Turán numbers of sunflowers

Matija Bucić

Institute for Advanced Study and Princeton University

joint work with Domagoj Bradač and Benny Sudakov
Sunflowers

Definition

A collection of distinct sets is called a sunflower if the intersection of any pair of sets equals the common intersection of all the sets.

The common intersection is the kernel of the sunflower.

r-uniform if all sets have size r.

Matija Bucić (IAS and Princeton)

Turán numbers of sunflowers

Oxford Discrete Math and Probability Seminar 2021
A collection of distinct sets is called a sunflower if the intersection of any pair of sets equals the common intersection of all the sets.

\{1, 2, 3, 4\}
\{1, 2, 5, 6\}
\{1, 2, 7, 8\}
\{1, 2, 9, 10\}
\{1, 2, 11, 12\}
A collection of distinct sets is called a sunflower if the intersection of any pair of sets equals the common intersection of all the sets.

\[
\begin{align*}
\{1, 2, 3, 4\} \\
\{1, 2, 5, 6\} \\
\{1, 2, 7, 8\} \\
\{1, 2, 9, 10\} \\
\{1, 2, 11, 12\}
\end{align*}
\]
A collection of distinct sets is called a sunflower if the intersection of any pair of sets equals the common intersection of all the sets.

\begin{itemize}
\item \{1, 2, 3, 4\}
\item \{1, 2, 5, 6\}
\item \{1, 2, 7, 8\}
\item \{1, 2, 9, 10\}
\item \{1, 2, 11, 12\}
\end{itemize}
A collection of distinct sets is called a sunflower if the intersection of any pair of sets equals the common intersection of all the sets.

\{1, 2, 3, 4\}
\{1, 2, 5, 6\}
\{1, 2, 7, 8\}
\{1, 2, 9, 10\}
\{1, 2, 11, 12\}
A collection of distinct sets is called a sunflower if the intersection of any pair of sets equals the common intersection of all the sets.

\{1, 2, 3, 4\} \\
\{1, 2, 5, 6\} \\
\{1, 2, 7, 8\} \\
\{1, 2, 9, 10\} \\
\{1, 2, 11, 12\}
A collection of distinct sets is called a sunflower if the intersection of any pair of sets equals the common intersection of all the sets.

\{1, 2, 3, 4\}
\{1, 2, 5, 6\}
\{1, 2, 7, 8\}
\{1, 2, 9, 10\}
\{1, 2, 11, 12\}
A collection of distinct sets is called a sunflower if the intersection of any pair of sets equals the common intersection of all the sets.

\[
\begin{align*}
\{1, 2, 3, 4\} \\
\{1, 2, 5, 6\} \\
\{1, 2, 7, 8\} \\
\{1, 2, 9, 10\} \\
\{1, 2, 11, 12\}
\end{align*}
\]
A collection of distinct sets is called a sunflower if the intersection of any pair of sets equals the common intersection of all the sets.

\{1, 2, 3, 4\}
\{1, 2, 5, 6\}
\{1, 2, 7, 8\}
\{1, 2, 9, 10\}
\{1, 2, 11, 12\}

The common intersection is the *kernel* of the sunflower.
A collection of distinct sets is called a sunflower if the intersection of any pair of sets equals the common intersection of all the sets.

The common intersection is the *kernel* of the sunflower.
A collection of distinct sets is called a sunflower if the intersection of any pair of sets equals the common intersection of all the sets.

\{1, 2, 3, 4\}
\{1, 2, 5, 6\}
\{1, 2, 7, 8\}
\{1, 2, 9, 10\}
\{1, 2, 11, 12\}

The common intersection is the *kernel* of the sunflower.
A collection of distinct sets is called a sunflower if the intersection of any pair of sets equals the common intersection of all the sets.

The common intersection is the *kernel* of the sunflower.

r-uniform if all sets have size r.

\{1, 2, 3, 4\}
\{1, 2, 5, 6\}
\{1, 2, 7, 8\}
\{1, 2, 9, 10\}
\{1, 2, 11, 12\}
Erdős-Rado sunflower conjecture

Question (Erdős-Rado, 1960)

What is the max size of a family of r-sets without a k petal sunflower?

Denote the answer by $f_r(k)$.

Erdős-Rado sunflower lemma:

$$(k-1)r \leq f_r(k) \leq (k-1)r \cdot r!.$$

Best known upper bound is:

$f_r(k) \leq O(k \log r)$.

Conjecture (Sunflower conjecture, Erdős-Rado, 1960)

$f_r(k) \leq O(k^r)$.

Even $k = 3$ case is open and very interesting.

Relations to many topics in computer science and probability theory.
Erdős-Rado sunflower conjecture

Question (Erdős-Rado, 1960)

What is the max size of a family of \(r \)-sets without a \(k \) petal sunflower?

Denote the answer by \(f_r(k) \).
Erdős-Rado sunflower conjecture

Question (Erdős-Rado, 1960)

What is the max size of a family of r-sets without a k petal sunflower?

- Denote the answer by $f_r(k)$.
- Erdős-Rado sunflower lemma: $f_r(k) \leq (k - 1)^r \cdot r!$.

Matija Bucić (IAS and Princeton)
Turán numbers of sunflowers
Oxford Discrete Math and Probability Seminar 2021
Erdős-Rado sunflower conjecture

Question (Erdős-Rado, 1960)

What is the max size of a family of r-sets without a k petal sunflower?

- Denote the answer by $f_r(k)$.
- Erdős-Rado sunflower lemma: $(k - 1)^r \leq f_r(k) \leq (k - 1)^r \cdot r!$.
Erdős-Rado sunflower conjecture

Question (Erdős-Rado, 1960)

What is the max size of a family of r-sets without a k petal sunflower?

- Denote the answer by $f_r(k)$.
- Erdős-Rado sunflower lemma: $(k - 1)^r \leq f_r(k) \leq (k - 1)^r \cdot r!$.
- Best known upper bound is: $f_r(k) \leq O(k \log r)^r$.

Even $k = 3$ case is open and very interesting.

Relations to many topics in computer science and probability theory.
Erdős-Rado sunflower conjecture

Question (Erdős-Rado, 1960)

What is the max size of a family of r-sets without a k petal sunflower?

- Denote the answer by $f_r(k)$.
- Erdős-Rado sunflower lemma: $(k - 1)^r \leq f_r(k) \leq (k - 1)^r \cdot r!$.
- Best known upper bound is: $f_r(k) \leq O(k \log r)^r$.

Conjecture (Sunflower conjecture, Erdős-Rado, 1960)

$f_r(k) \leq O(k)^r$
Erdős-Rado sunflower conjecture

Question (Erdős-Rado, 1960)

What is the max size of a family of r-sets without a k petal sunflower?

- Denote the answer by $f_r(k)$.
- Erdős-Rado sunflower lemma: $(k - 1)^r \leq f_r(k) \leq (k - 1)^r \cdot r!$.
- Best known upper bound is: $f_r(k) \leq O(k \log r)^r$.

Conjecture (Sunflower conjecture, Erdős-Rado, 1960)

$$f_r(k) \leq O(k)^r$$

- Even $k = 3$ case is open and very interesting.
Erdős-Rado sunflower conjecture

Question (Erdős-Rado, 1960)

What is the max size of a family of r-sets without a k petal sunflower?

- Denote the answer by $f_r(k)$.
- Erdős-Rado sunflower lemma: $(k - 1)^r \leq f_r(k) \leq (k - 1)^r \cdot r!$.
- Best known upper bound is: $f_r(k) \leq O(k \log r)^r$.

Conjecture (Sunflower conjecture, Erdős-Rado, 1960)

$f_r(k) \leq O(k)^r$

- Even $k = 3$ case is open and very interesting.
- Relations to many topics in computer science and probability theory.
Specific sunflowers

- Let $S_t^{(r)}(k)$ be the r-uniform sunflower with k petals and kernel of size t.
Specific sunflowers

- Let $S_t^{(r)}(k)$ be the r-uniform sunflower with k petals and kernel of size t.

![Sunflower diagram]
Let $S_t^{(r)}(k)$ be the r-uniform sunflower with k petals and kernel of size t.

Specific sunflowers

- Let $S_t^{(r)}(k)$ be the r-uniform sunflower with k petals and kernel of size t.

\[S_1^{(2)}(5) \]
Let $S_t^{(r)}(k)$ be the r-uniform sunflower with k petals and kernel of size t.

$S_1^{(2)}(5)$
Specific sunflowers

Let $S_t^{(r)}(k)$ be the r-uniform sunflower with k petals and kernel of size t.

![Diagram of sunflowers]

$S_1^{(2)}(5)$

$S_2^{(4)}(5)$
Specific sunflowers

- Let $S_t^{(r)}(k)$ be the r-uniform sunflower with k petals and kernel of size t.

\[
S_1^{(2)}(5) \quad S_2^{(4)}(5)
\]
Let $S_t^{(r)}(k)$ be the r-uniform sunflower with k petals and kernel of size t.

Sunflower problem: What is the max number of edges in an r-graph without any of $S_0^{(r)}(k), S_1^{(r)}(k), \ldots, S_{r-1}(r)$?
Let $S_t^{(r)}(k)$ be the r-uniform sunflower with k petals and kernel of size t.

Sunflower problem: What is the max number of edges in an r-graph without any of $S_0^{(r)}(k), S_1^{(r)}(k), \ldots, S_{r-1}^{(r)}(k)$?

Question (Duke and Erdős 1977)

What is the max number of edges in an n-vertex r-graph without $S_t^{(r)}(k)$?
Question (Duke and Erdős 1977)

What is the max number of edges in an n-vertex r-graph without $S_t^{(r)}(k)$?
Question (Duke and Erdős 1977)

What is the max number of edges in an n-vertex r-graph without $S^{(r)}_t(k)$?

- The answer is called the *Turán number* of $S^{(r)}_t(k)$, denoted $ex(n, S^{(r)}_t(k))$.
Question (Duke and Erdős 1977)

What is the max number of edges in an n-vertex r-graph without $S_t^{(r)}(k)$?

- The answer is called the Turán number of $S_t^{(r)}(k)$, denoted $\text{ex}(n, S_t^{(r)}(k))$.
- Captures several classical problems:
Turán problem for sunflowers

Question (Duke and Erdős 1977)

What is the max number of edges in an \(n \)-vertex \(r \)-graph without \(S_t^{(r)}(k) \)?

- The answer is called the Turán number of \(S_t^{(r)}(k) \), denoted \(\text{ex}(n, S_t^{(r)}(k)) \).
- Captures several classical problems:
 - Case \(t = 0 \) corresponds to the Erdős matching conjecture.
Question (Duke and Erdős 1977)

What is the max number of edges in an n-vertex r-graph without $S_t^{(r)}(k)$?

- The answer is called the Turán number of $S_t^{(r)}(k)$, denoted $\text{ex}(n, S_t^{(r)}(k))$.
- Captures several classical problems:
 - Case $t = 0$ corresponds to the Erdős matching conjecture.
 - Case $k = 2$ corresponds to the forbidden intersection problem.
Question (Duke and Erdős 1977)

What is the max number of edges in an n-vertex r-graph without $S_t^{(r)}(k)$?

- The answer is called the Turán number of $S_t^{(r)}(k)$, denoted $\text{ex}(n, S_t^{(r)}(k))$
- Captures several classical problems:
 - Case $t = 0$ corresponds to the Erdős matching conjecture
 - Case $k = 2$ corresponds to the forbidden intersection problem
- Many results and bounds in various regimes.
Question (Duke and Erdős 1977)

What is the max number of edges in an \(n \)-vertex \(r \)-graph without \(S_t^{(r)}(k) \)?

- The answer is called the Turán number of \(S_t^{(r)}(k) \), denoted \(\text{ex}(n, S_t^{(r)}(k)) \).
- Captures several classical problems:
 - Case \(t = 0 \) corresponds to the Erdős matching conjecture.
 - Case \(k = 2 \) corresponds to the forbidden intersection problem.
- Many results and bounds in various regimes.
- Frankl and Füredi 1985: For fixed \(r \) and \(k \) we have
 \[
 \text{ex}(n, S_t^{(r)}(k)) \approx_{r,k} n^\max\{r-t+1,t\}.
 \]
Frankl and Füredi 1985: For fixed r and k we have

$$\text{ex}(n, S_t^{(r)}(k)) \approx_{r,k} n^\max\{r-t+1, t\}.$$
Frankl and Füredi 1985: For fixed r and k we have

$$\text{ex}(n, S^{(r)}_t(k)) \approx_{r,k} n^{\max\{r-t+1,t\}}.$$

Chung, Erdős, Graham 1980’s: What if we let k grow with n?
Frankl and Füredi 1985: For fixed r and k we have

$$\text{ex}(n, S_t^{(r)}(k)) \approx_{r,k} n^{\max\{r-t+1,t\}}.$$

Chung, Erdős, Graham 1980’s: What if we let k grow with n?

If $r = 2$ it is trivial to see $\text{ex}(n, S_1^{(2)}(k)) \approx nk$
• Frankl and Füredi 1985: For fixed r and k we have
 \[
 \text{ex}(n, S_t^{(r)}(k)) \approx_{r,k} n^{\max\{r-t+1,t\}}.
 \]

• Chung, Erdős, Graham 1980’s: What if we let k grow with n?

• If $r = 2$ it is trivial to see $\text{ex}(n, S_1^{(2)}(k)) \approx nk$

• If $r = 3$ there are two types of sunflowers depending on kernel size
Large sunflowers

- Frankl and Füredi 1985: For fixed r and k we have
 \[\text{ex}(n, S_t^{(r)}(k)) \approx_{r,k} n^{\max\{r-t+1,t\}}. \]

- Chung, Erdős, Graham 1980’s: What if we let k grow with n?

- If $r = 2$ it is trivial to see \(\text{ex}(n, S_1^{(2)}(k)) \approx nk \)

- If $r = 3$ there are two types of sunflowers depending on kernel size

\[S_1^{(3)}(k) : \quad S_2^{(3)}(k) : \]
Large sunflowers

- Frankl and Füredi 1985: For fixed r and k we have

$$\text{ex}(n, S_t^{(r)}(k)) \approx_{r,k} n^{\max\{r-t+1,t}\}$$.

- Chung, Erdős, Graham 1980’s: What if we let k grow with n?

- If $r = 2$ it is trivial to see $\text{ex}(n, S_1^{(2)}(k)) \approx nk$

- If $r = 3$ there are two types of sunflowers depending on kernel size

$$S_1^{(3)}(k):$$

$$S_2^{(3)}(k):$$

$$\text{ex}(n, S_2^{(3)}(k)) \approx n^2 k$$
Large sunflowers

- Frankl and Füredi 1985: For fixed r and k we have

 \[\text{ex}(n, S_t^{(r)}(k)) \approx_{r,k} n^{\max\{r-t+1,t\}}. \]

- Chung, Erdős, Graham 1980’s: What if we let k grow with n?

- If $r = 2$ it is trivial to see $\text{ex}(n, S_1^{(2)}(k)) \approx nk$

- If $r = 3$ there are two types of sunflowers depending on kernel size

 - $S_1^{(3)}(k)$:
 \[\text{ex}(n, S_1^{(3)}(k)) \approx nk^2 \]

 - $S_2^{(3)}(k)$:
 \[\text{ex}(n, S_2^{(3)}(k)) \approx n^2k \]
Frankl and Füredi 1985: For fixed r and k we have
\[\text{ex}(n, S_t^{(r)}(k)) \approx r, k \cdot n^{\max\{r-t+1, t\}}. \]

Chung, Erdős, Graham 1980’s: What if we let k grow with n?

If $r = 2$ it is trivial to see $\text{ex}(n, S_1^{(2)}(k)) \approx nk$

If $r = 3$ there are two types of sunflowers depending on kernel size
- Duke and Erdős; Frankl: $\text{ex}(n, S_1^{(3)}(k)) \approx nk^2$ and $\text{ex}(n, S_2^{(3)}(k)) \approx n^2k$
Large sunflowers

Frankl and Füredi 1985: For fixed r and k we have

$$\text{ex}(n, S_t^{(r)}(k)) \approx_{r,k} n^{\max\{r-t+1, t\}}.$$

Chung, Erdős, Graham 1980's: What if we let k grow with n?

If $r = 2$ it is trivial to see $\text{ex}(n, S_1^{(2)}(k)) \approx nk$

If $r = 3$ there are two types of sunflowers depending on kernel size

- Duke and Erdős; Frankl: $\text{ex}(n, S_1^{(3)}(k)) \approx nk^2$ and $\text{ex}(n, S_2^{(3)}(k)) \approx n^2k$
- Chung determined $\text{ex}(n, S_1^{(3)}(k))$ up to lower order terms.
Frankl and Füredi 1985: For fixed r and k we have

$$\text{ex}(n, S_t^{(r)}(k)) \approx_{r,k} n^{\max\{r-t+1,t\}}.$$

Chung, Erdős, Graham 1980’s: What if we let k grow with n?

If $r = 2$ it is trivial to see $\text{ex}(n, S_1^{(2)}(k)) \approx nk$

If $r = 3$ there are two types of sunflowers depending on kernel size

- Duke and Erdős; Frankl: $\text{ex}(n, S_1^{(3)}(k)) \approx nk^2$ and $\text{ex}(n, S_2^{(3)}(k)) \approx n^2k$
- Chung determined $\text{ex}(n, S_1^{(3)}(k))$ up to lower order terms.
- Chung and Frankl determined $\text{ex}(n, S_1^{(3)}(k))$ precisely.
Large sunflowers

- Frankl and Füredi 1985: For fixed r and k we have

$$\text{ex}(n, S_t^{(r)}(k)) \approx_{r,k} n^{\max\{r-t+1,t\}}.$$

- Chung, Erdős, Graham 1980’s: What if we let k grow with n?

- If $r = 2$ it is trivial to see $\text{ex}(n, S_1^{(2)}(k)) \approx nk$

- If $r = 3$ there are two types of sunflowers depending on kernel size
 - Duke and Erdős; Frankl: $\text{ex}(n, S_1^{(3)}(k)) \approx nk^2$ and $\text{ex}(n, S_2^{(3)}(k)) \approx n^2k$
 - Chung determined $\text{ex}(n, S_1^{(3)}(k))$ up to lower order terms.
 - Chung and Frankl determined $\text{ex}(n, S_1^{(3)}(k))$ precisely.

- The $r = 4$ case solved approximately by B., Draganić, Sudakov and Tran.
Main result

Theorem (Bradač, B. and Sudakov)

\[ex(n, S_t^{(r)}(k)) \approx_r \begin{cases}
 n^{r-t-1} k^{t+1} & \text{if } t \leq \frac{r-1}{2}, \\
 n^t k^{r-t} & \text{if } t > \frac{r-1}{2}.
\end{cases} \]
Main result

Theorem (Bradač, B. and Sudakov)

\[\text{ex}(n, S_t^{(r)}(k)) \approx_r \begin{cases} n^{r-t-1} k^{t+1} & \text{if } t \leq \frac{r-1}{2}, \\ n^t k^{r-t} & \text{if } t > \frac{r-1}{2}. \end{cases} \]

\[\text{ex}(n, S_0^{(5)}(k)) \approx n^4 k \]
Main result

Theorem (Bradač, B. and Sudakov)

\[
\text{ex}(n, S_t^{(r)}(k)) \approx_r \begin{cases}
 n^{r-t-1}k^{t+1} & \text{if } t \leq \frac{r-1}{2}, \\
 n^t k^{r-t} & \text{if } t > \frac{r-1}{2}.
\end{cases}
\]

\[
\text{ex}(n, S_0^{(5)}(k)) \approx n^4 k \\
\text{ex}(n, S_1^{(5)}(k)) \approx n^3 k^2
\]
Main result

Theorem (Bradač, B. and Sudakov)

\[\text{ex}(n, S_{t}^{(r)}(k)) \approx_r \begin{cases} n^{r-t-1}k^{t+1} & \text{if } t \leq \frac{r-1}{2}, \\ n^{t}k^{r-t} & \text{if } t > \frac{r-1}{2}. \end{cases} \]

\[\text{ex}(n, S_{0}^{(5)}(k)) \approx n^{4}k \]
\[\text{ex}(n, S_{1}^{(5)}(k)) \approx n^{3}k^{2} \]
\[\text{ex}(n, S_{2}^{(5)}(k)) \approx n^{2}k^{3} \]
Main result

Theorem (Bradač, B. and Sudakov)

$$\text{ex}(n, S_t^{(r)}(k)) \approx_r \begin{cases} n^{r-t-1}k^{t+1} & \text{if } t \leq \frac{r-1}{2}, \\ n^t k^{r-t} & \text{if } t > \frac{r-1}{2}. \end{cases}$$

\[
\begin{align*}
\text{ex}(n, S_0^{(5)}(k)) & \approx n^4 k \\
\text{ex}(n, S_1^{(5)}(k)) & \approx n^3 k^2 \\
\text{ex}(n, S_2^{(5)}(k)) & \approx n^2 k^3 \\
\text{ex}(n, S_3^{(5)}(k)) & \approx n^3 k^2
\end{align*}
\]
Main result

Theorem (Bradač, B. and Sudakov)

\[
\begin{align*}
\text{ex}(n, S_t^{(r)}(k)) &\approx_r \begin{cases}
 n^{r-t-1} k^{t+1} & \text{if } t \leq \frac{r-1}{2}, \\
 n^t k^{r-t} & \text{if } t > \frac{r-1}{2}.
\end{cases}
\end{align*}
\]

\[\emptyset\]

\[
\begin{align*}
\text{ex}(n, S_0^{(5)}(k)) &\approx n^4 k & \text{ex}(n, S_1^{(5)}(k)) &\approx n^3 k^2 & \text{ex}(n, S_2^{(5)}(k)) &\approx n^2 k^3 \\
\text{ex}(n, S_3^{(5)}(k)) &\approx n^3 k^2 & \text{ex}(n, S_4^{(5)}(k)) &\approx n^4 k
\end{align*}
\]
Theorem (Bradač, B. and Sudakov)

$$\text{ex}(n, S_t^{(r)}(k)) \approx_r \begin{cases} n^{r-t-1}k^{t+1} & \text{if } t \leq \frac{r-1}{2}, \\ n^t k^{r-t} & \text{if } t > \frac{r-1}{2}. \end{cases}$$
Upper bounds: overview

Theorem (Bradač, B. and Sudakov)

\[
\text{ex}(n, S_t^{(r)}(k)) \approx_r \begin{cases}
 n^{r-t-1}k^{t+1} & \text{if } t \leq \frac{r-1}{2}, \\
 n^tk^{r-t} & \text{if } t > \frac{r-1}{2}.
\end{cases}
\]

- **Step 1:** Use induction to reduce to the balanced case:

 \[
 \text{ex}(n, S_t^{(2t+1)}(k)) \leq O(n^tk^{t+1}).
 \]
Upper bounds: overview

Theorem (Bradač, B. and Sudakov)

$$\text{ex}(n, S_t^{(r)}(k)) \approx_r \begin{cases} n^{r-t-1}k^{t+1} & \text{if } t \leq \frac{r-1}{2}, \\ n^tk^{r-t} & \text{if } t > \frac{r-1}{2}. \end{cases}$$

- **Step 1:** Use induction to reduce to the balanced case:
 $$\text{ex}(n, S_t^{(2t+1)}(k)) \leq O(n^t k^{t+1}).$$

A balanced sunflower:
Upper bounds: overview

- **Step 1:** Use induction to reduce to the balanced case:
 \[
 \text{ex}(n, S_t^{(2t+1)}(k)) \leq O(n^t k^{t+1}).
 \]

- **Step 2:** Reduce the balanced case to an existence problem for \((t+1, t)\)-systems
Step 1: Use induction to reduce to the balanced case:

\[\text{ex}(n, S_t^{2t+1}(k)) \leq O(n^t k^{t+1}). \]

Step 2: Reduce the balanced case to an existence problem for \((t + 1, t)\)-systems

Definition

\(A \subseteq \mathcal{P}([N]) \) is a \((t + 1, t)\)-system if:
Step 1: Use induction to reduce to the balanced case:

\[\text{ex}(n, S_t^{(2t+1)}(k)) \leq O(n^t k^{t+1}). \]

Step 2: Reduce the balanced case to an existence problem for \((t + 1, t)\)-systems

Definition

\[A \subseteq \mathcal{P}([N]) \text{ is a } (t + 1, t)\text{-system if:} \]

- \(A \) is intersection closed, i.e. \(\forall A, B \in A \) we also have \(A \cap B \in A \),
Upper bounds: overview

- **Step 1:** Use induction to reduce to the balanced case:

 \[\text{ex}(n, S_t^{(2t+1)}(k)) \leq O(n^t k^{t+1}). \]

- **Step 2:** Reduce the balanced case to an existence problem for \((t + 1, t)\)-systems

Definition

\(A \subseteq \mathcal{P}([N])\) is a \((t + 1, t)\)-system if:

- \(A\) is intersection closed, i.e. \(\forall A, B \in A\) we also have \(A \cap B \in A\),
- any subset of \([N]\) of size at most \(t\) is contained in some set in \(A\) and
Upper bounds: overview

- **Step 1:** Use induction to reduce to the balanced case:
 \[\text{ex}(n, S_t^{(2t+1)}(k)) \leq O(n^t k^{t+1}). \]

- **Step 2:** Reduce the balanced case to an existence problem for \((t + 1, t)\)-systems

 Definition
 \(A \subseteq \mathcal{P}([N]) \) is a \((t + 1, t)\)-system if:
 - \(A \) is intersection closed, i.e. \(\forall A, B \in A \) we also have \(A \cap B \in A \),
 - any subset of \([N]\) of size at most \(t \) is contained in some set in \(A \) and
 - \(\forall A \in A \) we have \(|A| \not\equiv N \pmod{t + 1} \).
Step 1: Use induction to reduce to the balanced case:

\[\text{ex}(n, S_t^{(2t+1)}(k)) \leq O(n^t k^{t+1}). \]

Step 2: Reduce the balanced case to an existence problem for \((t + 1, t)\)-systems

Definition

\(A \subseteq \mathcal{P}([N])\) is a \((t + 1, t)\)-system if:

- \(A\) is intersection closed, i.e. \(\forall A, B \in A\) we also have \(A \cap B \in A\),
- any subset of \([N]\) of size at most \(t\) is contained in some set in \(A\) and
- \(\forall A \in A\) we have \(|A| \equiv N \pmod{t + 1}\).

- Nägele, Sudakov, Zenklusen: no \((t + 1, t)\)-system exists if \(t + 1\) is a prime power
Upper bounds: overview

- **Step 1:** Use induction to reduce to the balanced case:
 \[\text{ex}(n, S_t^{(2t+1)}(k)) \leq O(n^t k^{t+1}). \]

- **Step 2:** Reduce the balanced case to an existence problem for \((t + 1, t)\)-systems

Definition
\[\mathcal{A} \subseteq \mathcal{P}([N]) \text{ is a } (t + 1, t)\text{-system if:} \]
- \(\mathcal{A}\) is intersection closed, i.e. \(\forall A, B \in \mathcal{A} \text{ we also have } A \cap B \in \mathcal{A},\)
- any subset of \([N]\) of size at most \(t\) is contained in some set in \(\mathcal{A}\) and
- \(\forall A \in \mathcal{A} \text{ we have } |A| \not\equiv N \pmod{t + 1}.\)

- Nägele, Sudakov, Zenklusen: no \((t + 1, t)\)-system exists if \(t + 1\) is a prime power
- Brakensiek, Gopi, Guruswami: \((t + 1, t)\)-systems exist otherwise
Upper bounds: overview

- **Step 1:** Use induction to reduce to the balanced case:
 \[
 \text{ex}(n, S_t^{(2t+1)}(k)) \leq O(n^t k^{t+1}).
 \]

- **Step 2:** Reduce the balanced case to an existence problem for \((t+1, t)\)-systems

Definition

\[A \subseteq \mathcal{P}([N])\] is a \((t + 1, t)\)-system if:

- \(A\) is intersection closed, i.e. \(\forall A, B \in A\) we also have \(A \cap B \in A\),
- any subset of \([N]\) of size at most \(t\) is contained in some set in \(A\) and
- \(\forall A \in A\) we have \(|A| \not\equiv N \pmod{t + 1}\).

- Nägele, Sudakov, Zenklusen: no \((t + 1, t)\)-system exists if \(t + 1\) is a prime power
- Brakensiek, Gopi, Guruswami: \((t + 1, t)\)-systems exist otherwise

- **Step 3:** Show there are no \((t + 1, t)\)-systems on ground set of size \(N = 2t + 1\)
Lemma

No $(t+1, t)$-system on $2t+1$ points $\implies \text{ex}(n, S^{(2t+1)}(k)) \leq O(n^t k^{t+1})$
Let $H = (V, E)$ be an n-vertex, $2t + 1$-uniform, $S_t^{(2t+1)}(k)$-free hypergraph.
Lemma

No \((t + 1, t)\)-system on \(2t + 1\) points \(\implies\) \(\text{ex}(n, S_t^{(2t+1)}(k)) \leq O(n^t k^{t+1})\)

- Let \(H = (V, E)\) be an \(n\)-vertex, \(2t + 1\)-uniform, \(S_t^{(2t+1)}(k)\)-free hypergraph.
- For every set \(S\) of \(t\) vertices there is a set of vertices \(\tau_S\) disjoint from \(S\) which intersects all edges containing \(S\) and has size \(|\tau_S| \leq (t + 1)k\).
Reduction to the existence problem for a \((t + 1, t)\)-system

Lemma

No \((t + 1, t)\)-system on \(2t + 1\) points \(\implies\) \(\text{ex}(n, S_t^{(2t+1)}(k)) \leq O(n^t k^{t+1})\)

- Let \(H = (V, E)\) be an \(n\)-vertex, \(2t + 1\)-uniform, \(S_t^{(2t+1)}(k)\)-free hypergraph.
- For every set \(S\) of \(t\) vertices there is a set of vertices \(\tau_S\) disjoint from \(S\) which intersects all edges containing \(S\) and has size \(|\tau_S| \leq (t + 1)k\).
 - Among \(t + 1\)-sets extending \(S\) into an edge there are no \(k\) vertex disjoint ones.
Reduction to the existence problem for a \((t + 1, t)\)-system

Lemma

No \((t + 1, t)\)-system on \(2t + 1\) points \(\implies\) \(\text{ex}(n, S_{t}^{(2t+1)}(k)) \leq O(n^t k^{t+1})\)

- Let \(H = (V, E)\) be an \(n\)-vertex, \(2t + 1\)-uniform, \(S_{t}^{(2t+1)}(k)\)-free hypergraph.
- For every set \(S\) of \(t\) vertices there is a set of vertices \(\tau_S\) disjoint from \(S\) which intersects all edges containing \(S\) and has size \(|\tau_S| \leq (t + 1)k\).
 - Among \(t + 1\)-sets extending \(S\) into an edge there are no \(k\) vertex disjoint ones.
Reduction to the existence problem for a \((t + 1, t)\)-system

Lemma

No \((t + 1, t)\)-system on \(2t + 1\) points \(\implies\) \(\text{ex}(n, S_{t}^{(2t+1)}(k)) \leq O(n^{t}k^{t+1})\)

- Let \(H = (V, E)\) be an \(n\)-vertex, \(2t + 1\)-uniform, \(S_{t}^{(2t+1)}(k)\)-free hypergraph

- For every set \(S\) of \(t\) vertices there is a set of vertices \(\tau_{S}\) disjoint from \(S\) which intersects all edges containing \(S\) and has size \(|\tau_{S}| \leq (t + 1)k\).
 - Among \(t + 1\)-sets extending \(S\) into an edge there are no \(k\) vertex disjoint ones
 - Taking the union of a maximal vertex disjoint collection gives \(\tau_{S}\).

\[\begin{array}{c}
\text{\(S\)}
\\[-30pt]
\end{array}\]

\[\begin{array}{c}
t + 1 \\
t + 1 \\
t + 1 \\
\vdots \\
t + 1 \\
< k
\end{array}\]
Reduction to the existence problem for a \((t + 1, t)\)-system

Lemma

No \((t + 1, t)\)-system on \(2t + 1\) points \(\implies\) \(\text{ex}(n, \mathcal{S}_t^{(2t+1)}(k)) \leq O(n^t k^{t+1})\)

- Let \(H = (V, E)\) be an \(n\)-vertex, \(2t + 1\)-uniform hypergraph
- For every set \(S\) of \(t\) vertices fix a set of vertices \(\tau_S\) disjoint from \(S\) which intersects all edges containing \(S\) and has size \(|\tau_S| \leq (t + 1)k\).
Lemma

No \((t + 1, t)\)-system on \(2t + 1\) points \(\implies \text{ex}(n, S_t^{(2t+1)}(k)) \leq O(n^t k^{t+1})\)

- Let \(H = (V, E)\) be an \(n\)-vertex, \(2t + 1\)-uniform hypergraph.
- For every set \(S\) of \(t\) vertices fix a set of vertices \(\tau_S\) disjoint from \(S\) which intersects all edges containing \(S\) and has size \(|\tau_S| \leq (t + 1)k\).
- Let \(e_X\) be the number of edges containing \(X\). So \(|E| \leq \sum_{S \subseteq V, |S|=t} e_S\).
Reduction to the existence problem for a \((t + 1, t)\)-system

Lemma

No \((t + 1, t)\)-system on \(2t + 1\) points \(\implies\) \(\text{ex}(n, S_t^{2t+1}(k)) \leq O(n^t k^{t+1})\)

- Let \(H = (V, E)\) be an \(n\)-vertex, \(2t + 1\)-uniform hypergraph.
- For every set \(S\) of \(t\) vertices fix a set of vertices \(\tau_S\) disjoint from \(S\) which intersects all edges containing \(S\) and has size \(|\tau_S| \leq (t + 1)k\).
- Let \(e_X\) be the number of edges containing \(X\). So \(|E| \leq \sum_{S \subseteq V, |S| = t} e_S\).
- Let \(S\) be a \(t\)-set then \(e_S \leq \sum_{v \in \tau_S} e_{S \cup \{v\}}\).
Reduction to the existence problem for a \((t + 1, t)\)-system

Lemma

No \((t + 1, t)\)-system on \(2t + 1\) points \(\implies\) \(\text{ex}(n, S_t^{(2t+1)}(k)) \leq O(n^t k^{t+1})\)

- Let \(H = (V, E)\) be an \(n\)-vertex, \(2t + 1\)-uniform hypergraph.
- For every set \(S\) of \(t\) vertices fix a set of vertices \(\tau_S\) disjoint from \(S\) which intersects all edges containing \(S\) and has size \(|\tau_S| \leq (t + 1)k\).
- Let \(e_X\) be the number of edges containing \(X\). So \(|E| \leq \sum_{S \subseteq V, |S| = t} e_S\).
- Let \(S\) be a \(t\)-set then \(e_S \leq \sum_{v \in \tau_S} e_{S \cup \{v\}}\)
Reduction to the existence problem for a \((t + 1, t)\)-system

Lemma

No \((t + 1, t)\)-system on \(2t + 1\) points \(\implies\) \(ex(n, S_t^{(2t+1)}(k)) \leq O(n^t k^{t+1})\)

- Let \(H = (V, E)\) be an \(n\)-vertex, \(2t + 1\)-uniform hypergraph.
- For every set \(S\) of \(t\) vertices fix a set of vertices \(\tau_S\) disjoint from \(S\) which intersects all edges containing \(S\) and has size \(|\tau_S| \leq (t + 1)k\).
- Let \(e_X\) be the number of edges containing \(X\). So \(|E| \leq \sum_{S \subseteq V, |S| = t} e_S\).
- Let \(S\) be a \(t\)-set then \(e_S \leq \sum_{v \in \tau_S} e_{S \cup \{v\}}\)

\[\begin{array}{c}
\vdots \\
\vdots \\end{array}\]

\(t\) choices
Reduction to the existence problem for a \((t + 1, t)\)-system

Lemma

No \((t + 1, t)\)-system on \(2t + 1\) points \(\implies\) \(\text{ex}(n, S_t^{(2t+1)}(k)) \leq O(n^t k^{t+1})\)

- Let \(H = (V, E)\) be an \(n\)-vertex, \(2t + 1\)-uniform hypergraph.
- For every set \(S\) of \(t\) vertices fix a set of vertices \(\tau_S\) disjoint from \(S\) which intersects all edges containing \(S\) and has size \(|\tau_S| \leq (t + 1)k\).
- Let \(e_X\) be the number of edges containing \(X\). So \(|E| \leq \sum_{S \subseteq V, |S| = t} e_S\).
- Let \(S\) be a \(t\)-set then \(e_S \leq \sum_{v \in \tau_S} e_{S \cup \{v\}}\).

Lemma

No \((t+1, t)\)-system on \(2t + 1\) points \(\implies ex(n, S_t^{(2t+1)}(k)) \leq O(n^tk^{t+1})\)

- Let \(H = (V, E)\) be an \(n\)-vertex, \(2t + 1\)-uniform hypergraph.
- For every set \(S\) of \(t\) vertices fix a set of vertices \(\tau_S\) disjoint from \(S\) which intersects all edges containing \(S\) and has size \(|\tau_S| \leq (t+1)k\).
- Let \(e_X\) be the number of edges containing \(X\). So \(|E| \leq \sum_{S \subseteq V, |S|=t} e_S\).
- Let \(S\) be a \(t\)-set then \(e_S \leq \sum_{v \in \tau_S} e_{S \cup \{v\}}\).
- For any \(X\) if \(\exists\) \(t\)-set \(S \subseteq X\) such that \(\tau_S \cap X = \emptyset\) then \(e_X \leq \sum_{v \in \tau_S} e_{X \cup \{v\}}\).

\[t \]

\[(t + 1)k \]
choices
Lemma

No \((t + 1, t)\)-system on \(2t + 1\) points \(\implies\) \(\text{ex}(n, S_t^{(2t+1)}(k)) \leq O(n^t k^{t+1})\)

- Let \(H = (V, E)\) be an \(n\)-vertex, \(2t + 1\)-uniform hypergraph.
- For every set \(S\) of \(t\) vertices, fix a set of vertices \(\tau_S\) disjoint from \(S\) which intersects all edges containing \(S\) and has size \(|\tau_S| \leq (t + 1)k\).
- Let \(e_X\) be the number of edges containing \(X\). So \(|E| \leq \sum_{S \subseteq V, |S|=t} e_S\).
- Let \(S\) be a \(t\)-set then \(e_S \leq \sum_{v \in \tau_S} e_{S \cup \{v\}}\).
- For any \(X\) if \(\exists\) \(t\)-set \(S \subseteq X\) such that \(\tau_S \cap X = \emptyset\) then \(e_X \leq \sum_{v \in \tau_S} e_{X \cup \{v\}}\).
Non-existence of \((t + 1, t)\)-systems

- Let \(t + 1 = p^\alpha\), for \(p\) prime and assume that \(A \subseteq \mathcal{P}([N])\) satisfies:
 1. \(A\) is intersection closed
 2. all \(t\)-subsets of \([N]\) are covered
 3. \(\forall A \in A\) we have \(|A| \not\equiv N \pmod{t + 1}\)

By adding dummy vertices to every \(A \in A\) we may assume \(N \equiv -1 \pmod{t + 1}\).

Let \(A = \{A_1, \ldots, A_m\}\).

Double counting the \# of \(t\)-sets covered by some \(A_i\):

- \(N_t = \# \text{ of covered } t\)-subsets

Lucas' theorem implies:

- \(a_t \equiv 0 \pmod{p}\) \iff \(a \not\equiv -1 \pmod{p^\alpha}\)
Non-existence of \((t + 1, t)\)-systems

Let \(t + 1 = p^\alpha\), for \(p\) prime and assume that \(A \subseteq \mathcal{P}([N])\) satisfies:

- \(A\) is intersection closed

Lucas' theorem implies:
\[a \equiv 0 \pmod{p^\alpha} \iff a \not\equiv -1 \pmod{p^\alpha} \]
Non-existence of \((t + 1, t)\)-systems

Let \(t + 1 = p^\alpha\), for \(p\) prime and assume that \(\mathcal{A} \subseteq \mathcal{P}([N])\) satisfies:

- \(\mathcal{A}\) is intersection closed
- all \(t\)-subsets of \([N]\) are covered

By adding dummy vertices to every \(A \in \mathcal{A}\) we may assume \(N \equiv -1 \pmod{t + 1}\).

Let \(\mathcal{A} = \{A_1, \ldots, A_m\}\).

Double counting the \# of \(t\)-sets covered by some \(A_i\):

\[N_t = \# \text{ of covered } t\text{-subsets}\]

Lucas' theorem implies:

\[a_t \equiv 0 \pmod{p^\alpha} \iff a \not\equiv -1 \pmod{p^\alpha}\]
Non-existence of \((t+1, t)\)-systems

- Let \(t+1 = p^\alpha\), for \(p\) prime and assume that \(\mathcal{A} \subseteq \mathcal{P}([N])\) satisfies:
 - \(\mathcal{A}\) is intersection closed
 - all \(t\)-subsets of \([N]\) are covered
 - \(\forall A \in \mathcal{A}\) we have \(|A| \not\equiv N \pmod{t+1}\)

By adding dummy vertices to every \(A \in \mathcal{A}\) we may assume \(N \equiv -1 \pmod{t+1}\).

Let \(A = \{A_1, \ldots, A_m\}\).

Double counting the \# of \(t\)-sets covered by some \(A_i\):

\(N_t = \# \text{ of covered } t\)-subsets

Lucas' theorem implies:

\(a_t \equiv 0 \pmod{p^\alpha} \iff a \not\equiv -1 \pmod{p^\alpha}\)
Let $t + 1 = p^\alpha$, for p prime and assume that $\mathcal{A} \subseteq \mathcal{P}([N])$ satisfies:

- \mathcal{A} is intersection closed
- all t-subsets of $[N]$ are covered
- $\forall A \in \mathcal{A}$ we have $|A| \not\equiv N \pmod{t + 1}$

By adding dummy vertices to every $A \in \mathcal{A}$ we may assume $N \equiv -1 \pmod{t + 1}$
Non-existence of \((t + 1, t)\)-systems

Let \(t + 1 = p^\alpha\), for \(p\) prime and assume that \(\mathcal{A} \subseteq \mathcal{P}([N])\) satisfies:

- \(\mathcal{A}\) is intersection closed
- all \(t\)-subsets of \([N]\) are covered
- \(\forall A \in \mathcal{A} \text{ we have } |A| \not\equiv N \pmod{t + 1}\)

By adding dummy vertices to every \(A \in \mathcal{A}\) we may assume \(N \equiv -1 \pmod{t + 1}\)

Let \(\mathcal{A} = \{A_1, \ldots, A_m\}\).
Non-existence of \((t + 1, t)\)-systems

- Let \(t + 1 = p^\alpha\), for \(p\) prime and assume that \(\mathcal{A} \subseteq \mathcal{P}([N])\) satisfies:
 - \(\mathcal{A}\) is intersection closed
 - all \(t\)-subsets of \([N]\) are covered
 - \(\forall A \in \mathcal{A}\) we have \(|A| \not\equiv N \pmod{t+1}\)
- By adding dummy vertices to every \(A \in \mathcal{A}\) we may assume \(N \equiv -1 \pmod{t+1}\)
- Let \(\mathcal{A} = \{A_1, \ldots, A_m\}\). Double counting the \# of \(t\)-sets covered by some \(A_i\):
Non-existence of \((t + 1, t)\)-systems

Let \(t + 1 = p^\alpha\), for \(p\) prime and assume that \(\mathcal{A} \subseteq \mathcal{P}([N])\) satisfies:

- \(\mathcal{A}\) is intersection closed
- all \(t\)-subsets of \([N]\) are covered
- \(\forall A \in \mathcal{A}\) we have \(|A| \not\equiv N \pmod{t + 1}\)

By adding dummy vertices to every \(A \in \mathcal{A}\) we may assume \(N \equiv -1 \pmod{t + 1}\)

Let \(\mathcal{A} = \{A_1, \ldots, A_m\}\). Double counting the \# of \(t\)-sets covered by some \(A_i\):

\[
\binom{N}{t} = \# \text{ of covered } t\text{-subsets}
\]
Non-existence of \((t + 1, t)\)-systems

Let \(t + 1 = p^\alpha\), for \(p\) prime and assume that \(\mathcal{A} \subseteq \mathcal{P}([N])\) satisfies:

- \(\mathcal{A}\) is intersection closed
- all \(t\)-subsets of \([N]\) are covered
- \(\forall A \in \mathcal{A}\) we have \(|A| \not\equiv N \pmod{t + 1}\)

By adding dummy vertices to every \(A \in \mathcal{A}\) we may assume \(N \equiv -1 \pmod{t + 1}\)

Let \(\mathcal{A} = \{A_1, \ldots, A_m\}\). Double counting the \# of \(t\)-sets covered by some \(A_i\):

\[
\binom{N}{t} = \# \text{ of covered } t\text{-subsets}
\]

\[
= \binom{|A_1|}{t} + \binom{|A_2|}{t} + \ldots + \binom{|A_m|}{t} - \ldots
\]

Lucas’ theorem implies:

\[
a_t \equiv 0 \pmod{p^\alpha} \iff a \not\equiv -1 \pmod{p^\alpha}
\]
Non-existence of \((t + 1, t)\)-systems

- Let \(t + 1 = p^\alpha\), for \(p\) prime and assume that \(\mathcal{A} \subseteq \mathcal{P}([N])\) satisfies:
 - \(\mathcal{A}\) is intersection closed
 - all \(t\)-subsets of \([N]\) are covered
 - \(\forall A \in \mathcal{A}\) we have \(|A| \not\equiv N \pmod{t+1}\)

- By adding dummy vertices to every \(A \in \mathcal{A}\) we may assume \(N \equiv -1 \pmod{t+1}\)
- Let \(\mathcal{A} = \{A_1, \ldots, A_m\}\). Double counting the \(\#\) of \(t\)-sets covered by some \(A_i\):

\[
\binom{N}{t} = \# \text{ of covered } t\text{-subsets} \n= \binom{|A_1|}{t} + \binom{|A_2|}{t} + \ldots + \binom{|A_m|}{t} - \binom{|A_1 \cap A_2|}{t} - \binom{|A_1 \cap A_3|}{t} - \ldots - \binom{|A_{m-1} \cap A_m|}{t} + \ldots
\]
Non-existence of \((t+1, t)\)-systems

- Let \(t + 1 = p^\alpha\), for \(p\) prime and assume that \(\mathcal{A} \subseteq \mathcal{P}([N])\) satisfies:
 - \(\mathcal{A}\) is intersection closed
 - all \(t\)-subsets of \([N]\) are covered
 - \(\forall A \in \mathcal{A}\) we have \(|A| \not\equiv N \pmod{t + 1}\)

- By adding dummy vertices to every \(A \in \mathcal{A}\) we may assume \(N \equiv -1 \pmod{t + 1}\)

- Let \(\mathcal{A} = \{A_1, \ldots, A_m\}\). Double counting the \# of \(t\)-sets covered by some \(A_i\):

\[
\binom{N}{t} = \# \text{ of covered } t\text{-subsets} \\
= \binom{|A_1|}{t} + \binom{|A_2|}{t} + \ldots + \binom{|A_m|}{t} - \binom{|A_1 \cap A_2|}{t} - \binom{|A_1 \cap A_3|}{t} - \ldots - \binom{|A_{m-1} \cap A_m|}{t} + \ldots \\
(-1)^{m-1} \binom{|A_1 \cap \ldots \cap A_m|}{t}
\]
Non-existence of \((t + 1, t)\)-systems

Let \(t + 1 = p^\alpha\), for \(p\) prime and assume that \(A \subseteq \mathcal{P}([N])\) satisfies:

- \(A\) is intersection closed
- all \(t\)-subsets of \([N]\) are covered
- \(\forall A \in A\) we have \(|A| \not\equiv N \pmod{t + 1}\)

By adding dummy vertices to every \(A \in A\) we may assume \(N \equiv -1 \pmod{t + 1}\)

Let \(A = \{A_1, \ldots, A_m\}\). Double counting the \# of \(t\)-sets covered by some \(A_i\):

\[
\binom{N}{t} = \# \text{ of covered } t \text{-subsets} = \sum_{\emptyset \neq I \subseteq [m]} (-1)^{|I|-1} \binom{|\bigcap_{i \in I} A_i|}{t}
\]
Non-existence of \((t + 1, t)\)-systems

Let \(t + 1 = p^\alpha\), for \(p\) prime and assume that \(\mathcal{A} \subseteq \mathcal{P}(\{N\})\) satisfies:

- \(\mathcal{A}\) is intersection closed
- all \(t\)-subsets of \([N]\) are covered
- \(\forall A \in \mathcal{A}\) we have \(|A| \not\equiv N \pmod{t + 1}\)

By adding dummy vertices to every \(A \in \mathcal{A}\) we may assume \(N \equiv -1 \pmod{t + 1}\)

Let \(\mathcal{A} = \{A_1, \ldots, A_m\}\). Double counting the \# of \(t\)-sets covered by some \(A_i\):

\[
\binom{N}{t} = \# \text{ of covered } t\text{-subsets} = \sum_{\emptyset \neq I \subseteq [m]} (-1)^{|I|-1} \binom{\bigcap_{i \in I} A_i}{t}
\]

Lucas’ theorem implies: \(\binom{a}{t} \equiv 0 \pmod{p}\) \(\iff a \not\equiv -1 \pmod{p^\alpha}\)
Non-existence of \((t + 1, t)\)-systems

- Let \(t + 1 = p^\alpha\), for \(p\) prime and assume that \(A \subseteq \mathcal{P}([N])\) satisfies:
 - \(A\) is intersection closed
 - all \(t\)-subsets of \([N]\) are covered
 - \(\forall A \in A\) we have \(|A| \not\equiv N \pmod{t + 1}\)

- By adding dummy vertices to every \(A \in A\) we may assume \(N \equiv -1 \pmod{t + 1}\)

- Let \(A = \{A_1, \ldots, A_m\}\). Double counting the \# of \(t\)-sets covered by some \(A_i\):

\[
\binom{N}{t} = \# \text{ of covered } t\text{-subsets} = \sum_{\emptyset \neq I \subseteq [m]} (-1)^{|I| - 1} \binom{|\bigcap_{i \in I} A_i|}{t} \equiv 0 \pmod{p}
\]

- Lucas’ theorem implies: \(\binom{a}{t} \equiv 0 \pmod{p} \iff a \not\equiv -1 \pmod{p^\alpha}\)
Non-existence of \((t + 1, t)\)-systems

Let \(t + 1 = p^\alpha\), for \(p\) prime and assume that \(\mathcal{A} \subseteq \mathcal{P}([N])\) satisfies:

- \(\mathcal{A}\) is intersection closed
- all \(t\)-subsets of \([N]\) are covered
- \(\forall A \in \mathcal{A}\) we have \(|A| \not\equiv N \pmod{t + 1}\)

By adding dummy vertices to every \(A \in \mathcal{A}\) we may assume \(N \equiv -1 \pmod{t + 1}\)

Let \(\mathcal{A} = \{A_1, \ldots, A_m\}\). Double counting the \# of \(t\)-sets covered by some \(A_i\):

\[
0 \not\equiv \binom{N}{t} = \# \text{ of covered } t \text{-subsets} = \sum_{\emptyset \neq I \subseteq [m]} (-1)^{|I| - 1} \binom{|\bigcap_{i \in I} A_i|}{t} \equiv 0 \pmod{p}
\]

Lucas’ theorem implies: \(\binom{a}{t} \equiv 0 \pmod{p}\) \(\iff\) \(a \not\equiv -1 \pmod{p^\alpha}\)
We determined the dependency of \(\text{ex}(n, S_t^{(r)}(k)) \) on \(n \) and \(k \).
Further directions

- We determined the dependency of $\text{ex}(n, S_t^{(r)}(k))$ on n and k.

Problem 1

What is the dependency on r?
Further directions

- We determined the dependency of \(\text{ex}(n, S_t^{(r)}(k)) \) on \(n \) and \(k \).

Problem 1

What is the dependency on \(r \)?

Problem 2

What if we forbid a collection of \(r \)-uniform sunflowers?
Further directions

- We determined the dependency of $\text{ex}(n, S_t^{(r)}(k))$ on n and k.

Problem 1
What is the dependency on r?

Problem 2
What if we forbid a collection of r-uniform sunflowers?

Problem 3 (Chung-Erdős unavoidability problem, 1983)
Among r-uniform hypergraphs with e edges which is hardest to avoid?
Further directions

- We determined the dependency of $\text{ex}(n, S_t^{(r)}(k))$ on n and k.

Problem 1

What is the dependency on r?

Problem 2

What if we forbid a collection of r-uniform sunflowers?

Problem 3 (Chung-Erdős unavoidability problem, 1983)

Among r-uniform hypergraphs with e edges which is hardest to avoid?

- Known for $r \leq 4$, up to constant factor.
Theorem (Bradač, B. and Sudakov)

\[
ex(n, S^{(r)}_t(k)) \approx_r \begin{cases}
 n^{r-t-1} k^{t+1} & \text{if } t \leq \frac{r-1}{2}, \\
 n^t k^{r-t} & \text{if } t > \frac{r-1}{2}.
\end{cases}
\]
First lower bound

Theorem (Bradač, B. and Sudakov)

\[
\text{ex}(n, S_t^{(r)}(k)) \approx_r \begin{cases}
 n^{r-t-1}k^{t+1} & \text{if } t \leq \frac{r-1}{2}, \\
 n^t k^{r-t} & \text{if } t > \frac{r-1}{2}.
\end{cases}
\]

- Partition the vertex set into A and B s.t. $|A| = k - 1$ and $|B| = n - k + 1$
First lower bound

Theorem (Bradač, B. and Sudakov)

\[\text{ex}(n, S_t^{(r)}(k)) \approx_r \begin{cases} n^{r-t-1}k^{t+1} & \text{if } t \leq \frac{r-1}{2}, \\ n^t k^{r-t} & \text{if } t > \frac{r-1}{2}. \end{cases} \]

- Partition the vertex set into \(A \) and \(B \) s.t. \(|A| = k - 1 \) and \(|B| = n - k + 1 \)
First lower bound

Theorem (Bradač, B. and Sudakov)

\[\text{ex}(n, S_t^{(r)}(k)) \approx_r \begin{cases}
 n^{r-t-1}k^{t+1} & \text{if } t \leq \frac{r-1}{2}, \\
 n^t k^{r-t} & \text{if } t > \frac{r-1}{2}.
\end{cases} \]

- Partition the vertex set into \(A \) and \(B \) s.t. \(|A| = k - 1 \) and \(|B| = n - k + 1 \)
- Choose as an edge any set with \(t + 1 \) vertices in \(A \) and \(r - t - 1 \) in \(B \).
Theorem (Bradač, B. and Sudakov)

\[
\text{ex}(n, S_t^{(r)}(k)) \approx_r \begin{cases}
 n^{r-t-1}k^{t+1} & \text{if } t \leq \frac{r-1}{2}, \\
 n^t k^{r-t} & \text{if } t > \frac{r-1}{2}.
\end{cases}
\]

- Partition the vertex set into A and B s.t. $|A| = k - 1$ and $|B| = n - k + 1$
- Choose as an edge any set with $t + 1$ vertices in A and $r - t - 1$ in B.

![Diagram](visual_representation)
First lower bound

Theorem (Bradač, B. and Sudakov)

\[
\text{ex}(n, S^{(r)}_t(k)) \approx_r \begin{cases}
 n^{r-t-1}k^{t+1} & \text{if } t \leq \frac{r-1}{2}, \\
 n^tk^{r-t} & \text{if } t > \frac{r-1}{2}.
\end{cases}
\]

- Partition the vertex set into \(A\) and \(B\) s.t. \(|A| = k - 1\) and \(|B| = n - k + 1\).
- Choose as an edge any set with \(t + 1\) vertices in \(A\) and \(r - t - 1\) in \(B\).
- No \(S^{(r)}_t(k)\) since every petal needs to have a vertex in \(A\).
First lower bound

Theorem (Bradač, B. and Sudakov)

\[
\text{ex}(n, S_t^{(r)}(k)) \approx_r \begin{cases}
 n^{r-t-1}k^{t+1} & \text{if } t \leq \frac{r-1}{2}, \\
 n^t k^{r-t} & \text{if } t > \frac{r-1}{2}.
\end{cases}
\]

- Partition the vertex set into A and B s.t. $|A| = k - 1$ and $|B| = n - k + 1$.
- Choose as an edge any set with $t + 1$ vertices in A and $r - t - 1$ in B.
- No $S_t^{(r)}(k)$ since every petal needs to have a vertex in A.
- The number of edges is at least \(\binom{k-1}{t+1}\binom{n-k+1}{r-t-1} = \Omega_r(n^{r-t-1}k^{t+1}) \)

\begin{center}
\begin{tikzpicture}
 \node[draw, ellipse, minimum width=2cm, minimum height=2cm] (A) at (0,0) {$t + 1$};
 \node[draw, ellipse, minimum width=2cm, minimum height=2cm] (B) at (0,-3) {$r - t - 1$};
 \node[draw, ellipse, minimum width=2cm, minimum height=2cm] (C) at (3,0) {$k - 1$};
 \node[draw, ellipse, minimum width=2cm, minimum height=2cm] (D) at (3,-3) {$n - k + 1$};
 \draw[->] (A) -- (B);
 \draw[->] (B) -- (C);
 \draw[->] (C) -- (D);
 \draw[->] (D) -- (A);
\end{tikzpicture}
\end{center}
First lower bound

Theorem (Bradač, B. and Sudakov)

\[
ex(n, S_t^{(r)}(k)) \approx_r \begin{cases}
 n^{r-t-1}k^{t+1} & \text{if } t \leq \frac{r-1}{2}, \\
 n^t k^{r-t} & \text{if } t > \frac{r-1}{2}.
\end{cases}
\]

- Partition the vertex set into A and B s.t. $|A| = k - 1$ and $|B| = n - k + 1$.
- Choose as an edge any set with $t + 1$ vertices in A and $r - t - 1$ in B.
- No $S_t^{(r)}(k)$ since every petal needs to have a vertex in A.
- The number of edges is at least \(\binom{k-1}{t+1} \binom{n-k+1}{r-t-1} = \Omega_r(n^{r-t-1}k^{t+1}) \implies \)

\[
ex(n, S_t^{(r)}(k)) \geq \Omega_r(n^{r-t-1}k^{t+1}).
\]
Theorem (Bradač, B. and Sudakov)

\[
ex(n, S_t^{(r)}(k)) \approx_r \begin{cases}
 n^{r-t-1}k^{t+1} & \text{if } t \leq \frac{r-1}{2}, \\
 n^t k^{r-t} & \text{if } t > \frac{r-1}{2}.
\end{cases}
\]
Second lower bound

Theorem (Bradač, B. and Sudakov)

\[
\text{ex}(n, S_t^{(r)}(k)) \approx_r \begin{cases}
 n^{r-t-1}k^{t+1} & \text{if } t \leq \frac{r-1}{2}, \\
 n^tk^{r-t} & \text{if } t > \frac{r-1}{2}.
\end{cases}
\]

Let \(m := |S_t^{(r)}(k)| - 1 \) and \(S \) be an \(m \)-uniform \(n \)-vertex hypergraph s.t.
Theorem (Bradač, B. and Sudakov)

\[\text{ex}(n, S_t^{(r)}(k)) \approx_r \begin{cases}
 n^{r-t-1}k^{t+1} & \text{if } t \leq \frac{r-1}{2}, \\
 n^t k^{r-t} & \text{if } t > \frac{r-1}{2}.
\end{cases} \]

Let \(m := |S_t^{(r)}(k)| - 1 \) and \(S \) be an \(m \)-uniform \(n \)-vertex hypergraph s.t.

- any subset of \(t \) vertices is contained in precisely one edge of \(S \)
Second lower bound

Theorem (Bradač, B. and Sudakov)

\[ex(n, S_t^{(r)}(k)) \approx_r \begin{cases}
 n^{r-t-1}k^{t+1} & \text{if } t \leq \frac{r-1}{2}, \\
 n^t k^{r-t} & \text{if } t > \frac{r-1}{2}.
\end{cases} \]

- Let \(m := |S_t^{(r)}(k)| - 1 \) and \(S \) be an \(m \)-uniform \(n \)-vertex hypergraph s.t.
 - any subset of \(t \) vertices is contained in precisely one edge of \(S \)
Theorem (Bradač, B. and Sudakov)

\[\text{ex}(n, S_t^{(r)}(k)) \approx_r \begin{cases} n^{r-t-1}k^{t+1} & \text{if } t \leq \frac{r-1}{2}, \\ n^t k^{r-t} & \text{if } t > \frac{r-1}{2}. \end{cases} \]

- Let \(m := |S_t^{(r)}(k)| - 1 \) and \(S \) be an \(m \)-uniform \(n \)-vertex hypergraph s.t.
 - any subset of \(t \) vertices is contained in precisely one edge of \(S \)
- Choose as edges of our \(H \) any \(r \)-vertex subset of an edge of \(S \).
Second lower bound

Theorem (Bradač, B. and Sudakov)

\[
\text{ex}(n, S_t^{(r)}(k)) \approx_r \begin{cases}
 n^{r-t-1}k^{t+1} & \text{if } t \leq \frac{r-1}{2}, \\
 n^tk^{r-t} & \text{if } t > \frac{r-1}{2}.
\end{cases}
\]

- Let \(m := |S_t^{(r)}(k)| - 1 \) and \(S \) be an \(m \)-uniform \(n \)-vertex hypergraph s.t.
 - any subset of \(t \) vertices is contained in precisely one edge of \(S \)
- Choose as edges of our \(H \) any \(r \)-vertex subset of an edge of \(S \).
- No \(S_t^{(r)}(k) \) as all its edges must come from the same edge of \(S \).
Theorem (Bradač, B. and Sudakov)

\[ex(n, S_t^{(r)}(k)) \approx_r \begin{cases}
 n^{r-t-1}k^{t+1} & \text{if } t \leq \frac{r-1}{2}, \\
 n^t k^{r-t} & \text{if } t > \frac{r-1}{2}.
\end{cases} \]

- Let \(m := |S_t^{(r)}(k)| - 1 \) and \(S \) be an \(m \)-uniform \(n \)-vertex hypergraph s.t.
 - any subset of \(t \) vertices is contained in precisely one edge of \(S \)
- Choose as edges of our \(H \) any \(r \)-vertex subset of an edge of \(S \).
- No \(S_t^{(r)}(k) \) as all its edges must come from the same edge of \(S \).
- The number of edges is at least \(\binom{n}{t} / \binom{m}{t} \cdot \binom{m}{r} \geq \Omega_r(n^t k^{r-t}) \).
Theorem (Bradač, B. and Sudakov)

\[
\text{ex}(n, S_t^{(r)}(k)) \approx_r \begin{cases}
 n^{r-t-1}k^{t+1} & \text{if } t \leq \frac{r-1}{2}, \\
 n^t k^{r-t} & \text{if } t > \frac{r-1}{2}.
\end{cases}
\]

- Let \(m := |S_t^{(r)}(k)| - 1 \) and \(S \) be an \(m \)-uniform \(n \)-vertex hypergraph s.t. any subset of \(t \) vertices is contained in precisely one edge of \(S \).
- Choose as edges of our \(H \) any \(r \)-vertex subset of an edge of \(S \).
- No \(S_t^{(r)}(k) \) as all its edges must come from the same edge of \(S \).
- The number of edges is at least \(\binom{n}{t} / \binom{m}{t} \cdot \binom{m}{r} \geq \Omega_r(n^t k^{r-t}) \implies \text{ex}(n, S_t^{(r)}(k)) \geq \Omega_r(n^t k^{r-t}). \)