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Canonical random geometry in two dimensions

Replace the sphere S2 by a discretization,
namely a graph drawn on the sphere
(= planar map).
Choose such a planar map uniformly at
random in a suitable class (triangulations,...)
and equip its vertex set with the graph
distance.

Let the size of the graph tend to infinity and
pass to the limit after rescaling to get a
random metric space: the Brownian sphere.
This convergence holds independently of the
class of planar maps (even if edges are
assigned random lengths): Universality of
Brownian sphere.

Goal of the lecture: Discuss remarkable properties of geodesics in the
Brownian sphere (Miller-Qian 2020, LG 2021)
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1. Random planar maps and the Brownian sphere
Definition
A planar map is a proper embedding of a finite connected graph into
the two-dimensional sphere (considered up to orientation-preserving
homeomorphisms of the sphere). Loops and multiple edges allowed.

root
edge

root
vertex

A rooted triangulation
with 20 faces

Faces = connected components of
the complement of edges
p-angulation:

each face is incident to
p edges

p = 3: triangulation
p = 4: quadrangulation

Rooted map: distinguished
oriented edge
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The same planar map:

Two different planar maps:
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The same planar map:

Two different planar maps:
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A large triangulation of the sphere
Can we get a continuous model out of this ?
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Planar maps as metric spaces

M planar map
V (M) = set of vertices of M
dgr graph distance on V (M)

(V (M),dgr) is a (finite) metric space

0

1

1

2

1

2

2

3

4

In blue : distances
from the root vertex

Mp
n = {rooted p − angulations with n faces}

Mp
n is a finite set (finite number of possible “shapes”)

Choose Mn uniformly at random in Mp
n. We want to let n→∞ (p fixed)

View (V (Mn),dgr) as a random variable with values in

K = {compact metric spaces, modulo isometries}
which is equipped with the Gromov-Hausdorff distance.
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The Gromov-Hausdorff distance
The Hausdorff distance. K1, K2 compact subsets of a metric space

dHaus(K1,K2) = inf{ε > 0 : K1 ⊂ Uε(K2) and K2 ⊂ Uε(K1)}
(Uε(K1) is the ε-enlargement of K1)

Definition (Gromov-Hausdorff distance)
If (E1,d1) and (E2,d2) are two compact metric spaces,

dGH(E1,E2) = inf{dHaus(ψ1(E1), ψ2(E2))}
the infimum is over all isometric embeddings ψ1 : E1 → E and
ψ2 : E2 → E of E1 and E2 into the same metric space E .

E1 E2E1

ψ1

ψ2
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Gromov-Hausdorff convergence of rescaled maps

Fact
If K = {isometry classes of compact metric spaces}, then

(K,dGH) is a separable complete metric space (Polish space)

→ If Mn is uniformly distributed over {p − angulations with n faces},
it makes sense to study the convergence in distribution as n→∞ of

(V (Mn),n−adgr)

as random variables with values in K.
(Problem stated for triangulations by O. Schramm [ICM, 2006])

Choice of the rescaling factor n−a : a > 0 is chosen so that
diam(V (Mn)) ≈ na.

⇒ a = 1
4 [cf Chassaing-Schaeffer PTRF 2004 for quadrangulations]
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The Brownian sphere
Mp

n = {rooted p − angulations with n faces}
Mn uniform over Mp

n, V (Mn) vertex set of Mn, dgr graph distance

Theorem (LG 2013, Miermont 2013 for p=4)
Suppose that either p = 3 (triangulations) or p ≥ 4 is even. Set

c3 = 61/4 , cp =
( 9

p(p − 2)

)1/4
if p is even.

Then,

(V (Mn), cp n−1/4 dgr)
(d)−→

n→∞
(m∞,D)

in the Gromov-Hausdorff sense. The limit (m∞,D) is a random
compact metric space that does not depend on p (universality) and is
called the Brownian sphere (or Brownian map).

Remarks • p = 3 (triangulations) solves Schramm’s problem.
• Extensions to other random planar maps: Abraham, Addario-Berry-
Albenque (case of odd p), Beltran-LG, Bettinelli-Jacob-Miermont, etc.
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Properties of the Brownian sphere

The Brownian sphere is a geodesic space: any pair of points is
connected by a (possibly not unique) geodesic. (A Gromov-Hausdorff
limit of geodesic spaces is a geodesic space.)

Theorem (Hausdorff dimension)

dim(m∞,D) = 4 a.s.

(Already “known” in the physics literature.)

Theorem (topological type)

Almost surely, (m∞,D) is homeomorphic to the 2-sphere S2.
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Connections with Liouville quantum gravity

Miller, Sheffield (2015-2016) have developed a program aiming to
relate the Brownian sphere with Liouville quantum gravity:

new construction of the Brownian sphere using the Gaussian free
field and the random growth process called Quantum Loewner
Evolution (an analog of the celebrated SLE processes studied by
Lawler, Schramm and Werner)
this construction makes it possible to equip the Brownian sphere
with a conformal structure, and in fact to show that this conformal
structure is determined by the Brownian sphere.

More recently: the Miller-Sheffield construction has been simplified by
a direct construction of the Liouville quantum gravity metric from the
Gaussian free field (Gwynne-Miller 2019 after the work of several
authors).
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2. The construction of the Brownian sphere
The Brownian sphere (m∞,D) is constructed by identifying certain
pairs of points in Aldous’ Brownian continuum random tree (CRT).

Constructions of the CRT (Aldous, 1991-1993):
As the scaling limit of many classes of discrete trees
As the random real tree whose contour is a Brownian excursion.

Coding a (discrete) plane tree by its contour function (or Dyck path):
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The notion of a real tree

Definition
A real tree, or R-tree, is a (compact) metric
space T such that:

any two points a,b ∈ T are joined by a
unique continuous and injective path (up
to re-parametrization)
this path is isometric to a line segment

T is a rooted real tree if there is a
distinguished point ρ, called the root.

ρ

a b

Remark. A real tree can have
infinitely many branching points
(uncountably) infinitely many leaves

Fact. The coding of discrete trees by contour functions can be
extended to real trees: also gives a cyclic ordering on the tree.
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The real tree coded by a function g

g : [0,1] −→ [0,∞)
continuous,

g(0) = g(1) = 0

mg(s, t) = min
[s∧t ,s∨t]

g

s t t′

mg(s, t)

g(t)

g(s)

1

dg(s, t) = g(s) + g(t)− 2 mg(s, t) pseudo-metric on [0,1]

t ∼ t ′ iff dg(t , t ′) = 0 (or equivalently g(t) = g(t ′) = mg(t , t ′))

Proposition
Tg := [0,1]/∼ equipped with dg is a real tree, called the tree coded by
g. It is rooted at ρ = 0.

The canonical projection [0,1]→ Tg induces a cyclic ordering on Tg
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Definition of the CRT
Let (et )0≤t≤1 be a Brownian excursion with duration 1 (= Brownian
motion started from 0 conditioned to be at 0 at time 1 and to stay ≥ 0)

Definition
The CRT (Te,de) is the (random) real tree coded by the Brownian
excursion e.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Simulation of a
Brownian excursion
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A simulation of the CRT
(simulation: I. Kortchemski)
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Assigning Brownian labels to a real tree
Let (T ,d) be a real tree with root ρ.

(Za)a∈T : Brownian motion indexed by (T ,d)
= centered Gaussian process such that

Zρ = 0
E [(Za − Zb)2] = d(a,b), a,b ∈ T

ρ

a

b

a ∧ b

We view Za as a label assigned to a ∈ T .
Labels evolve like Brownian motion along the
branches of the tree:

The label Za is the value at time d(ρ,a) of a
standard Brownian motion
Similar property for Zb, but one uses

I the same BM between 0 and d(ρ,a ∧ b)
I an independent BM between d(ρ,a ∧ b) and

d(ρ,b)
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The definition of the Brownian sphere
(Te,de) is the CRT, (Za)a∈Te Brownian motion indexed by the CRT
(Two levels of randomness!).

Set, for every a,b ∈ Te,

D0(a,b) = Za + Zb − 2 max
(

min
c∈[a,b]

Zc , min
c∈[b,a]

Zc

)
where [a,b] is the “interval” from a to b corresponding to the cyclic
ordering on Te (vertices visited when going from a to b in clockwise
order around the tree).
Then set

D(a,b) = inf
a0=a,a1,...,ak−1,ak=b

k∑
i=1

D0(ai−1,ai),

a ≈ b if and only if D(a,b) = 0 (equivalent to D0(a,b) = 0).

Definition
The Brownian sphere m∞ is the quotient space m∞ := Te/ ≈, which is
equipped with the distance induced by D.
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Summary and interpretation
Starting from the CRT Te, with Brownian labels Za,a ∈ Te,
→ The two vertices a,b ∈ Te are glued (a ≈ b) if:

they have the same label Za = Zb,
one can go from a to b around the tree visiting only vertices with
label greater than or equal to Za = Zb.

a

b

a

b
the interval
[a, b]

d(ρ, x)

ρ
Zx

0

the CRT
Te

labels on
the CRT
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A key property of distances in the Brownian sphere
Notation:

Π is the canonical projection from the CRT Te onto m∞ = Te/ ≈
For x = Π(a), Zx := Za (does not depend on choice of a).

Fact
Let a∗ be the (unique) point of the CRT Te with minimal label, and
x∗ = Π(a∗). Then, for every x ∈ m∞,

D(x∗, x) = Zx −min Z

(“labels” exactly correspond, up to a shift, to distances from x∗).

The Brownian sphere comes with two distinguished points, namely x∗
and x0 = Π(ρ) (ρ is the root of Te)
−→ x0 and x∗ are independently uniformly distributed over m∞ (in a
sense that can be made precise)
−→ in particular, x∗ is a “typical point” of m∞
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3. Geodesics from the “typical” point x∗

x∗ = Π(a∗) unique point of m∞ s.t. Zx∗ = min Z
then for every x ∈ m∞,

D(x∗, x) = Zx −min Z
(notation)

= Z̃x .

Let x = Π(a), a ∈ Te be any point of m∞. Can
construct a “simple geodesic” from x∗ to x by
setting for t ∈ [0, Z̃a]

ϕa(t) = Π
(

last vertex b before a s.t. Z̃b = t
)

(“last” and “before” refer to cyclic order on Te)

a

a∗

Fact
All geodesics from x∗ are simple geodesics.

Remark. If a is not a leaf, there are several possible choices,
depending on which side of a one starts.
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The main result about geodesics to a typical point
Define the skeleton of Te by Sk(Te) = Te\{leaves of Te} and set
Skel = Π(Sk(Te)) , where Π : Te → Te/≈ = m∞ canonical projection
Then

the restriction of Π to Sk(Te) is a homeomorphism onto Skel
dim(Skel) = 2 (recall dim(m∞) = 4)

Theorem (Geodesics from the root)
Let x ∈ m∞. Then,

if x /∈ Skel, there is a unique geodesic from x∗ to x
if x ∈ Skel, the number of distinct geodesics from x∗ to x is the
multiplicity m(x) of x in Skel (note: m(x) ≤ 3).

Remarks
Skel is the cut-locus of m∞ relative to x∗: cf classical Riemannian
geometry [Poincaré, Myers, ...], where the cut-locus is a tree.
same results if x∗ replaced by a point chosen “at random” in m∞.
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Illustration of the cut-locus

x

m∞

the cut-locus
Skel

x∗

The cut-locus Skel
is homeomorphic to
a non-compact real tree
and is dense in m∞

Geodesics to x∗
do not visit Skel
(except possibly
at their starting point)
but “move around” Skel.
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Confluence property of geodesics

Fact: Two geodesics to x∗ coincide near x∗.
(easy from the description of these geodesics)

Corollary
Given δ > 0, there exists ε > 0 s.t.

if D(x∗, x) ≥ δ, D(x∗, y) ≥ δ
if γ is any geodesic from x∗ to x
if γ′ is any geodesic from x∗ to y

then

γ(t) = γ′(t) for all t ≤ ε

ε
δ

x

y

x∗

“Only one way” of leaving x∗ along a geodesic.
(also true if x∗ is replaced by a typical point of m∞)
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Why the confluence property
Let a,b ∈ Te such that a∗ /∈ [a,b] (otherwise interchange a and b).
Recall the simple geodesics ϕa and ϕb (from x∗ to x = Π(a) and to
x = Π(b) respectively). Then

ϕa(t) = ϕb(t) for every 0 ≤ t ≤ min
d∈[a,b]

Zd −min Z (> 0).

a

b

a∗

c

c point of minimal

label in [a, b]

c′

c′ last point
before a
with label Zc
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4. Geodesics between exceptional points

If x and y are typical points of the Brownian sphere (chosen according
to the volume measure)

There is a unique geodesic from y to x (can take x = x∗, the
cut-locus has zero volume)

If x is typical (say x = x∗) then for “exceptional points” y :

There can be up to 3 geodesics from y to x .

If x and y are both exceptional:

There can be up to 9 geodesics from y to x ( Miller-Qian (2020),
following earlier work of Angel, Kolesnik, Miermont (2017)).
Miller-Qian (2020) even compute the Hausdorff dimension of the
set of pairs (x , y) such that there are exactly k geodesics from y
to x .
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Geodesic stars
A point x of the Brownian sphere m∞
is called a geodesic star with n arms
(n ≥ 2) if it is the endpoint of n
geodesics that are disjoint (except for
their terminal point)

A typical point is not a geodesic star
(because of the confluence property!)

x

A geodesic star with 4 arms

Theorem (Miller-Qian 2020, LG 2021)
Let Sn be the set of all geodesic arms with n arms. Then, for
n = 2,3,4, dim(Sn) = 5− n

Open problem: Is S5 not empty ?
Remark. Miller and Qian proved that the set of all interior points of
geodesics has dimension 1. An interior point of a geodesic is a
geodesic star with 2 arms, but not a typical one!
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Results on geodesics in the Brownian sphere

Miermont 2009 (Ann. ENS): uniqueness of the geodesic between
two typical points (also in higher genus)

LG 2010 (Acta Math.): complete description of geodesics from a
typical point
Miermont 2013 (Acta Math.): uses the notion of geodesic stars to
prove uniqueness of the Brownian sphere
Angel, Kolesnik, Miermont 2017 (Ann. Probab.) First results about
geodesic networks (union of the geodesics connecting two points)
Miller, Qian 2020 Full description of geodesic networks. Upper
bound on the dimension of geodesic stars
LG 2021 Lower bound matching the upper bound of Miller-Qian
for geodesic stars.
Related results in Liouville quantum gravity: Gwynne-Miller (2019)
on the confluence property, Gwynne (2020) on geodesic networks.
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Sketch of proof of the lower bound dim(Sn) ≥ 5− n
From now on, consider the “free Brownian sphere” (with a random
volume) under the σ-finite measure N0.
Define a notion of ε-approximate geodesic stars: for ε > 0, x ∈ m∞
belongs to Sεn if there are n geodesics to x starting from the boundary
of the ball of radius 1 centered at x that are disjoint up to the time
when they arrive at distance ε from x .

Then, if Vol(·) is the volume measure on m∞, for n = 2,3,4,

EN0

(
Vol(Sεn)

)
≥ c εn−1

and for every δ > 0,

EN0

(∫ ∫
1Sε

n×Sε
n
(x , y) D(x , y)−(5−m−δ) Vol(dx)Vol(dy)

)
≤ cδ ε2(n−1)

−→ Standard techniques (extraction of convergent subsequence from
ε−(n−1)Vol|Sε

n
, Frostman lemma) then show that Sn =

⋂
ε>0 Sεn has

dimension ≥ 5− n on an event of positive N0-measure.
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A useful tool: hulls
Let x , y ∈ m∞ and r > 0. Write Br (x) for the closed ball of radius r
centered at x . On the event {D(x , y) > r}, one can define the hull of
radius r centered at x relative to y , denoted by B•,yr (x):

Definition
The complement of B•,yr (x) is the connected component of the
complement of Br (x) that contains y.

x

y

0

r

m∞

distance from x

Cactus representation of
the Brownian sphere (the
vertical coordinate here is
the distance from x)
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Definition
The complement of B•,yr (x) is the connected component of the
complement of Br (x) that contains y.

x

y

0

r
y

distance fromx

B•,y
r (x)

Cactus representation of
the Brownian sphere (the
vertical coordinate here is
the distance from x)

One can make sense of the
boundary size |∂B•,yx | of the
hull (at least when x and y
are “typical”)
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Forest representation of a hull
Consider the hull B•,x0

r (x∗) and its boundary size |∂B•,x0
r (x∗)|.

Then conditionally on |∂B•,x0
r (x∗)| = u, one can represent the hull in

terms of a Poisson forest of real trees equipped with Brownian labels:
(Tei , (Z

i
a)a∈Tei

), i ∈ I
where

∑
i∈I δei is Poisson with intensity u n(de) (here n is the Itô

excursion measure). Consider the trees as planted uniformly over
[0,u], and identify 0 with u. Furthermore condition the minimal label of
the forest to be equal to −r .

0 u
Then the hull B•,x0

r (x∗) equipped with
its intrinsic distance is obtained from
the labeled forest by exactly the same
construction as the Brownian sphere
from (Te, (Za)a∈Te).
Labels shifted by +r again correspond
to distances from the point x∗, which is
the point with minimal label.
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i
a)a∈Tei

), i ∈ I
where

∑
i∈I δei is Poisson with intensity u n(de) (here n is the Itô

excursion measure). Consider the trees as planted uniformly over
[0,u], and identify 0 with u. Furthermore condition the minimal label of
the forest to be equal to −r .

0 u
Then the hull B•,x0

r (x∗) equipped with
its intrinsic distance is obtained from
the labeled forest by exactly the same
construction as the Brownian sphere
from (Te, (Za)a∈Te).
Labels shifted by +r again correspond
to distances from the point x∗, which is
the point with minimal label.
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The one-point estimate

0 u

x∗

The hull B•,x0
r (x∗) is obtained from the

labeled forest by exactly the same
construction as the Brownian sphere
from (Te, (Za)a∈Te).
Labels shifted by +r correspond to
distances from the point x∗, which is
the point with minimal label.

In particular, geodesics to x∗ are constructed in the same manner
(going backward, or forward, in the forest in order to meet points with
smaller and smaller label until reaching x∗):

−→ The event that x∗ is an ε-approximate geodesic star with m arms
occurs if and only if in addition to the tree carrying x∗ there are m − 1
trees in the forest carrying vertices with label < −r + ε.

−→ The probability of this event is ≈ εm−1.
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An ingredient for the two-point estimate
Recall that x∗ and x0 are the two distinguished points of m∞
(distributed independently and uniformly).

Theorem
Let r > 0. Conditionally on the event {D(x∗, x0) > 2r}, the hulls
B•,x0

r (x∗) and B•,x∗r (x0) viewed as (measure) metric spaces for their
intrinsic distances are independent conditionally on their boundary
sizes, and their conditional distribution can be described as before
from a Poisson labeled forest.

x0x∗

B•,x0
r (x∗)

B•,x∗
r (x0)

This is a kind of spatial
Markov property of the
Brownian sphere (valid
only for the free
Brownian sphere!).
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