see that the position of the car is contained in [(−k − 4)ζ, (k − 4)ζ ] and so the car cannot
become inactive (as 
 > 4).

The argument for a car which at some point finds itself to the right of a car labelled R is
identical. We conclude that no car originating from M becomes inactive. �

We are now in a position to prove Theorem 1.2.

PROOF OF THE LOWER BOUND IN THEOREM 1.2. It is enough to show that with prob-
ability bounded away from zero (say at least δ > 0), at time t there are at least (t log t)1/4

active cars in L ∪ M ∪ R in the modified process. If this holds, then the result easily follows
by symmetry, Lemma 1.6 and (5.1):

E[τ ∧ t] = E
N [∑v∈L∪M∪R τv ∧ t]

|L ∪ M ∪ R|
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≥ E
Q[∑v∈L∪M∪R τv ∧ t]

|L ∪ M ∪ R|

≥ Ẽ[#active cars at time t in L ∪ M ∪ R]
2(k + 
)ζ + 1

· t

= Ẽ[#active cars at time t in L ∪ M ∪ R]
2(k + 
)ζ + 1

· t

≥ δ(t log t)1/4

2(k + 
)ζ + 1
· t

= �
(
t3/4 log−1/4 t

)
.

Let IL be the number of cars starting in L that become left-inactive and let IR be the
number of cars starting in R that become right-inactive. Analogously to L and R, let SM be
the number of cars which start in M and let PM be the number of initial parking places in M .
Hence, in total there are PL + PM + PR parking places in L ∪ M ∪ R.

Suppose that in the first t steps of the process, no car starting in M becomes inactive, no
car starting in L reaches R, and no car starting in R reaches L. Then at time t , the number of
cars (active or parked) in L ∪ M ∪ R is SM + (SL − IL) + (SR − IR). By Lemma 5.3 this is
at least SM + (SL − DL) + (SR − DR). Since only one car can park in a parking space, the
number of active cars in L ∪ M ∪ R at time n must be at least

(5.2) (SM − PM) + (SL − PL) − DL + (SR − PR) − DR.

Observe that SM −PM is determined by the starting configuration in M , SL −PL −DL is
determined by the starting configuration in L, and SR −PR −DR is determined by the starting
configuration in R. Therefore these random variables are mutually independent. Let CM be
the event that SM − PM is at least 3(t log t)1/4, let CL be the event that SL − PL − DL ≥
−(t log t)1/4, and let CR be the event that SR − PR − DR ≥ −(t log t)1/4.

Let A be the random event, depending on the random walks Xi only, that for all initial
configurations of cars and parking places in L∪M ∪R, no car from M becomes inactive, no
car from L reaches R, and no car from R reaches L. Observe that A, CL, CM , CR are mutu-
ally independent events. By Lemma 5.7, A occurs with high probability. By Lemma 5.5 both
CL and CR occur with probability bounded away from zero. Let K = 2kζ + 1 ≈ 2k

√
t log t .

Since

SM − PM = 2kζ + 1 − 2PM ∼ K − 2 Bin(K,1/2),

we have

P
[
CM] = P

[
Bin(K,1/2) ≤ K − 3(t log t)1/4

2

]

= P

[Bin(K,1/2) − K
2√

K
4

≤ −6(t log t)1/4
√

K

]
.

By the central limit theorem, this probability tends to �(− 6√
2k

) as t tends to infinity. There-

fore CM occurs with probability bounded away from zero. So all four events A, CL, CM , CR

occur simultaneously with probability bounded away from zero.
Suppose that the events A, CL, CM , CR all occur. Then recalling equation (5.2) we see

that the number of active cars in L ∪ M ∪ R at time t is at least

(SM − PM) + (SR − PR) − DR + (SL − PL) − DL
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≥ 3(t log t)1/4 − (t log t)1/4 − (t log t)1/4

= (t log t)1/4.

We conclude that with probability bounded away from zero, there are at least (t log t)1/4

active cars in L ∪ M ∪ R at time t . The lower bound �(t3/4 log−1/4 t) on E[τ ∧ t] follows.
�

6. Subcritical parking on Z. In this section we prove Theorem 1.4. This is done in two
parts. First, for a car starting at 0, we consider the smallest J (depending only on the initial
configuration of cars) such that no matter what the other cars do, there is always a free parking
space in both [1, J ] and [−J,−1]. Given J , we know that the car starting at 0 cannot reach
either −J or J before it parks. Calculating the expected journey length of 0 is then carried
out by proving tail bounds on the random variable J .

We start with the following simple lemma, which we state here without proof.

LEMMA 6.1. Let p ∈ (0,1/2), and let Y = Y(p) be a Markov chain on N ∪ {0} with
Y0 = 0 and transition probabilities (pi,j )i,j∈N∪{0} where

pi,j =

⎧⎪⎪⎨⎪⎪⎩
p j = i + 1,

1 − p j = i − 1 ≥ 0 or i = j = 0,

0 otherwise.

Then Y has stationary distribution Geom≥0(
1−2p
1−p

). Furthermore, since Y is an aperiodic and

irreducible Markov chain, Yt → Geom≥0(
1−2p
1−p

) in distribution as t → ∞.

Let EL(t) be the number of cars in [−t,−1] that would reach 0 if all cars deterministically
drove right. We also define ER(t) to be the number of cars in [1, t] which would reach 0 if all
cars deterministically drove left. Note that (EL(t))t∈N is an increasing sequence of random
variables. Finally, let EL be the number of cars in (−∞,−1] that would reach 0 if all cars
deterministically drove right (and analogously define ER). Note that EL(t) increases almost
surely to EL as t → ∞.

LEMMA 6.2. For all p < 1/2, EL ∼ Geom≥0(
1−2p
1−p

).

We prove Lemma 6.2 by comparing each EL(t) to the t th step of a Markov chain Q with
transition probabilities pi,j defined as in the statement of Lemma 6.1.

PROOF. Since (EL(t))t≥1 increases almost surely to EL, it is sufficient to show that
EL(t) → Geom≥0(

1−2p
1−p

) in distribution as t → ∞. To compute EL(t), consider forming a
queue of cars from left to right in [−t,−1]: Let Q0 = 0 (there is initially no queue), then
given Qi , we set Qi+1 = Qi + 1 if there is initially a car at i − t (a car is added to the queue),
Qi+1 = Qi −1 if Qi > 0 and there is initially a parking space at position i − t (a car from the
queue is parked), and Qi+1 = 0 otherwise. Then Qt = EL(t). On the other hand, (Qs : s ≤ t)

is distributed like (Ys : s ≤ t) in Lemma 6.1, and so EL(t) has the same distribution as Yt

(with Y0 = 0). By Lemma 6.1, EL(t) → Geom≥0(
1−2p
1−p

) in distribution as t → ∞. �

Clearly, ER(t) also increases almost surely to the random variable ER which is distributed
like a Geom≥0(

1−2p
1−p

) random variable (and is independent of EL).
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For all r ≥ 0, let ER
r (t) be the number of cars in [r + 1, r + t] that would reach r if all cars

deterministically drove left, and similarly let EL
r (t) be the number of cars in [−r − t,−r −1]

that would reach −r if all cars deterministically drove right. Let ER
r and EL

r be the limits as
t → ∞ respectively of ER

r (t) and EL
r (t). Note that Lemma 6.2 holds with EL replaced by

ER
r , as well as by EL

r . For all r ≥ 1, let SR
r and SL

r be the number of cars that start in [1, r]
and [−r,−1] respectively.

In the proof of Theorem 1.4, we show that at most ER
K + EL + SR

K cars from Z \ {0} can
be present in [1,K] at any time. This means that at most ER

K + EL + SR
K parking spaces in

[1,K] can be filled by cars from Z\{0}. Therefore, if ER
K +EL +SR

K < K/2, then there must
be a parking space in [1,K] not filled by a car from Z \ {0} (consider that there are initially
K − SR

K parking spaces in [1,K]). It follows that a car starting at 0 parks before reaching K .
In the proof of Theorem 1.4, we first condition on the smallest K such that both ER

K +
EL + SR

K < K/2 and EL
K + ER + SL

K < K/2. These conditions mean that a car starting at 0
will have parked by the time its associated random walk Xi hits either −K or K .

PROOF OF THEOREM 1.4. Let p < 1/2 and let J be the smallest K such that ER
K +

EL + SR
K < K/2 and EL

K + ER + SL
K < K/2 if such a K exists, and let J = ∞ otherwise.

For a given a ∈ N, let Ha be the first hitting time of a by the random walk X0. We claim that
if J = N , then τ 0 ≤ H−N ∧ HN . We justify this by showing that at any time t ≥ 0, there are
at most ER

N + EL + SR
N cars excluding car 0 (parked or not) present in [1,N] at time t . A

similar statement can be shown for cars present in [−N,−1].
Let us temporarily exclude the car starting at 0 from the parking process (e.g., assume

that this car never decides to park) and suppose that at time t , there are B cars that started
in [N − t + 1,N] \ {0} parked in [N + 1,N + t]. Let R be the number of cars that start
in [N + 1,N + t] that are in [N − t + 1,N] at time t . By an argument identical to that of
Lemma 5.3, we have the bound R ≤ B + ER

N(t) since each parked car from [N − t + 1,N]
that parks inside [N + 1,N + t] can only increase the number of cars that reach N from
[N + 1,N + t] by 1. Similarly, if C is the number of cars that started in [1, t] and parked in
[−t,−1], and L is the number of cars that start in [−t,−1] present in [1,N] at time t , we
have L ≤ C + EL(t). So the number of cars present in [1,N] at time t is

SR
N + R + L − B − C ≤ SR

N + EL(t) + ER
N(t)

≤ SR
N + EL + ER

N.

Since J = N , this quantity is strictly less than N/2. On the other hand, there are initially
N − SR

N > N/2 parking spaces in [1,N] and so car 0 must go through an empty parking
space before reaching N . A similar argument applies to [−N,−1]. In the real process, where
car 0 tries to park, this implies car 0 parks before reaching N or −N .

If J < ∞ almost surely, we therefore have

E
[
τ 0] ≤ ∑

N≥1

P[J = N ]E[H−N ∧ HN |J = N ].

By independence and Lemma 3.2(iii) we have

E[H−N ∧ HN |J = N ] = E[H−N ∧ HN ] = N2,

and so, assuming again that J < ∞ with probability 1,

E
[
τ 0] ≤ ∑

N≥1

N2
P[J = N ].(6.1)

We now consider the distribution of J . If J is at least N , then by averaging one of the
following must happen:
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(i) One of SR
N and SL

N is at least N(p + (1/4 − p/2)).
(ii) One of EL, ER , EL

N , and ER
N is at least N(1/8 − p/4).

Clearly SR
N and SL

N are both distributed like Bin(N,p) random variables and so, by

Lemma 3.1, the probability that (i) occurs is at most 2e−(1/2−p)2N/2. On the other hand, by
Lemma 6.2, we know that EL, ER , EL

N , and ER
N are all distributed like Geom≥0(

1−2p
1−p

) ran-

dom variables. If X ∼ Geom≥0(
1−2p
1−p

), then P[X ≥ N(1/8 − p/4)] ≤ (1 − 1−2p
1−p

)N(1/8−p/4),
and so the probability that (ii) occurs is at most

4P
[
Geom≥0

(
1 − 2p

1 − p

)
≥ N(1/8 − p/4)

]
≤ 4

(
1 − 1 − 2p

1 − p

)N(1/8−p/4)

.

Putting these together we see that for all N ≥ 1 we have

P[J = N ] ≤ P[J ≥ N ]

≤ 2e−(1/2−p)2N/2 + 4
(

1 − 1 − 2p

1 − p

)N(1/8−p/4)

≤ 2e−(1/2−p)2N/2 + 4e
− 1−2p

1−p
N(1/8−p/4)

.

As the above bound on P[J ≥ N ] tends to 0 as N → ∞, we see that J < ∞ almost surely.
Hence, putting the obtained bound into (6.1) gives

E
[
τ 0] ≤ ∑

N≥1

N2[
2e− (1/2−p)2

2 N + 4e
− (1/2−p)2

1−p
N ] ≤ 6

∑
N≥1

N2e−(1/2−p)2N/2.

This sum can be approximated by the integral
∫ ∞

0 x2e−(1/2−p)2x/2dx. By a change of
variables or by considering the pdf of a �(3, (1/2 − p)2/2) random variable we get a bound
of the form O((1/2 − p)−6), as required. �

7. Further questions. There is still a gap between the upper and lower bounds in The-
orem 1.2. Following the conjecture presented in the seminar by [9], we also believe that the
upper bound gives the right order t3/4.

It would be interesting to know what happens in higher dimensions, where the problems
seem to become more difficult and are likely to require additional ideas. It is also natural
to ask what happens in other lattices: for example, are there analogous results to Theorems
1.2 and 1.4 that hold for the hexagonal lattice? We remark that [4], Open Questions 1 and
2, have conjectures here (which we believe to be true). Indeed recently [8] gave an elegant
proof of a lower bound for the continuous time-based parking process. Their methods work
for the discrete time-based parking process and should also work more generally in other
settings. Finally, what can we say for more general jump distributions? We conjecture that
if the increments of the random walks Xi on Z are bounded, then Theorems 1.2 and 1.4
should still hold. Although similar methods could work, one would have to be careful about
specifying parking places for cars (as in the parking strategy T in Section 4) as cars might
jump over them.
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