Recent progress on random graph matching problems

Jian Ding Peking University

based on joint works with Hang Du (PKU) Shuyang Gong (PKU) Zhangsong Li (PKU)

Application 1: Network de-anonymization

Figure: Picture courtesy of R. Srikant

Application 1: Network de-anonymization

Figure: Picture courtesy of R. Srikant

- Successfully de-anonymize Netflix by matching it to IMDB [Narayanan-Shmatikov '08]
- Correctly identified 30.8% of node mappings between Twitter and Flickr [Narayanan-Shmatikov '09]

Application 2: Protein-Protein Interaction network

Human network

Mouse network

Figure: [Kazemi-Hassani-Grossglauser-Modarres '16]

Ontology: Discover proteins with similar functions across different species based on interaction network topology

Application 3: Computer vision

A fundamental problem in computer vision: Detect similar objects that undergo different deformations

Figure: Shape REtrieval Contest (SHREC) dataset [Lähner et al '16]

Application 3: Computer vision

A fundamental problem in computer vision: Detect similar objects that undergo different deformations

Figure: Shape REtrieval Contest (SHREC) dataset [Lähner et al '16]

3-D shapes \rightarrow geometric graphs (features \rightarrow nodes, distances \rightarrow edges) Determine whether two graphs are topologically similar

Application 4: Machine Translation

Figure: Picture courtesy of R. Srikant

Automatically find/correct corresp. wiki articles in different languages [Fishkind-Adali-Patsolic-Meng-Lyzinski-Priebe '12]

Graph matching: a fundamental mathematical question underlying these applications.

Graph matching: a fundamental mathematical question underlying these applications.

• find a bijection between two vertex sets that maximally align the edges (i.e. minimizes # of adjacency disagreements).

Graph matching: a fundamental mathematical question underlying these applications.

• find a bijection between two vertex sets that maximally align the edges (i.e. minimizes # of adjacency disagreements).

Graph matching is a hard optimization problem (NP-hard), and we seek help from randomness.

 $G_0 \sim \mathcal{G}(n, p)$

 $G_0 \sim \mathcal{G}(n, p)$

There is no structure in randomness: there is an edge between a pair of vertices with probability *p* independently.

There is no structure in randomness: there is an edge between a pair of vertices with probability *p* independently. Advantage: simple probabilistic model; suitable playground for developing mathematical theory.

There is no structure in randomness: there is an edge between a pair of vertices with probability *p* independently.

Advantage: simple probabilistic model; suitable playground for developing mathematical theory.

Disadvantage: almost all realistic networks are not Erdős-Rényi.

Three thresholds: detection, exact recovery, partial recovery.

- Three thresholds: detection, exact recovery, partial recovery.
- Detection: test correlation against independence.

- Three thresholds: detection, exact recovery, partial recovery.
- Detection: test correlation against independence.
- Exact recovery: correctly match all vertices.

- Three thresholds: detection, exact recovery, partial recovery.
- Detection: test correlation against independence.
- Exact recovery: correctly match all vertices.
- Partial recovery: correctly match a positive fraction of vertices.

- Three thresholds: detection, exact recovery, partial recovery.
- Detection: test correlation against independence.
- Exact recovery: correctly match all vertices.
- Partial recovery: correctly match a positive fraction of vertices.

Wu-Xu-Yu'20, 21: progress based on maximal common graph (see Ganassali-Massoulié-Lelarge for $p \approx 1/n$).

- Three thresholds: detection, exact recovery, partial recovery.
- Detection: test correlation against independence.
- Exact recovery: correctly match all vertices.
- Partial recovery: correctly match a positive fraction of vertices.

Wu-Xu-Yu'20, 21: progress based on maximal common graph (see Ganassali-Massoulié-Lelarge for $p \approx 1/n$).

• Methods: let $\hat{\pi}$ be the bijection that maximizes the number of common edges \mathcal{E} .

Three thresholds: detection, exact recovery, partial recovery.

- Detection: test correlation against independence.
- Exact recovery: correctly match all vertices.
- Partial recovery: correctly match a positive fraction of vertices.

Wu-Xu-Yu'20, 21: progress based on maximal common graph (see Ganassali-Massoulié-Lelarge for $p \approx 1/n$).

• Methods: let $\hat{\pi}$ be the bijection that maximizes the number of common edges \mathcal{E} .

♦ Detection: $|\mathcal{E}|$ is large ⇒ correlation.

Three thresholds: detection, exact recovery, partial recovery.

- Detection: test correlation against independence.
- Exact recovery: correctly match all vertices.
- Partial recovery: correctly match a positive fraction of vertices.

Wu-Xu-Yu'20, 21: progress based on maximal common graph (see Ganassali-Massoulié-Lelarge for $p \approx 1/n$).

- Methods: let $\hat{\pi}$ be the bijection that maximizes the number of common edges \mathcal{E} .
 - $\diamond \text{ Detection: } |\mathcal{E}| \text{ is large} \Rightarrow \text{correlation.}$
 - \diamond Matching: estimate π^* by $\hat{\pi}$.

Three thresholds: detection, exact recovery, partial recovery.

- Detection: test correlation against independence.
- Exact recovery: correctly match all vertices.
- Partial recovery: correctly match a positive fraction of vertices.

Wu-Xu-Yu'20, 21: progress based on maximal common graph (see Ganassali-Massoulié-Lelarge for $p \approx 1/n$).

- Methods: let $\hat{\pi}$ be the bijection that maximizes the number of common edges \mathcal{E} .
 - $\diamond \text{ Detection: } |\mathcal{E}| \text{ is large} \Rightarrow \text{correlation.}$
 - \diamond Matching: estimate π^* by $\hat{\pi}$.

• Results: determined exact recovery threshold. For detection and partial recovery thresholds, determined exactly in the dense regime $(p = n^{o(1)})$ and determined up-to-constants in the non-dense regime.

Three thresholds: detection, exact recovery, partial recovery.

- Detection: test correlation against independence.
- Exact recovery: correctly match all vertices.
- Partial recovery: correctly match a positive fraction of vertices.

Wu-Xu-Yu'20, 21: progress based on maximal common graph (see Ganassali-Massoulié-Lelarge for $p \approx 1/n$).

- Methods: let $\hat{\pi}$ be the bijection that maximizes the number of common edges \mathcal{E} .
 - $\diamond \text{ Detection: } |\mathcal{E}| \text{ is large} \Rightarrow \text{correlation.}$
 - \diamond Matching: estimate π^* by $\hat{\pi}$.

• Results: determined exact recovery threshold. For detection and partial recovery thresholds, determined exactly in the dense regime $(p = n^{o(1)})$ and determined up-to-constants in the non-dense regime.

• Analysis: when two graphs are correlated it is hard to analyze $\hat{\pi}$ and WXY used " $\hat{\pi} \ge \pi^*$ " to lower-bound the maximal common graph.

D.-Du'22a+: Exact detection threshold in the non-dense regime.

D.-Du'22a+: Exact detection threshold in the non-dense regime. • There is loss in $\hat{\pi} \ge \pi^*$, due to inhomogeniety/irregularity of the common graph under π^* (which is an Erdős-Rényi).

D.-Du'22a+: Exact detection threshold in the non-dense regime.

- There is loss in $\hat{\pi} \ge \pi^*$, due to inhomogeniety/irregularity of the common graph under π^* (which is an Erdős-Rényi).
- Instead of analyzing $\hat{\pi}$, we analyze the densest subgraph.

D.-Du'22a+: Exact detection threshold in the non-dense regime.

• There is loss in $\hat{\pi} \ge \pi^*$, due to inhomogeniety/irregularity of the common graph under π^* (which is an Erdős-Rényi).

- Instead of analyzing $\hat{\pi},$ we analyze the densest subgraph.
- Anantharam-Salez'16: densest subgraph in Erdős-Rényi

 $\mathcal{G}(n,\lambda/n)$ has average degree $\varrho(\lambda)>\lambda$ (for $\lambda>1$).

D.-Du'22a+: Exact detection threshold in the non-dense regime.

• There is loss in $\hat{\pi} \ge \pi^*$, due to inhomogeniety/irregularity of the common graph under π^* (which is an Erdős-Rényi).

- Instead of analyzing $\hat{\pi},$ we analyze the densest subgraph.
- Anantharam-Salez'16: densest subgraph in Erdős-Rényi
- $\mathcal{G}(n,\lambda/n)$ has average degree $\varrho(\lambda)>\lambda$ (for $\lambda>1$).
- Average degree of the maximal common graph in independent case **does not** increase by taking subgraph with linear size.
Exact detection and partial recovery threshold

D.-Du'22a+: Exact detection threshold in the non-dense regime.

• There is loss in $\hat{\pi} \ge \pi^*$, due to inhomogeniety/irregularity of the common graph under π^* (which is an Erdős-Rényi).

- Instead of analyzing $\hat{\pi},$ we analyze the densest subgraph.
- Anantharam-Salez'16: densest subgraph in Erdős-Rényi
- $\mathcal{G}(n,\lambda/n)$ has average degree $\varrho(\lambda)>\lambda$ (for $\lambda>1$).
- Average degree of the maximal common graph in independent case **does not** increase by taking subgraph with linear size.

Detectable regime: *If* densest subgraph with linear size (maximized over all vertex bijections) has large edge density, *then* correlated.

Exact detection and partial recovery threshold

D.-Du'22a+: Exact detection threshold in the non-dense regime.

• There is loss in $\hat{\pi} \ge \pi^*$, due to inhomogeniety/irregularity of the common graph under π^* (which is an Erdős-Rényi).

- Instead of analyzing $\hat{\pi},$ we analyze the densest subgraph.
- Anantharam-Salez'16: densest subgraph in Erdős-Rényi
- $\mathcal{G}(n,\lambda/n)$ has average degree $\varrho(\lambda)>\lambda$ (for $\lambda>1$).
- Average degree of the maximal common graph in independent case **does not** increase by taking subgraph with linear size.

Detectable regime: *If* densest subgraph with linear size (maximized over all vertex bijections) has large edge density, *then* correlated. Undetectable regime: After truncating on the densest subgraph, the second moment of the probability density ratios (null v.s. alternative) is close to 1, so total variation distance vanishes.

Exact detection and partial recovery threshold

D.-Du'22a+: Exact detection threshold in the non-dense regime.

• There is loss in $\hat{\pi} \ge \pi^*$, due to inhomogeniety/irregularity of the common graph under π^* (which is an Erdős-Rényi).

- Instead of analyzing $\hat{\pi},$ we analyze the densest subgraph.
- Anantharam-Salez'16: densest subgraph in Erdős-Rényi
- $\mathcal{G}(n,\lambda/n)$ has average degree $\varrho(\lambda)>\lambda$ (for $\lambda>1$).
- Average degree of the maximal common graph in independent case **does not** increase by taking subgraph with linear size.

Detectable regime: *If* densest subgraph with linear size (maximized over all vertex bijections) has large edge density, *then* correlated. Undetectable regime: After truncating on the densest subgraph, the second moment of the probability density ratios (null v.s. alternative) is close to 1, so total variation distance vanishes.

D.-Du'22b+: Exact partial recovery threshold in the non-dense regime.

Recall: maximal alignment of two graphs are NP-hard.

- Recall: maximal alignment of two graphs are NP-hard.
- Question: maximizing the overlap between two independent Erdős-Rényi graphs with $p = n^{-\alpha}$ over all vertex matching?

- Recall: maximal alignment of two graphs are NP-hard.
- Question: maximizing the overlap between two independent Erdős-Rényi graphs with $p = n^{-\alpha}$ over all vertex matching?
- ▶ D.-Du-Gong'22: Poly-time approximation scheme for $\alpha \in (1/2, 1)$.

- Recall: maximal alignment of two graphs are NP-hard.
- Question: maximizing the overlap between two independent Erdős-Rényi graphs with $p = n^{-\alpha}$ over all vertex matching?
- ▶ D.-Du-Gong'22: Poly-time approximation scheme for $\alpha \in (1/2, 1)$.
 - Proves that the maximal overlap is ≈ (2α − 1)⁻¹n (even no non-algorithmic proof previously).

- Recall: maximal alignment of two graphs are NP-hard.
- Question: maximizing the overlap between two independent Erdős-Rényi graphs with $p = n^{-\alpha}$ over all vertex matching?
- ▶ D.-Du-Gong'22: Poly-time approximation scheme for $\alpha \in (1/2, 1)$.
 - Proves that the maximal overlap is ≈ (2α − 1)⁻¹n (even no non-algorithmic proof previously).
 - Our algorithm is iterative/greedy; analysis is difficult.

- Recall: maximal alignment of two graphs are NP-hard.
- Question: maximizing the overlap between two independent Erdős-Rényi graphs with $p = n^{-\alpha}$ over all vertex matching?
- ▶ D.-Du-Gong'22: Poly-time approximation scheme for $\alpha \in (1/2, 1)$.
 - Proves that the maximal overlap is ≈ (2α − 1)⁻¹n (even no non-algorithmic proof previously).
 - Our algorithm is iterative/greedy; analysis is difficult.
 - $\alpha < 1/2$: trivial regime; $\alpha = 1/2$: delicate.

- Recall: maximal alignment of two graphs are NP-hard.
- Question: maximizing the overlap between two independent Erdős-Rényi graphs with $p = n^{-\alpha}$ over all vertex matching?
- ▶ D.-Du-Gong'22: Poly-time approximation scheme for $\alpha \in (1/2, 1)$.
 - Proves that the maximal overlap is ≈ (2α − 1)⁻¹n (even no non-algorithmic proof previously).
 - Our algorithm is iterative/greedy; analysis is difficult.
 - $\alpha < 1/2$: trivial regime; $\alpha = 1/2$: delicate.
- One of few examples where random optimization can be solved but worst-case NP hard.

- Recall: maximal alignment of two graphs are NP-hard.
- Question: maximizing the overlap between two independent Erdős-Rényi graphs with $p = n^{-\alpha}$ over all vertex matching?
- ▶ D.-Du-Gong'22: Poly-time approximation scheme for $\alpha \in (1/2, 1)$.
 - Proves that the maximal overlap is ≈ (2α − 1)⁻¹n (even no non-algorithmic proof previously).
 - Our algorithm is iterative/greedy; analysis is difficult.
 - $\alpha < 1/2$: trivial regime; $\alpha = 1/2$: delicate.
- One of few examples where random optimization can be solved but worst-case NP hard.
- Wu-Xu: maybe related to overlap gap property for correlated model.

- Recall: maximal alignment of two graphs are NP-hard.
- Question: maximizing the overlap between two independent Erdős-Rényi graphs with $p = n^{-\alpha}$ over all vertex matching?
- ▶ D.-Du-Gong'22: Poly-time approximation scheme for $\alpha \in (1/2, 1)$.
 - Proves that the maximal overlap is ≈ (2α − 1)⁻¹n (even no non-algorithmic proof previously).
 - Our algorithm is iterative/greedy; analysis is difficult.
 - $\alpha < 1/2$: trivial regime; $\alpha = 1/2$: delicate.
- One of few examples where random optimization can be solved but worst-case NP hard.
- Wu-Xu: maybe related to overlap gap property for correlated model.
- Computation for correlated model seems much more difficult.

For each vertex, compute a "signature" and match pairs of vertices with similar signatures.

For each vertex, compute a "signature" and match pairs of vertices with similar signatures. Desired properties for signature: informative, comptuable, tractable, generalizable.

For each vertex, compute a "signature" and match pairs of vertices with similar signatures. Desired properties for signature: informative, comptuable, tractable, generalizable.

 \diamond By randomness, true pairs are more similar than faked ones.

For each vertex, compute a "signature" and match pairs of vertices with similar signatures. Desired properties for signature: informative, comptuable, tractable, generalizable.

 \diamond By randomness, true pairs are more similar than faked ones.

For each vertex, compute a "signature" and match pairs of vertices with similar signatures. Desired properties for signature: informative, comptuable, tractable, generalizable.

 \diamond By randomness, true pairs are more similar than faked ones.

♦ Challenge: true pair needs to beat **many** faked pairs.

 Dai-Cullina-Kiyavash-Grossglauser'18, Barak-Chou-Lei-Schramm-Sheng'19 D.-Ma-Wu-Xu'21

For each vertex, compute a "signature" and match pairs of vertices with similar signatures. Desired properties for signature: informative, comptuable, tractable, generalizable.

 \diamond By randomness, true pairs are more similar than faked ones.

- Dai-Cullina-Kiyavash-Grossglauser'18, Barak-Chou-Lei-Schramm-Sheng'19 D.-Ma-Wu-Xu'21
- Optimization with relaxation (usually convex relaxation). (Fan-Mao-Wu-Xu'19+).

For each vertex, compute a "signature" and match pairs of vertices with similar signatures. Desired properties for signature: informative, comptuable, tractable, generalizable.

 \diamond By randomness, true pairs are more similar than faked ones.

- Dai-Cullina-Kiyavash-Grossglauser'18, Barak-Chou-Lei-Schramm-Sheng'19 D.-Ma-Wu-Xu'21
- Optimization with relaxation (usually convex relaxation). (Fan-Mao-Wu-Xu'19+).
 - Original optimization problem is hard to solve, but feasible if enlarge the space of potential solutions (e.g. to a convex space).

For each vertex, compute a "signature" and match pairs of vertices with similar signatures. Desired properties for signature: informative, comptuable, tractable, generalizable.

 \diamond By randomness, true pairs are more similar than faked ones.

- Dai-Cullina-Kiyavash-Grossglauser'18, Barak-Chou-Lei-Schramm-Sheng'19 D.-Ma-Wu-Xu'21
- Optimization with relaxation (usually convex relaxation). (Fan-Mao-Wu-Xu'19+).
 - Original optimization problem is hard to solve, but feasible if enlarge the space of potential solutions (e.g. to a convex space).
 - By randomness, the optimizer in the enlarged space recovers the original optimizer (e.g., by rounding procedure).

For each vertex, compute a "signature" and match pairs of vertices with similar signatures. Desired properties for signature: informative, comptuable, tractable, generalizable.

 \diamond By randomness, true pairs are more similar than faked ones.

- Dai-Cullina-Kiyavash-Grossglauser'18, Barak-Chou-Lei-Schramm-Sheng'19 D.-Ma-Wu-Xu'21
- Optimization with relaxation (usually convex relaxation). (Fan-Mao-Wu-Xu'19+).
 - Original optimization problem is hard to solve, but feasible if enlarge the space of potential solutions (e.g. to a convex space).
 - By randomness, the optimizer in the enlarged space recovers the original optimizer (e.g., by rounding procedure).
 - ► Succeeds when noise decays in polylog(*n*).

Mao-Rudelson-Tikhomirov'21+: poly-time algorithm based some partition trees, when correlation ≥ const (close to 1).

- Mao-Rudelson-Tikhomirov'21+: poly-time algorithm based some partition trees, when correlation ≥ const (close to 1).
- ► Ganassali-Massoulié-Lelarge'20+,22+: poly-time partial matching algorithm for sparse graphs based on message passing, when correlation > $\sqrt{\text{Otter's constant}} \approx \sqrt{0.3383}$.

- Mao-Rudelson-Tikhomirov'21+: poly-time algorithm based some partition trees, when correlation ≥ const (close to 1).
- ► Ganassali-Massoulié-Lelarge'20+,22+: poly-time partial matching algorithm for sparse graphs based on message passing, when correlation > $\sqrt{\text{Otter's constant}} \approx \sqrt{0.3383}$.
- Mao-Wu-Xu-Yu'22+: poly-time algorithm when correlation > √Otter's constant, based on a carefully curated family of rooted trees called chandeliers (substantially improving MRT21+, and covers much wider parameter regime).

- Mao-Rudelson-Tikhomirov'21+: poly-time algorithm based some partition trees, when correlation ≥ const (close to 1).
- ► Ganassali-Massoulié-Lelarge'20+,22+: poly-time partial matching algorithm for sparse graphs based on message passing, when correlation > $\sqrt{\text{Otter's constant}} \approx \sqrt{0.3383}$.
- Mao-Wu-Xu-Yu'22+: poly-time algorithm when correlation > √Otter's constant, based on a carefully curated family of rooted trees called chandeliers (substantially improving MRT21+, and covers much wider parameter regime).
- D.-Li'22+: poly-time iterative algorithm for matching Gaussian matrices when correlation is non-vanishing.

- ► Mao-Rudelson-Tikhomirov'21+: poly-time algorithm based some partition trees, when correlation ≥ const (close to 1).
- ► Ganassali-Massoulié-Lelarge'20+,22+: poly-time partial matching algorithm for sparse graphs based on message passing, when correlation > $\sqrt{\text{Otter's constant}} \approx \sqrt{0.3383}$.
- Mao-Wu-Xu-Yu'22+: poly-time algorithm when correlation > √Otter's constant, based on a carefully curated family of rooted trees called chandeliers (substantially improving MRT21+, and covers much wider parameter regime).
- D.-Li'22+: poly-time iterative algorithm for matching Gaussian matrices when correlation is non-vanishing.
 - New feature: signal is stored in a vector where each coordinate is a pair of sets, and signal per coordinate decreases with iteration but compensated by increase on dimension.

- Mao-Rudelson-Tikhomirov'21+: poly-time algorithm based some partition trees, when correlation ≥ const (close to 1).
- ► Ganassali-Massoulié-Lelarge'20+,22+: poly-time partial matching algorithm for sparse graphs based on message passing, when correlation > $\sqrt{\text{Otter's constant}} \approx \sqrt{0.3383}$.
- Mao-Wu-Xu-Yu'22+: poly-time algorithm when correlation > √Otter's constant, based on a carefully curated family of rooted trees called chandeliers (substantially improving MRT21+, and covers much wider parameter regime).
- D.-Li'22+: poly-time iterative algorithm for matching Gaussian matrices when correlation is non-vanishing.
 - New feature: signal is stored in a vector where each coordinate is a pair of sets, and signal per coordinate decreases with iteration but compensated by increase on dimension.
 - Expected to be sharp, and should extend to graph matching (although with substantial challenge) assuming $np > n^{\alpha}$.

- Mao-Rudelson-Tikhomirov'21+: poly-time algorithm based some partition trees, when correlation ≥ const (close to 1).
- ► Ganassali-Massoulié-Lelarge'20+,22+: poly-time partial matching algorithm for sparse graphs based on message passing, when correlation > $\sqrt{\text{Otter's constant}} \approx \sqrt{0.3383}$.
- Mao-Wu-Xu-Yu'22+: poly-time algorithm when correlation > √Otter's constant, based on a carefully curated family of rooted trees called chandeliers (substantially improving MRT21+, and covers much wider parameter regime).
- D.-Li'22+: poly-time iterative algorithm for matching Gaussian matrices when correlation is non-vanishing.
 - New feature: signal is stored in a vector where each coordinate is a pair of sets, and signal per coordinate decreases with iteration but compensated by increase on dimension.
 - Expected to be sharp, and should extend to graph matching (although with substantial challenge) assuming $np > n^{\alpha}$.
 - Shed lights on many matching problems too.

Traditionally, complexity theory studies hardness of computational problems for worst-case instance.

- Traditionally, complexity theory studies hardness of computational problems for worst-case instance.
- Usually certify hardness by reduction: if you could solve this problem, then you can solve some well-known hard problems.

- Traditionally, complexity theory studies hardness of computational problems for worst-case instance.
- Usually certify hardness by reduction: if you could solve this problem, then you can solve some well-known hard problems.
- For problems with random instance, we care about the hardness for a typical instance. Evidences of hardness include

- Traditionally, complexity theory studies hardness of computational problems for worst-case instance.
- Usually certify hardness by reduction: if you could solve this problem, then you can solve some well-known hard problems.
- For problems with random instance, we care about the hardness for a typical instance. Evidences of hardness include
 - show as hard as well-known hard problems (reduction is much more difficult on random instance than for worst-case instance);

- Traditionally, complexity theory studies hardness of computational problems for worst-case instance.
- Usually certify hardness by reduction: if you could solve this problem, then you can solve some well-known hard problems.
- For problems with random instance, we care about the hardness for a typical instance. Evidences of hardness include
 - show as hard as well-known hard problems (reduction is much more difficult on random instance than for worst-case instance);
 - show that a wide class of algorithms fail to solve the problem;
Complexity theory: how to certify computational hardness?

- Traditionally, complexity theory studies hardness of computational problems for worst-case instance.
- Usually certify hardness by reduction: if you could solve this problem, then you can solve some well-known hard problems.
- For problems with random instance, we care about the hardness for a typical instance. Evidences of hardness include
 - show as hard as well-known hard problems (reduction is much more difficult on random instance than for worst-case instance);
 - show that a wide class of algorithms fail to solve the problem;
 - exhibit similar structural properties as in other hard problems.

Complexity theory: how to certify computational hardness?

- Traditionally, complexity theory studies hardness of computational problems for worst-case instance.
- Usually certify hardness by reduction: if you could solve this problem, then you can solve some well-known hard problems.
- For problems with random instance, we care about the hardness for a typical instance. Evidences of hardness include
 - show as hard as well-known hard problems (reduction is much more difficult on random instance than for worst-case instance);
 - show that a wide class of algorithms fail to solve the problem;
 - exhibit similar structural properties as in other hard problems.
- Application in data privacy: how can we perform a minimal change on the Linkedin and Twitter network, so that it would be computationally hard to recover the matching from the this perturbed observation?

Complexity theory: how to certify computational hardness?

- Traditionally, complexity theory studies hardness of computational problems for worst-case instance.
- Usually certify hardness by reduction: if you could solve this problem, then you can solve some well-known hard problems.
- For problems with random instance, we care about the hardness for a typical instance. Evidences of hardness include
 - show as hard as well-known hard problems (reduction is much more difficult on random instance than for worst-case instance);
 - show that a wide class of algorithms fail to solve the problem;
 - exhibit similar structural properties as in other hard problems.
- Application in data privacy: how can we perform a minimal change on the Linkedin and Twitter network, so that it would be computationally hard to recover the matching from the this perturbed observation?
- Information-computation gap: a major challenge in many random combinatorial optimization and constraint satisfaction problems!

A hub of theorists: combinatorics, probability, statistics, algorithms, complexity theory, optimization, etc.

- A hub of theorists: combinatorics, probability, statistics, algorithms, complexity theory, optimization, etc.
- A meeting point of theory and applications:

- A hub of theorists: combinatorics, probability, statistics, algorithms, complexity theory, optimization, etc.
- A meeting point of theory and applications:
 - Currently, most extensively studied models are idealistic.

- A hub of theorists: combinatorics, probability, statistics, algorithms, complexity theory, optimization, etc.
- A meeting point of theory and applications:
 - Currently, most extensively studied models are idealistic. Even worse, many times algorithms and analysis are based on wrong model assumptions, e.g., local tree structure for social network model.

- A hub of theorists: combinatorics, probability, statistics, algorithms, complexity theory, optimization, etc.
- A meeting point of theory and applications:
 - Currently, most extensively studied models are idealistic. Even worse, many times algorithms and analysis are based on wrong model assumptions, e.g., local tree structure for social network model.
 - Major challenge 1: propose models with general applicability where theorists can say something meaningful.

- A hub of theorists: combinatorics, probability, statistics, algorithms, complexity theory, optimization, etc.
- A meeting point of theory and applications:
 - Currently, most extensively studied models are idealistic. Even worse, many times algorithms and analysis are based on wrong model assumptions, e.g., local tree structure for social network model.
 - Major challenge 1: propose models with general applicability where theorists can say something meaningful.
 - Major challenge 2: propose models for important scientific problems worth extensive theoretic study.

- A hub of theorists: combinatorics, probability, statistics, algorithms, complexity theory, optimization, etc.
- A meeting point of theory and applications:
 - Currently, most extensively studied models are idealistic. Even worse, many times algorithms and analysis are based on wrong model assumptions, e.g., local tree structure for social network model.
 - Major challenge 1: propose models with general applicability where theorists can say something meaningful.
 - Major challenge 2: propose models for important scientific problems worth extensive theoretic study.
- Bridging what is wanted with what is possible.

Reference: all mentioned works available on arXiv.