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» Successfully de-anonymize Netflix by matching it to IMDB
[Narayanan-Shmatikov '08]

» Correctly identified 30.8% of node mappings between Twitter
and Flickr [Narayanan-Shmatikov '09]



Application 2: Protein-Protein Interaction network
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Figure: [Kazemi-Hassani-Grossglauser-Modarres '16]

Ontology: Discover proteins with similar functions across different
species based on interaction network topology
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A fundamental problem in computer vision: Detect similar objects
that undergo different deformations

Figure: Shape REtrieval Contest (SHREC) dataset [Lahner et al '16]

3-D shapes — geometric graphs (features — nodes, distances —
edges)
Determine whether two graphs are topologically similar



Application 4: Machine Translation
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Automatically find/correct corresp. wiki articles in different
languages [Fishkind-Adali-Patsolic-Meng-Lyzinski-Priebe '12]
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Graph matching: a fundamental mathematical question underlying
these applications.

e find a bijection between two vertex sets that maximally align the
edges (i.e. minimizes # of adjacency disagreements).

Graph matching is a hard optimization problem (NP-hard), and we
seek help from randomness.
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An idealistic model: Correlated Erdds-Rényi graphs model

There is no structure in randomness: there is an edge between a
pair of vertices with probability p independently.

Advantage: simple probabilistic model; suitable playground for
developing mathematical theory.

Disadvantage: almost all realistic networks are not Erdds-Rényi.
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Information threshold: what is the teststone?

Three thresholds: detection, exact recovery, partial recovery.

e Detection: test correlation against independence.

e Exact recovery: correctly match all vertices.

e Partial recovery: correctly match a positive fraction of vertices.

Wu-Xu-Yu'20, 21: progress based on maximal common graph (see
Ganassali-Massoulié-Lelarge for p = 1/n).
e Methods: let 7 be the bijection that maximizes the number of
common edges £.

o Detection: |£] is large = correlation.

© Matching: estimate 7* by 7.
e Results: determined exact recovery threshold. For detection and
partial recovery thresholds, determined exactly in the dense regime
(p = n°M) and determined up-to-constants in the non-dense
regime.
e Analysis: when two graphs are correlated it is hard to analyze 7
and WXY used “T > 7" to lower-bound the maximal common
graph.
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D.-Du'22a+: Exact detection threshold in the non-dense regime.
e There is loss in 77 > 7%, due to inhomogeniety/irregularity of the
common graph under 7* (which is an Erd8s-Rényi).

e Instead of analyzing &, we analyze the densest subgraph.

e Anantharam-Salez'16: densest subgraph in Erd6s-Rényi
G(n,\/n) has average degree o(\) > A (for A > 1).

e Average degree of the maximal common graph in independent
case does not increase by taking subgraph with linear size.

Detectable regime: If densest subgraph with linear size (maximized
over all vertex bijections) has large edge density, then correlated.
Undetectable regime: After truncating on the densest subgraph,
the second moment of the probability density ratios (null v.s.
alternative) is close to 1, so total variation distance vanishes.

D.-Du'22b+: Exact partial recovery threshold in the non-dense
regime.
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» Recall: maximal alignment of two graphs are NP-hard.

» Question: maximizing the overlap between two independent
ErdGs-Rényi graphs with p = n™® over all vertex matching?
» D.-Du-Gong'22: Poly-time approximation scheme for
ae(1/2,1).
> Proves that the maximal overlap is ~ (2ac — 1)~ 1n (even no
non-algorithmic proof previously).
» Our algorithm is iterative/greedy; analysis is difficult.
> o < 1/2: trivial regime; o = 1/2: delicate.
» One of few examples where random optimization can be
solved but worst-case NP hard.

» Wu-Xu: maybe related to overlap gap property for correlated
model.

» Computation for correlated model seems much more difficult.
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» For each vertex, compute a “signature” and match pairs of
vertices with similar signatures. Desired properties for
signature: informative, comptuable, tractable,
generalizable.

© By randomness, true pairs are more similar than faked
ones.
¢ Challenge: true pair needs to beat many faked pairs.

» Dai-Cullina-Kiyavash-Grossglauser'18,
Barak-Chou-Lei-Schramm-Sheng'19 D.-Ma-Wu-Xu'21

» Optimization with relaxation (usually convex relaxation).
(Fan-Mao-Wu-Xu'19+).

» Original optimization problem is hard to solve, but feasible if
enlarge the space of potential solutions (e.g. to a convex
space).

» By randomness, the optimizer in the enlarged space recovers
the original optimizer (e.g., by rounding procedure).

» Succeeds when noise decays in polylog(n).
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» Mao-Rudelson-Tikhomirov'214-: poly-time algorithm based
some partition trees, when correlation > const (close to 1).

» Ganassali-Massoulié-Lelarge'20+,224-: poly-time partial
matching algorithm for sparse graphs based on message
passing, when correlation > /Otter’s constant ~ 1/0.3383.

> Mao-Wu-Xu-Yu'22+: poly-time algorithm when correlation
> 1/Otter’s constant, based on a carefully curated family of
rooted trees called chandeliers (substantially improving
MRT21+, and covers much wider parameter regime).

» D.-Li'"22+: poly-time iterative algorithm for matching
Gaussian matrices when correlation is non-vanishing.

» New feature: signal is stored in a vector where each coordinate
is a pair of sets, and signal per coordinate decreases with
iteration but compensated by increase on dimension.

» Expected to be sharp, and should extend to graph matching
(although with substantial challenge) assuming np > n®.

» Shed lights on many matching problems too.
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» Traditionally, complexity theory studies hardness of
computational problems for worst-case instance.

» Usually certify hardness by reduction: if you could solve this
problem, then you can solve some well-known hard problems.

» For problems with random instance, we care about the
hardness for a typical instance. Evidences of hardness include
» show as hard as well-known hard problems (reduction is much
more difficult on random instance than for worst-case
instance);
» show that a wide class of algorithms fail to solve the problem;
P exhibit similar structural properties as in other hard problems.
» Application in data privacy: how can we perform a minimal
change on the Linkedin and Twitter network, so that it would
be computationally hard to recover the matching from the
this perturbed observation?

» Information-computation gap: a major challenge in many
random combinatorial optimization and constraint satisfaction
problems!
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algorithms, complexity theory, optimization, etc.
> A meeting point of theory and applications:

» Currently, most extensively studied models are idealistic. Even
worse, many times algorithms and analysis are based on wrong
model assumptions, e.g., local tree structure for social network
model.

» Major challenge 1: propose models with general applicability
where theorists can say something meaningful.

» Major challenge 2: propose models for important scientific
problems worth extensive theoretic study.

» Bridging what is wanted with what is possible.

Reference: all mentioned works available on arXiv.



