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Application 1: Network de-anonymization
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▶ Successfully de-anonymize Netflix by matching it to IMDB
[Narayanan-Shmatikov ’08]

▶ Correctly identified 30.8% of node mappings between Twitter
and Flickr [Narayanan-Shmatikov ’09]
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Application 2: Protein-Protein Interaction network
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proposed in [59]. ANBS for two graphs G1(V1,E1) and
G2(V2,E2) under the alignment π is defined as follows.

ANBS(π) =
|V1|−1

∑

i∈V1(π)

BlastBit(i,π(i))√
BlastBit(i, i)BlastBit(π(i),π(i))

.

Pathway comparisonmeasures
In order to evaluate the performance of algorithms in
aligning biological pathways, we introduce a new mea-
sure in this section. This measure captures the quality of
alignments based on a higher level of functional and struc-
tural similarities (beyond the introducedmeasures such as
the similarity of GO terms and the number of conserved
interactions).
It is known that there are many biological pathways

with similar functions in different species [12]. The KEGG
PATHWAY database [60] provides a set of experimentally
found biological pathways. In this database, a pathway is
called by the name of a species (e.g., hsa for Homo sapi-
ens), followed by a number. The pathways with the same
number have the same function in different species. For
example, hsa03040, mmu03040, dme03040 and sce03040
are in Homo sapiens (human), Mus musculus (mouse),
Drosophila melanogaster (fruit fly) and Saccharomyces
cerevisiae (budding yeast), respectively. These pathways
have the same functions.2 Assume PWi,1 denotes the set of
proteins from a pathway with number i in the PPI network
of the first species (i.e.,G1). Similarly, we define PWi,2. For
pathway i, �π ,i denotes the number of conserved inter-
actions between the proteins in this pathway under the
alignment π , i.e., �π ,i = EG1[PWi,1] ∩π−1(EG2[PWi,2]). Note
that we are looking for pathways that are present in both
aligned species.
We say a protein u from a pathway is aligned correctly, if

it is mapped to a protein v from a pathway with the same
function. For pathway i, we define the number of correctly
mapped proteins as |PWi,1 ∩ π−1(PWi,2)|. This measure
corresponds to the number of proteins that, from path-
way i in the first species, are mapped to a protein from
the same pathway in the second species. For pathway i, we
define the accuracy as

accπ ,i = 2|PWi,1 ∩ π−1(PWi,2)|
|PWi,1| + |PWi,2| . (2)

This measure corresponds to the fraction of correctly
mapped proteins in pathway i.
We conjecture that a good alignment algorithm should

align proteins from pathways with the same functions
across species, and many interactions among these pro-
teins are conserved. To quantify this expectation, we set
a threshold over the structural similarity of aligned path-
ways to consider them as a correct alignment. We say that

an alignment π successfully aligns a pathway i, if there are
at least δ conserved interactions under the alignment π

for proteins in that pathway, i.e., if �π ,i ≥ δ. This thresh-
olding guarantees that the structural similarity of aligned
pathways are more than a minimum value (here, δ con-
served interactions). To evaluate the performance of an
algorithm based on this thresholding criterion, we define
a set of measures as follows.

1. We consider pathways with at least δ (say δ ≥ 2)
interactions in each of the species. Let “#PWδ”
denote the number of such pathways.

2. Alignment π successfully aligns pathway i, if
�π ,i ≥ δ. The variable “#FPWδ” refers to the number
of successfully aligned pathways. We define the recall
as

recallπ ,δ = #FPWδ

#PWδ

. (3)

3. Again, for a correctly aligned pathway i, we define
accπ ,δ,i similar to (2).

The averages over all i of all the accπ ,i and accπ ,δ,i values
are represented by accπ and accπ ,δ , respectively. Figure 2
provides a toy example of how to calculate the pathway
alignment measures.

Results
In this section, we compare PROPER with the main state-
of-the-art network alignment algorithms, specifically (i)
with L-GRAAL as the most recent member of GRAAL
family that takes into account both sequence and struc-
tural similarities [23]; (ii) with MAGNA++ that tries to
maximize one of the EC, ICS or S3 measures [33, 34]
(In our experiments we run MAGNA++ in two different

Fig. 2 In this figure, two example PPI networks are given. Green nodes
are proteins which are in the same pathway (i.e., a pathway with the
same number in both species). Dotted lines represent the alignment π
between these two networks. Under this alignment, there are five
conserved interactions between proteins in this pathway (shown by
thick black edges in each network). Also, the number of correctly
mapped proteins is four. Therefore, the accuracy of aligning this
pathway is accπ ,i = 2×4

6+5 , where there are six and five proteins from
this pathway in each species, respectively

Figure: [Kazemi-Hassani-Grossglauser-Modarres ’16]

Ontology: Discover proteins with similar functions across different
species based on interaction network topology



Application 3: Computer vision

A fundamental problem in computer vision: Detect similar objects
that undergo different deformations

Figure: Shape REtrieval Contest (SHREC) dataset [Lähner et al ’16]

3-D shapes → geometric graphs (features → nodes, distances →
edges)
Determine whether two graphs are topologically similar
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Application 4: Machine Translation
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Automatically find/correct corresp. wiki articles in different
languages [Fishkind-Adali-Patsolic-Meng-Lyzinski-Priebe ’12]



Graph matching (network alignment)

Graph matching: a fundamental mathematical question underlying
these applications.
• find a bijection between two vertex sets that maximally align the
edges (i.e. minimizes # of adjacency disagreements).

Graph matching is a hard optimization problem (NP-hard), and we
seek help from randomness.
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An idealistic model: Correlated Erdős-Rényi graphs model
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There is no structure in randomness: there is an edge between a
pair of vertices with probability p independently.
Advantage: simple probabilistic model; suitable playground for
developing mathematical theory.
Disadvantage: almost all realistic networks are not Erdős-Rényi.
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1

G0 ∼ G(n, p)

s
G1 ∼ G(n, q ≜ ps)1

s

G ∗
2

1
π∗

G2

7

2

G0 ∼ G(n, p)

s
G1 ∼ G(n, q ≜ ps)

2

s

G ∗
2

2

π∗

G2

3

3

G0 ∼ G(n, p)

s
G1 ∼ G(n, q ≜ ps)

3

s

G ∗
2

3

π∗

G2

5

4

G0 ∼ G(n, p)

s
G1 ∼ G(n, q ≜ ps)

4

s

G ∗
2

4

π∗

G2

2

5

G0 ∼ G(n, p)

s
G1 ∼ G(n, q ≜ ps)

5

s

G ∗
2

5

π∗

G2

8

6

G0 ∼ G(n, p)

s
G1 ∼ G(n, q ≜ ps)6

s

G ∗
2

6
π∗

G2

10

7

G0 ∼ G(n, p)

s
G1 ∼ G(n, q ≜ ps)

7

s

G ∗
2

7
π∗

G2

1

8

G0 ∼ G(n, p)

s
G1 ∼ G(n, q ≜ ps)

8

s

G ∗
2

8

π∗

G2

9

9

G0 ∼ G(n, p)

s
G1 ∼ G(n, q ≜ ps)

9

s

G ∗
2

9

π∗

G2

4

10

G0 ∼ G(n, p)

s
G1 ∼ G(n, q ≜ ps)

10

s

G ∗
2

10
π∗

G2

6

There is no structure in randomness: there is an edge between a
pair of vertices with probability p independently.
Advantage: simple probabilistic model; suitable playground for
developing mathematical theory.

Disadvantage: almost all realistic networks are not Erdős-Rényi.
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Information threshold: what is the teststone?

Three thresholds: detection, exact recovery, partial recovery.
• Detection: test correlation against independence.
• Exact recovery: correctly match all vertices.
• Partial recovery: correctly match a positive fraction of vertices.

Wu-Xu-Yu’20, 21: progress based on maximal common graph (see
Ganassali-Massoulié-Lelarge for p ≈ 1/n).
• Methods: let π̂ be the bijection that maximizes the number of
common edges E .

⋄ Detection: |E| is large ⇒ correlation.
⋄ Matching: estimate π∗ by π̂.

• Results: determined exact recovery threshold. For detection and
partial recovery thresholds, determined exactly in the dense regime
(p = no(1)) and determined up-to-constants in the non-dense
regime.

• Analysis: when two graphs are correlated it is hard to analyze π̂
and WXY used “π̂ ≥ π∗” to lower-bound the maximal common
graph.
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Exact detection and partial recovery threshold

D.-Du’22a+: Exact detection threshold in the non-dense regime.
• There is loss in π̂ ≥ π∗, due to inhomogeniety/irregularity of the
common graph under π∗ (which is an Erdős-Rényi).
• Instead of analyzing π̂, we analyze the densest subgraph.
• Anantharam-Salez’16: densest subgraph in Erdős-Rényi
G(n, λ/n) has average degree ϱ(λ) > λ (for λ > 1).
• Average degree of the maximal common graph in independent
case does not increase by taking subgraph with linear size.

Detectable regime: If densest subgraph with linear size (maximized
over all vertex bijections) has large edge density, then correlated.
Undetectable regime: After truncating on the densest subgraph,
the second moment of the probability density ratios (null v.s.
alternative) is close to 1, so total variation distance vanishes.

D.-Du’22b+: Exact partial recovery threshold in the non-dense
regime.
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Poly-time approximation scheme for maximal overlap

▶ Recall: maximal alignment of two graphs are NP-hard.

▶ Question: maximizing the overlap between two independent
Erdős-Rényi graphs with p = n−α over all vertex matching?

▶ D.-Du-Gong’22: Poly-time approximation scheme for
α ∈ (1/2, 1).
▶ Proves that the maximal overlap is ≈ (2α− 1)−1n (even no

non-algorithmic proof previously).
▶ Our algorithm is iterative/greedy; analysis is difficult.
▶ α < 1/2: trivial regime; α = 1/2: delicate.

▶ One of few examples where random optimization can be
solved but worst-case NP hard.

▶ Wu-Xu: maybe related to overlap gap property for correlated
model.

▶ Computation for correlated model seems much more difficult.
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Erdős-Rényi graphs with p = n−α over all vertex matching?

▶ D.-Du-Gong’22: Poly-time approximation scheme for
α ∈ (1/2, 1).
▶ Proves that the maximal overlap is ≈ (2α− 1)−1n (even no

non-algorithmic proof previously).
▶ Our algorithm is iterative/greedy; analysis is difficult.
▶ α < 1/2: trivial regime; α = 1/2: delicate.

▶ One of few examples where random optimization can be
solved but worst-case NP hard.

▶ Wu-Xu: maybe related to overlap gap property for correlated
model.

▶ Computation for correlated model seems much more difficult.



Poly-time approximation scheme for maximal overlap

▶ Recall: maximal alignment of two graphs are NP-hard.

▶ Question: maximizing the overlap between two independent
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Matching algorithms for correlated graphs (up to 2021)

▶ For each vertex, compute a “signature” and match pairs of
vertices with similar signatures. Desired properties for
signature: informative, comptuable, tractable,
generalizable.

⋄ By randomness, true pairs are more similar than faked
ones.

⋄ Challenge: true pair needs to beat many faked pairs.

▶ Dai-Cullina-Kiyavash-Grossglauser’18,
Barak-Chou-Lei-Schramm-Sheng’19 D.-Ma-Wu-Xu’21

▶ Optimization with relaxation (usually convex relaxation).
(Fan-Mao-Wu-Xu’19+).
▶ Original optimization problem is hard to solve, but feasible if

enlarge the space of potential solutions (e.g. to a convex
space).

▶ By randomness, the optimizer in the enlarged space recovers
the original optimizer (e.g., by rounding procedure).

▶ Succeeds when noise decays in polylog(n).
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Recent progress on matching algorithms

▶ Mao-Rudelson-Tikhomirov’21+: poly-time algorithm based
some partition trees, when correlation ≥ const (close to 1).

▶ Ganassali-Massoulié-Lelarge’20+,22+: poly-time partial
matching algorithm for sparse graphs based on message
passing, when correlation >

√
Otter’s constant ≈

√
0.3383.

▶ Mao-Wu-Xu-Yu’22+: poly-time algorithm when correlation
>

√
Otter’s constant, based on a carefully curated family of

rooted trees called chandeliers (substantially improving
MRT21+, and covers much wider parameter regime).

▶ D.-Li’22+: poly-time iterative algorithm for matching
Gaussian matrices when correlation is non-vanishing.
▶ New feature: signal is stored in a vector where each coordinate

is a pair of sets, and signal per coordinate decreases with
iteration but compensated by increase on dimension.

▶ Expected to be sharp, and should extend to graph matching
(although with substantial challenge) assuming np > nα.

▶ Shed lights on many matching problems too.
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▶ Ganassali-Massoulié-Lelarge’20+,22+: poly-time partial
matching algorithm for sparse graphs based on message
passing, when correlation >

√
Otter’s constant ≈

√
0.3383.

▶ Mao-Wu-Xu-Yu’22+: poly-time algorithm when correlation
>

√
Otter’s constant, based on a carefully curated family of

rooted trees called chandeliers (substantially improving
MRT21+, and covers much wider parameter regime).

▶ D.-Li’22+: poly-time iterative algorithm for matching
Gaussian matrices when correlation is non-vanishing.
▶ New feature: signal is stored in a vector where each coordinate

is a pair of sets, and signal per coordinate decreases with
iteration but compensated by increase on dimension.

▶ Expected to be sharp, and should extend to graph matching
(although with substantial challenge) assuming np > nα.

▶ Shed lights on many matching problems too.



Recent progress on matching algorithms

▶ Mao-Rudelson-Tikhomirov’21+: poly-time algorithm based
some partition trees, when correlation ≥ const (close to 1).
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Complexity theory: how to certify computational hardness?
▶ Traditionally, complexity theory studies hardness of

computational problems for worst-case instance.

▶ Usually certify hardness by reduction: if you could solve this
problem, then you can solve some well-known hard problems.

▶ For problems with random instance, we care about the
hardness for a typical instance. Evidences of hardness include
▶ show as hard as well-known hard problems (reduction is much

more difficult on random instance than for worst-case
instance);

▶ show that a wide class of algorithms fail to solve the problem;
▶ exhibit similar structural properties as in other hard problems.

▶ Application in data privacy: how can we perform a minimal
change on the Linkedin and Twitter network, so that it would
be computationally hard to recover the matching from the
this perturbed observation?

▶ Information-computation gap: a major challenge in many
random combinatorial optimization and constraint satisfaction
problems!
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Perspectives and future directions

▶ A hub of theorists: combinatorics, probability, statistics,
algorithms, complexity theory, optimization, etc.

▶ A meeting point of theory and applications:
▶ Currently, most extensively studied models are idealistic. Even

worse, many times algorithms and analysis are based on wrong
model assumptions, e.g., local tree structure for social network
model.

▶ Major challenge 1: propose models with general applicability
where theorists can say something meaningful.

▶ Major challenge 2: propose models for important scientific
problems worth extensive theoretic study.

▶ Bridging what is wanted with what is possible.

Reference: all mentioned works available on arXiv.
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