Cycle lengths in sparse random graphs

MICHAEL KRIVELEVICH (TEL AVIV U.)

(JOINT WORK WITH YAHAV ALON (TAU) & EYAL LUBETZKY (NYU))

Setting

• The **binomial random graph** G(n, p): V(G) = [n]; each edge (i, j) is in E(G) with prob. p = p(n), independently of all other edges.

Definition: Let G be an n-vertex graph. The set $\mathcal{L}(G)$ is the set of all integers $\ell \in [3, n]$ such that G contains a cycle of length ℓ .

? What can we say about $\mathcal{L}(G)$ when $G \sim G(n, p)$?

Simple observations, famous results...

• If
$$k = \Theta(1)$$
, $X_k = r.v.$ counting k -cycles in $G(n, p)$, then $\mathbb{E}[X_k] = \frac{(n)_k}{2k} \cdot p^k = \Theta(n^k p^k)$, and $Var[X_k] = \Theta\left(n^k p^k + \sum_{i=1}^{k-1} n^{2k-i-1} p^{2k-i}\right).$

So if $np \to \infty$, we have: $Var[X_k] = o(\mathbb{E}[X_k]^2)$, and by the second moment method:

$$\Pr[X_k = 0] \le \frac{\operatorname{Var}[X_k]}{\mathbb{E}[X_k]^2} = o(1),$$

And therefore with high probability (WHP) $[3, k] \subseteq \mathcal{L}(G(n, p))$.

•Komlós, Szemerédi'83; Bollobás'84: If $np - \log n - \log \log n \to \infty$ then WHP G(n, p) is Hamiltonian. Equivalently: WHP $n \in \mathcal{L}(G(n, p))$.

(Much easier part: $np - \log n - \log \log n \rightarrow -\infty$ then WHP G(n, p) has vertices of degree <2

 \Rightarrow WHP non-Hamiltonian)

In fact...

Definition: an *n*-vertex graph *G* is called **pancyclic** if $\mathcal{L}(G) = [3, n]$.

Theorem (Cooper, Frieze'90):

$$\lim_{n \to \infty} \Pr[G(n, p) \text{ is pancyclic}] = \begin{cases} 0 & ; & np - \log n - \log \log n \to -\infty \\ 1 & ; & np - \log n - \log \log n \to \infty \end{cases}$$

Preparing for a proof

•0-statement – trivial in light of Hamiltonicity threshold.

•We will present a proof sketch of the 1-statement.

•This is not the original proof.

•Helpful to demonstrate our tools for proving our results next.

•Double exposure:

If $(1 - p_1)(1 - p_2) = 1 - p$ then $G(n, p_1) \cup G(n, p_2) \sim G(n, p)$

•Observe: $p_1 + p_2 \ge p$.

• Proof of the 1-statement (Alon, K., Lubetzky):

•Enough to show that **WHP** $[4, n] \subseteq \mathcal{L}(G(n, p))$.

•Sufficient:

$$\forall \ell \in \left[4, \frac{n}{2} + 2\right] : \Pr[\{\ell, n - \ell + 4\} \not\subseteq G(n, p)] = \exp(-\omega(1) \cdot \ell)$$

•Say $np - \log n - \log \log n = f(n) \rightarrow \infty$, $G \sim G(n, p)$ and V(G) = [n].

•Double expose G as $G_1 \cup G_2 = G(n, p_1) \cup G(n, p_2)$, where $p_2 = \frac{f(n)}{2n}$, $p_1 \ge p - p_2$.

•With high probability $G(n, p_1)$ contains a Hamilton cycle C_n , WLOG $C_n = (1, 2, 3, ..., n, 1)$.

If for some $i \neq j \in [n], k \in [\ell - 3]$ we have $\{i, j\}, \{i + k, j + \ell - k - 2\} \in E(G_2)...$

•There are $\Theta(n^2 \ell)$ options for the pair *i*, *j* and the shift *k*.

•So $\Pr[\{\ell, n - \ell + 4\} \not\subseteq \mathcal{L}(G)]$ is at most about (*)

(*) There are dependencies, so we need to be careful.

Being careful

•We want to overcome possible dependencies...

•Double exposure, yet again!

•Letting $S_{i,j} \coloneqq \{\{i+k, j+\ell-k-2\} \mid k \in [\ell-3]\}$, the "useful" edges WRT $\{i, j\}$.

•Expose G_2 as $G_3 \cup G_4 \approx G(n, p_2/2) \cup G(n, p_2/2)$.

•Show that **WHP** $\left| \bigcup_{\{i,j\}\in E(G_3)} S_{i,j} \right| = \Theta(n^2 p_2 \cdot \ell).$

•Now the probability G_4 contains no useful edge is $\approx (1 - p_2)^{\Theta(n^2 p_2 \ell)} = \exp(-\omega(1) \cdot \ell)$

k-pancyclic graphs

In fact, we have proven:

 $G \sim G(n, p), np - \log n - \log \log n \rightarrow \infty$, is WHP 2-pancyclic

- a result of Cooper'91

[Definition: G_n is k-pancyclic if G has a Hamilton cycle C such that for every $3 \le \ell \le n$, G_n contains a cycle C_ℓ with $|E(C_\ell) \setminus E(C)| \le k$.]

An even stronger result:

Theorem (Cooper'92): The threshold for Hamiltonicity is the threshold for 1-pancyclicity.

What about smaller p's?

Theorem (Łuczak'91): Let $np \to \infty$, $G \sim G(n, p)$, and let $n_{\leq 1}$ be the number of vertices with degree 0 or 1 in G. Then for every $\varepsilon > 0$, **WHP**: $[3, n - (1 + \varepsilon)n_{\leq 1}] \subseteq \mathcal{L}(G)$.

•This can be proved in the same spirit as pancyclicity (and Łuczak's original proof has some similarities to the proof we presented).

•Relies on:

Theorem (Frieze'86): Let $np \to \infty$, $G \sim G(n, p)$, and let $n_{\leq 1}$ be the number of vertices with degree 0 or 1 in G. Then for every $\varepsilon > 0$, WHP: $\max(\mathcal{L}(G)) \ge n - (1 + \varepsilon)n_{\leq 1}$.

•Expose E(G) in two parts, find a long cycle in one part and helpful pairs of edges in the other.

What about even smaller p's?

? Can we say something when np = O(1)?

•Let's assume $np \ge 1 + \varepsilon$, since otherwise the largest connected component is **WHP** sublinear.

•There are now many cycle lengths we can no longer expect to appear WHP!

Theorem (Bollobás 81; Karoński, Ruciński 81):
Let
$$c > 0$$
, $k \in \mathbb{N}$, $\lambda_{c,k} \coloneqq \frac{c^k}{2k}$. Then
 $\#k$ -cycles in $G\left(n, \frac{c}{n}\right) \xrightarrow{D} \operatorname{Poi}(\lambda_{c,k})$

•So for any constant k, with probability bounded away from 0, $k \notin \mathcal{L}(G)$.

•Also, no cycle lengths larger than the size of the giant component (and in fact the 2-core)! This is a linear size interval not in $\mathcal{L}(G)$ **WHP**.

What about even smaller p's? (cont.)

<u>A side remark:</u>

Definition: for some $\beta > 0$, an *n*-vertex graph *G* is called a β -graph if every disjoint vertex sets $A, B \subseteq V(G)$ of size at least βn are connected by an edge.

• $G\left(n,\frac{c}{n}\right)$ is WHP a β -graph for an appropriate $\beta = \beta(c) = o_c(1)$.

Theorem (Friedman, K.'21):

Let $0 < \beta < 0.05$. Then there are $b_1 = b_1(\beta)$, $b_2 = b_2(\beta) = O(\beta)$ such that if G is a β -graph then

$$[b_1 \log n, (1-b_2)n] \subseteq \mathcal{L}(G).$$

•This implies that, WHP, $\mathcal{L}\left(G\left(n,\frac{c}{n}\right)\right)$ contains an interval of size $\left(1-o_{c}(1)\right)n$.

•Since WHP $G\left(n, \frac{c}{n}\right)$ contains linearly many isolated vertices, we cannot hope for $\left(1 - o(1)\right)n$.

Our first result

Theorem 1: There is $C_0 > 0$ such that for **almost every** $c > C_0$, if $G \sim G\left(n, \frac{c}{n}\right)$, then for every $\varepsilon > 0$ and sequence $\omega_n \to \infty$, **WHP**: $\left[\omega_n, (1 - \varepsilon) \max(\mathcal{L}(G))\right] \subseteq \mathcal{L}(G).$

•In the lower range this is best possible (we already know how short cycles are distributed).

•In the upper range we capture all but o(n) lengths.

- •There are known bounds for $\max(\mathcal{L}(G(n, c/n)))$. (We will mention some (more) soon.)
- •Sadly, we can only prove for almost every $c > C_0$...

•But we can still say some things about every c > 1.

Proof of Theorem 1

•The proof goes similarly to our proof of pancyclicity.

•First, we prove this main lemma:

Lemma: Let $\delta > 0$, $G \sim C_n \cup G\left(n, \frac{\delta}{n}\right)$. Then **WHP**, for every sequence $\omega_n \to \infty$, $[\omega_n, n - \omega_n] \subseteq \mathcal{L}(G)$.

•You already know the proof...

•This time $np \nleftrightarrow \infty$, so $(1 - p^2)^{\Theta(n^2 \ell)} \to 0$ only when $\ell \to \infty$ (hence we do not capture the full interval).

Proof of Theorem 1 (cont.)

•Theorem 1 is a consequence of the lemma and the following result:

Theorem (Anastos, Frieze'21):

There is a monotone non-decreasing function $f : \mathbb{R}^+ \to (0,1)$ and a constant $C_0 > 0$ such that, if $c > C_0$, then

$$\frac{\max\left(\mathcal{L}\left(G\left(n,\frac{c}{n}\right)\right)\right)}{n} \xrightarrow{\mathsf{P}} f(c)$$

•Expose G as $G_1 \cup G_2 \approx G(n, (c - \delta)/n) \cup G(n, \delta/n)$.

•Then WHP G_1 contains a cycle C of length $f(c - \delta)n - o(n)$.

•Apply the main lemma on $\mathcal{C} \cup \mathcal{G}_2[V(\mathcal{C})]$ to get $[\omega_n, f(c-\delta)n - o(n)] \subseteq \mathcal{L}(\mathcal{G})$.

•Choose δ to be small enough so that $f(c - \delta) \ge \left(1 - \frac{1}{2}\varepsilon\right)f(c)$, say.

•We can only do the last part in points where f is continuous, hence "almost every" c.

Extensions to Theorem 1

•What we **actually** proved is the following:

If B(c,n) is a **WHP** lower bound on $\max(\mathcal{L}(G(n,c/n)))$, then **WHP** for every $c > 1, \delta > 0$, $\omega_n \to \infty$: $[\omega_n, B(c - \delta, n) - \omega_n] \subseteq \mathcal{L}(G(n,c/n))$

•So for any c > 1, given lower bounds on the maximum length cycle in G(n, c/n) we get some (possibly weaker) statements on $\mathcal{L}(G(n, c/n))$.

•For example: if $c = 1 + \varepsilon < 1 + \varepsilon_0$, then it is known that the maximum length is **WHP** at least $\frac{4}{3}\varepsilon^2 n$, and so for all $\gamma < \frac{4}{3}$ **WHP** $[\omega_n, \gamma \varepsilon^2 n] \subseteq \mathcal{L}(G(n, c/n))$.

•Everything we said so far is also true for directed cycles in D(n, p)!

Extensions to Theorem 1

•Adjustments to D(n, p):

Further applications of the main lemma

Our machinery can be applied in different setups.

Ex.: cycles in randomly perturbed graphs

```
Theorem (K, Reichman, Samotij'15):
```

Let T_n be a tree on n vertices with $\Delta(T_n) \leq \Delta = O(1)$, $\delta > 0$, and let $G \sim T_n \cup G(n, \frac{\delta}{n})$. Then WHP, G contains a cycle of length $\geq cn$, for $c = c(\Delta, \delta) > 0$.

Invoking the main lemma gives now:

Theorem:

Let T_n be a tree on n vertices with $\Delta(T_n) \leq \Delta = O(1)$, $\delta > 0$, and let $G \sim T_n \cup G(n, \frac{\delta}{n})$. Then **WHP**, $\mathcal{L}(G)$ contains an interval of length $\geq cn$, for $c = c(\Delta, \delta) > 0$.

Onward to
$$G(n,d)$$

•What can we say about $\mathcal{L}(G)$ when G is a random d-regular graph G(n, d)?

•When d = 1 no cycles, when d = 2 likely only logarithmically many. Assume $d \ge 3$.

•In G(n, c/n) we were restricted by the maximum cycle possibly being short (missing isolates)...

•No longer!

Theorem (Robinson, Wormald'92,94): For every fixed $d \ge 3$, WHP G(n, d) is Hamiltonian.

•On the other side of the interval things have not improved...

Theorem (Bollobás'80, Wormald'81): Let $d \ge 3$, $k \in \mathbb{N}$, $\lambda_{d,k} \coloneqq \frac{(d-1)^k}{2k}$. Then #k-cycles in $G(n,d) \xrightarrow{D} \operatorname{Poi}(\lambda_{d,k})$

Our second result

Theorem 2: For every integer $d \ge 3$, if $G \sim G(n, d)$, then for every sequence $\omega_n \to \infty$, **WHP**: $[\omega_n, n] \subseteq \mathcal{L}(G)$.

•This is best possible.

•We will prove for d = 3, which implies the theorem for all $d \ge 3$ (assuming that n is even).

•The odd case can be proved by showing this for d = 4 (basically the same, we will not do this here).

Proof of Theorem 2

•The proof for the interval $[\omega_n, n - \omega_n]$ is very similar to G(n, p).

•As a parallel to double exposure, we have the following useful result (contiguity):

Theorem: If \mathcal{P} is a monotone graph property, then $\Pr[G(n,3) \in \mathcal{P}] \to 1 \Leftrightarrow \Pr[C_n \cup G(n,1) \in \mathcal{P}] \to 1.$

•So we just need to show that, for $\ell \in \left[\omega_n, \frac{n}{2} + 2\right]$, a random perfect matching on [n] contains two edges of the form $\{i, j\}, \{i + k, j + \ell - k - 2\}$ with probability $1 - \exp(-\Omega(\ell))$.

•Proofs in G(n, d) may look a bit messier than in G(n, p), but trust us this is still true \bigcirc .

Proof of Theorem 2

•We still need to take care of $[n - \omega_n, n]!$

•We need the following theorem:

Theorem (Robinson, Wormald'01): Let $d \ge 3$, $G \sim G(n, d)$, $m_1, m_2 = o(\sqrt{n})$. Set $E_1, E_2 \subseteq E(G)$ to be randomly chosen subsets of sizes m_1, m_2 respectively. Then **WHP** G contains a Hamilton cycle which includes all edges of E_1 and avoids all edges of E_2 .

•We want to use this to show that **WHP** $n - \ell \in \mathcal{L}(G)$, for $\ell \in [1, \omega_n]$.

•Since we can assume ω_n grows arbitrarily slowly, this is good enough.

•Prove separately for ℓ even / ℓ odd.

Proof of Theorem 2: $\ell = 2k$

- •Let $G \sim G(n, 3)$, and pick k edges $\{u_1, v_1\}, \dots, \{u_k, v_k\}$ of G at random.
- •For $i \in [k]$ denote by $\{x_i, y_i\}, \{x'_i, y'_i\}$ the other two neighbours of u_i, v_i respectively.
- • $G' \coloneqq G([n] \setminus (\bigcup\{u_i, v_i\})) \cup \{\text{blue edges}\} \sim G(n \ell, 3), \text{ and the blue edges are } \ell \text{ random edges in } G'$.
- •A Hamilton cycle in G' which avoids these edges is an $n \ell$ cycle in G!
- •Invoke Robinson, Wormald.

Proof of Theorem 2: $\ell = 2k - 1$

•Let $G' \sim G(n - \ell - 1,3)$ and the blue edges be the same as in the case $\ell = 2k$.

- •This time, invoke theorem to find Hamilton cycle C in G' which avoids the blue edges, except $\{x_1, y_1\}$, which is included in C.
- • $C \{x_1, y_1\} + \{x_1, u_1\} + \{u_1, y_1\}$ is an $n \ell$ -cycle in G!

