Combinatorial maps vs hyperbolic surfaces in large genus

Baptiste Louf (Uppsala Universitet) joint work with Svante Janson

image : G. Egan

Maps

Definition : maps

Map = discrete surfaces

i.e. gluing of polygons along their edges to create a (compact, connected, oriented) surface

Genus g of the map = genus of the surface = # of handles

Random maps

Question : what does a large random map look like ?

Classical setting : uniform maps of the sphere Main result: **scaling limit** = the Brownian sphere [Le Gall, Miermont '11]

image : J. Bettinelli

High genus maps

What does a random uniform map of size n and genus g look like when $n, g \rightarrow \infty$?

Average discrete curvature is negative \rightarrow (expected) hyperbolic properties !

High genus maps

What does a random uniform map of size n and genus g look like when $n, g \rightarrow \infty$?

Average discrete curvature is negative \rightarrow (expected) hyperbolic properties !

We already have a few results in this regime

Example : **local limit** of high genus triangulations [Budzinski,L. 19]

image : N. Curien

High genus maps

What does a random uniform map of size n and genus g look like when $n, g \rightarrow \infty$?

Average discrete curvature is negative \rightarrow (expected) hyperbolic properties !

We already have a few results in this regime

Example : **local limit** of high genus triangulations [Budzinski,L. 19]

image : N. Curien

Many open questions remain (global properties, asymptotic enumeration, ...) !

Our model today

Unicellular maps: maps with only one face/gluing of a single polygon

Our model today

Unicellular maps: maps with only one face/gluing of a single polygon

 $\mathbf{U}_{n,g}$: random uniform unicellular map of genus g and n edges **metric** on $\mathbf{U}_{n,g}$:

$$d := d_{\text{graph}} \times \sqrt{\frac{12g}{n}}$$

Goal: study $U_{n,g}$ as $n, g \to \infty$ with g = o(n)

Hyperbolic surfaces

Hyperbolic surfaces

Hyperbolic surface = surface with a metric w/ constant **curvature** -1 = looks locally like the **hyperbolic plane** \mathbb{H} .

Hyperbolic surfaces

Hyperbolic surface = surface with a metric w/ constant **curvature** -1 = looks locally like the **hyperbolic plane** \mathbb{H} .

 $\forall a, b, c > 0$ there exists a unique hyperbolic **pair of pants** with boundary lengths a, b, c, i.e. a genus 0 surface with 3 geodesic boundaries

geodesic = curve that is "locally shortest path"

Cutting up a surface

Take a hyperbolic surface S of genus $g \ge 2$.

Pair of pants decomposition: there exists 3g - 3 simple closed geodesics dividing S into 2g - 2 pairs of pants.

the choice of curves is not unique !

Cutting up a surface

Take a hyperbolic surface S of genus $g \ge 2$.

Pair of pants decomposition: there exists 3g - 3 simple closed geodesics dividing S into 2g - 2 pairs of pants.

Fenchel–Nielsen coordinates:

Each geodesic has a length $\ell_i \in \mathbb{R}^+$, and a "twist factor" $\tau_i \in \mathbb{R}$. it determines the surface uniquely !

Teichmüller space: \mathcal{T}_g = space of hyperbolic surfaces of genus $g \cong (\mathbb{R}^+ \times \mathbb{R})^{3g-3}$

Parametrizing hyperbolic surfaces

Parametrizing hyperbolic surfaces

Moduli space: $\mathcal{M}_g = \mathcal{T}_g$ /isometries \triangleleft not easy to understand !

Weil-Petersson volume form: [Wolpert '85]

$$\mathsf{d}vol_{WP} = \prod_{i=1}^{3g-3} \mathsf{d}\ell_i \mathsf{d}\tau_i$$

"Magic formula":

- Doesn't depend on the choice of curves !
- Defined on \mathcal{T}_g but "descends" on \mathcal{M}_g !
- $vol_{WP}(\mathcal{M}_g)$ is finite \rightarrow probability measure !

Parametrizing hyperbolic surfaces

Moduli space: $\mathcal{M}_g = \mathcal{T}_g$ /isometries \triangleleft not easy to understand !

Weil-Petersson volume form: [Wolpert '85]

$$\mathsf{d}vol_{WP} = \prod_{i=1}^{3g-3} \mathsf{d}\ell_i \mathsf{d}\tau_i$$

"Magic formula":

- Doesn't depend on the choice of curves !
- Defined on \mathcal{T}_g but "descends" on \mathcal{M}_g !
- $vol_{WP}(\mathcal{M}_g)$ is finite \rightarrow probability measure !

 \mathbf{S}_g = random hyperbolic surface under WP measure. Properties of \mathbf{S}_g as $g \to \infty$ were first studied 10 years ago [Mirzakhani, Guth-Parlier-Young]

A coincidence and a conjecture

A surprising coincidence

Theorem [Mirzakhani–Petri '17]

For all y > x > 0, the number of **simple closed geodesics** in S_g of length $\in [x, y]$ converges in distribution to a Poisson law of parameter

$$\int_{x}^{y} \frac{\cosh t - 1}{t} dt$$

as $g \to \infty$.

Theorem [Janson–L. '21]

For all y > x > 0, the number of **simple cycles** in $U_{n,g}$ of length $\in [x, y]$ converges in distribution to a Poisson law of parameter

$$\int_{x}^{y} \frac{\cosh t - 1}{t} dt$$

as $g \to \infty$.

Is it really just a coincidence ?

Is it really just a coincidence ?

Conjecture: (vague version) \mathbf{S}_g and $\mathbf{U}_{n,g}$ are "the same" as $g \to \infty$ (wrt to a well chosen metric)

image : G. Egan

Making the conjecture really precise requires some work !

Making the conjecture really precise requires some work !

Two important things seem to be necessary:
removing the "fractal part", i.e. looking only at the 2-core

• seeing the maps as the gluing of a **hyperbolic polygon**

Making the conjecture really precise requires some work !

Two important things seem to be necessary: • removing the "fractal part", i.e. looking only at the **2-core**

• seeing the maps as the gluing of a **hyperbolic polygon**

Right metric: probably **Gromov–Hausdorff** distance on metric spaces, possibly something stronger to make sense of the topology (e.g. separating curves).

Some open problems

Hope: If the conjecture is true, and we can transfer hyperbolic problems to maps problems, and thus to tree problems thanks to a magic bijection (see later).

Some open problems

Hope: If the conjecture is true, and we can transfer hyperbolic problems to maps problems, and thus to tree problems thanks to a magic bijection (see later).

We can start working on some of the open problems for hyperbolic surfaces (\mathbf{S}_g) directly on maps $(\mathbf{U}_{n,g})$. For example:

• We know that

$$(1+o(1))\log g \le \operatorname{diam}(\mathbf{S}_g) \le (4+o(1))\log g$$

What is the right constant ?

• spectral properties ? spectral gap, isoperimetric/Cheeger constant

Ideas of proof

Morceaux choisis

The method of moments

Key principle: under reasonable assumptions, a sequence (X_n) of random variables converges in distribution towards X, if for all finite r

$$\mathbb{E}[X_n^r] \xrightarrow[n \to \infty]{} \mathbb{E}[X^r]$$

The method of moments

Key principle: under reasonable assumptions, a sequence (X_n) of random variables converges in distribution towards X, if for all finite r

$$\mathbb{E}[X_n^r] \xrightarrow[n \to \infty]{} \mathbb{E}[X^r]$$

How to calculate moments: roughly speaking, if X counts curves (of a given length), then

$$\mathbb{E}[X^r] = \frac{\# \text{surfaces with } r \text{ marked curves}}{\# \text{surfaces}}$$

The method for hyperbolic surfaces

Let X_g be the number of closed, simple geodesics in a random hyperbolic WP surface of genus g with length $\in [a, b]$

The method for hyperbolic surfaces

Let X_g be the number of closed, simple geodesics in a random hyperbolic WP surface of genus g with length $\in [a, b]$

The method for hyperbolic surfaces

Let X_g be the number of closed, simple geodesics in a random hyperbolic WP surface of genus g with length $\in [a, b]$

Method for maps: the magic bijection

C-decorated tree: tree with a permutation of its vertices, with only odd cycles.

The **underlying graph** of a C-decorated tree is obtained by merging vertices who belong to the same cycle of the permutation.

Method for maps: the magic bijection

C-decorated tree: tree with a permutation of its vertices, with only odd cycles.

The **underlying graph** of a C-decorated tree is obtained by merging vertices who belong to the same cycle of the permutation.

 $\mathbf{T}_{n,g}$: Random uniform C-decorated tree with n edges and n + 1 - 2g cycles in the permutation.

Method for maps: the magic bijection

C-decorated tree: tree with a permutation of its vertices, with only odd cycles.

The **underlying graph** of a C-decorated tree is obtained by merging vertices who belong to the same cycle of the permutation.

 $\mathbf{T}_{n,g}$: Random uniform C-decorated tree with n edges and n + 1 - 2g cycles in the permutation.

Bijection [Chapuy–Féray–Fusy '13] (probabilistic version): the underlying graphs of $U_{n,g}$ and $T_{n,g}$ have the same law.

What is a cycle ?

A cycle in (the underlying graph of) $T_{n,g}$ is a list of paths p_1, p_2, \ldots, p_ℓ such that end (p_i) and start (p_{i+1}) are "merged by the permutation".

Additional questions

More comments and questions

 There are unicellular maps in hyperbolic surfaces → Penner's spine construction. Combinatorial equivalent for maps : the Schaeffer bijection. Does a "Chapuy–Féray–Fusy bijection" for hyperbolic surfaces exist ?

• [Budd-Curien '22] the scaling limit of the random hyperbolic sphere with many cusps is the Brownian sphere. Can you study the Benjamini–Schramm limit of the random hyperbolic g-torus with n cusps ans $n, g \to \infty$? (cf [Budzinski-L. '19])

• Conjecture ("universality of high genus enumeration"): for $n, g \to \infty$ with $\frac{n}{q} \to \theta$

$$vol_{WP}(\mathcal{M}_{g,n}) = n^{2g} \exp(nf(\theta) + o(n))$$

Thank you !