Skipless Chain Decompositions & Improved Poset Saturation Bounds

Paul Bastide
Carla Groenland
Maria-Romina Ivan
Hugo Jacob
Tom Johnston

LaBRI, TU Delft
TU Delft
Cambridge
ENS Paris-Saclay
University of Bristol
The Boolean lattice of dimension n:

- elements: $2^{[n]} = \mathcal{P}([1, \ldots, n])$
- relation: \subseteq
The Boolean lattice of dimension n:
- elements: $2^n = \mathcal{P}\left(\{1, \ldots, n\}\right)$
- relation: \subseteq

A chain is a set system where every pair of elements is comparable.
An antichain is a set system where every pair of elements is incomparable.
The Boolean lattice of dimension n:

- elements: $2^n = \mathcal{P}(\{1, \ldots, n\})$
- relation: \subseteq

A **chain** is a set system where every pair of elements is comparable.

An **antichain** is a set system where every pair of elements is incomparable.
A chain $C = \{C_1 \subsetneq C_2 \subsetneq \ldots \subsetneq C_k\} \subseteq P$ is **skipless** in P if for all $i \in [k - 1]$, there is no $X \in P$ with $C_i \subsetneq X \subsetneq C_{i+1}$.
A chain $C = \{ C_1 \subsetneq C_2 \subsetneq \ldots \subsetneq C_k \} \subseteq P$ is skipless in P if for all $i \in [k - 1]$, there is no $X \in P$ with $C_i \subsetneq X \subsetneq C_{i+1}$.
Chains in the hypercube

Theorem (Dilworth 1950)

For a family poset \mathcal{P}, the size of the largest antichain is equal to the size of smallest chain disjoint chain decomposition of \mathcal{P}.
Theorem (Dilworth 1950)

For a family poset \mathcal{P}, the size of the largest antichain is equal to the size of smallest chain disjoint chain decomposition of \mathcal{P}.

Can you ask for Dilworth theorem to use disjoint skipless chains?
Chains in the hypercube

Theorem (Dilworth 1950)

For a family poset \mathcal{P}, the size of the largest antichain is equal to the size of smallest chain disjoint chain decomposition of \mathcal{P}.

Can you ask for Dilworth theorem to use disjoint skipless chains? NO
Chains in the hypercube

Theorem (Dilworth 1950)

For a family poset \mathcal{P}, the size of the largest antichain is equal to the size of smallest chain disjoint chain decomposition of \mathcal{P}.

Can you ask for Dilworth theorem to use disjoint skipless chains? NO
What if we view this poset embedded in the Boolean lattice...
Chains in the hypercube

Theorem (Dilworth 1950)
For a family poset P, the size of the largest antichain is equal to the size of smallest chain disjoint chain decomposition of P.

Can you ask for Dilworth theorem to use disjoint skipless chains? NO
What if we view this poset embedded in the Boolean lattice...
Theorem (Dilworth 1950)

For a family poset \mathcal{P}, the size of the largest antichain is equal to the size of smallest chain disjoint chain decomposition of \mathcal{P}.

Can you ask for Dilworth theorem to use disjoint skipless chains? NO

What if we view this poset embedded in the Boolean lattice...
Theorem (Dilworth 1950)

For a family poset \(\mathcal{P} \), the size of the largest antichain is equal to the size of smallest chain disjoint chain decomposition of \(\mathcal{P} \).

Can you ask for Dilworth theorem to use disjoint skipless chains? \textbf{NO}

What if we view this poset embedded in the Boolean lattice...

True for every poset, and every way to embed it.
Structural Theorem [B., Groenland, Jacob, Johnston, 2022+]

Any subposet \mathcal{P} of $2^{[n]}$ with largest antichain of size k can be covered by a family of k disjoint skipless chains in $2^{[n]}$.

"Any family of k chains in $2^{[n]}$ can be covered by a family of k disjoint skipless chains in $2^{[n]}."
Cover chains with skipless chains

Structural Theorem [B., Groenland, Jacob, Johnston, 2022+]

Any subposet \mathcal{P} of $2^{[n]}$ with largest antichain of size k can be covered by a family of k disjoint skipless chains in $2^{[n]}$.

"Any family of k chains in $2^{[n]}$ can be covered by a family of k disjoint skipless chains in $2^{[n]}."$

We generalise a result of Lehman and Ron (2001) who proved the special case where all chains of the family are of size 2 and all top (resp. bottom) elements of the chain have the same size.

We generalise a result from Duffus, Howard and Leader (2019) who proved the special case where the family is convex\(^1\).

\(^1\) $\mathcal{F} \subseteq 2^{[n]}$ is convex if for all $X, Z \in \mathcal{F}$ and $X \subset Y \subset Z$, $Y \in \mathcal{F}$.
Any family of k chains in 2^n can be **covered** by a family of k **disjoint skipless** chains in 2^n.

Structural Theorem [B., Groenland, Jacob, Johnston, 2022+]

![Diagram showing the covering of chains with disjoint skipless chains](image)
Structural Theorem [B., Groenland, Jacob, Johnston, 2022+]

Any family of k chains in $2^{[n]}$ can be **covered** by a family of k **disjoint skipless** chains in $2^{[n]}$.

Double counting + Menger
Sketch of the sketch of the proof

Any family of \(k \) chains in \(2^{[n]} \) can be covered by a family of \(k \) disjoint skipless chains in \(2^{[n]} \).
Antichain saturation

\[F \subseteq 2^n, \text{ is } k\text{-saturated if:} \]

1. \(F \) has no antichain of size \(k \);
2. \(F \cup \{x\} \) has an antichain of size \(k \) for any \(x \in 2^n \setminus F \).

\[\text{sat}^*(n, k) = \text{minimum } |F| \text{ over all } k\text{-saturated families } F \in 2^n. \]

Red sets form an \(2\)-saturated family for the hypercube \(2^3 \): \(\text{sat}^*(3, 2) \leq 4 \).

Can we extend this construction to \(k\)-saturated?
Antichain saturation

\(\mathcal{F} \subseteq 2^{[n]} \), is \(k \)-saturated if:

- \(\mathcal{F} \) has no antichain of size \(k \);
- \(\mathcal{F} \cup \{x\} \) has an antichain of size \(k \) for any \(x \in 2^{[n]} \setminus \mathcal{F} \).

\[
\text{sat}^*(n, k) = \text{minimum } |\mathcal{F}| \text{ over all } k\text{-saturated families } \mathcal{F} \text{ in } 2^{[n]}.
\]
\(\mathcal{F} \subseteq 2^n \), is \(k \)-saturated if:

- \(\mathcal{F} \) has no antichain of size \(k \);
- \(\mathcal{F} \cup \{x\} \) has an antichain of size \(k \) for any \(x \in 2^n \setminus \mathcal{F} \).

\[\text{sat}^*(n, k) = \text{minimum} \ |\mathcal{F}| \text{ over all } k \text{-saturated families } \mathcal{F} \text{ in } 2^n. \]

Red sets form an 2-saturated family for the hypercube \(2^3 \): \(\text{sat}^*(3, 2) \leq 4 \).

Can we extend this construction to \(k \)-saturated?
Antichain saturation

Construction: \(\text{sat}^*(n, k) \leq (n - 1)(k - 1) + 2. \)

Conjecture (FKKMRSS): \(\forall k \geq 2, \text{sat}^*(n, k) \sim n(k - 1) \) as \(n \to \infty. \)

Conjecture (Danković and Ivan): \(\forall k \geq 2, \text{sat}^*(n, k) \geq n(k - 1) - C_k. \)
Antichain saturation

Construction: \(\text{sat}^*(n, k) \leq (n - 1)(k - 1) + 2. \)

\[
\begin{array}{c|ccc}
 k & 2 & 3 & 4 \\
 \text{sat}^*(k, n) & n + 1 & 2n & 3n - 1 \\
\end{array}
\]

Conjecture (FKKMRSS): \(\forall k \geq 2, \text{sat}^*(n, k) \sim n(k - 1) \text{ as } n \to \infty. \)
Antichain saturation

![Diagram of an antichain]

Construction: $\text{sat}^*(n, k) \leq (n - 1)(k - 1) + 2.$

Đanković and Ivan (2022+)

<table>
<thead>
<tr>
<th>k</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{sat}^*(k, n)$</td>
<td>$n + 1$</td>
<td>$2n$</td>
<td>$3n - 1$</td>
<td>$4n - 2$</td>
<td>$5n - 5$</td>
</tr>
</tbody>
</table>

Conjecture (FKKMRSS): $\forall k \geq 2, \text{sat}^*(n, k) \sim n(k - 1)$ as $n \to \infty$.

Conjecture (Đanković and Ivan): $\forall k \geq 2, \text{sat}^*(n, k) \geq n(k - 1) - C_k.$
Quick application

Consider \mathcal{F} \textbf{k-saturated}. Consider a chain decomposition (using Dilworth's Theorem) of \mathcal{F}.
Consider \mathcal{F} k-saturated. Consider a chain decomposition (using Dilworth’s Theorem) of \mathcal{F}.
For any element $Y \notin \mathcal{F}$, Y can not be “added” to one of the chain (by Dilworth).
Consider F \textbf{k-saturated}. Consider a chain decomposition (using Dilworth’s Theorem) of F.
For any element $Y \notin F$, Y can not be “added” to one of the chain (by Dilworth).

\textbf{Claim.} For any ℓ such that $k \leq \left(\frac{\ell}{\lfloor \ell/2 \rfloor}\right)$, each chain contains an element of size at most ℓ. They also all contains an element of size $n - \ell$.

Quick application

Consider \mathcal{F} k-saturated. Consider a chain decomposition (using Dilworth’s Theorem) of \mathcal{F}.
For any element $Y \notin \mathcal{F}$, Y can not be “added” to one of the chain (by Dilworth).

Claim. For any ℓ such that $k \leq \binom{\ell}{\lfloor \ell/2 \rfloor}$, each chain contains an element of size at most ℓ. They also all contains an element of size $n - \ell$.

P. If chain has smallest element X in $|X| \geq \ell$, then can extend the chain by some subset of X of size $\ell/2$.
Consider \mathcal{F} \textbf{k-saturated}. Consider a chain decomposition (using Dilworth’s Theorem) of \mathcal{F}.

For any element $Y \notin \mathcal{F}$, Y can not be “added” to one of the chain (by Dilworth).

\textbf{Claim.} For any ℓ such that $k \leq \left\lfloor \ell/2 \right\rfloor$, each chain contains an element of size at most ℓ. They also all contains an element of size $n - \ell$.

\textbf{P.} If chain has smallest element X in $|X| \geq \ell$, then can extend the chain by some subset of X of size $\ell/2$.
Consider \mathcal{F} k-saturated. Consider a chain decomposition (using Dilworth’s Theorem) of \mathcal{F}.

For any element $Y \notin \mathcal{F}$, Y cannot be “added” to one of the chain (by Dilworth).

Claim. For any ℓ such that $k \leq \left\lfloor \frac{\ell}{2} \right\rfloor$, each chain contains an element of size at most ℓ. They also all contain an element of size $n - \ell$.

P. If chain has smallest element X in $|X| \geq \ell$, then can extend the chain by some subset of X of size $\ell/2$.
Quick application

Theorem [B., Groenland, Jacob, Johnston, 2022+]

Any family of \(k - 1 \) chains in \(2^{[n]} \) can be covered by a family of \(k - 1 \) disjoint skipless chains in \(2^{[n]} \).

\(\mathcal{F} \) \(k \)-saturated.
Quick application

Theorem [B., Groenland, Jacob, Johnston, 2022+]

Any family of \(k - 1 \) chains in \(2^n \) can be covered by a family of \(k - 1 \) disjoint skipless chains in \(2^n \).

\(\mathcal{F} \) \(k \)-saturated.

Dilworth \(\Rightarrow \) \(\mathcal{F} \) decompose in \(C_1, C_2, \ldots, C_{k-1} \) chains.
Quick application

Theorem [B., Groenland, Jacob, Johnston, 2022+]
Any family of $k - 1$ chains in $2^{[n]}$ can be covered by a family of $k - 1$ disjoint skipless chains in $2^{[n]}$.

\mathcal{F} k-saturated.

Dilworth $\implies \mathcal{F}$ decompose in $C_1, C_2, \ldots, C_{k-1}$ chains.

Claim \implies all these chains start in layer $O(\log k)$ and end in layer $n - O(\log k)$.
Quick application

Theorem [B., Groenland, Jacob, Johnston, 2022+]

Any family of $k - 1$ chains in $2^{[n]}$ can be covered by a family of $k - 1$ disjoint skipless chains in $2^{[n]}$.

F k-saturated.

Dilworth \implies F decompose in $C_1, C_2, \ldots, C_{k-1}$ chains.

Claim \implies all these chains start in layer $O(\log k)$ and end in layer $n - O(\log k)$.

Th. \implies F coverable with $k - 1$ skipless disjoint chains.
Theorem [B., Groenland, Jacob, Johnston, 2022+]

Any family of \(k-1 \) chains in \(2^{[n]} \) can be covered by a family of \(k-1 \) **disjoint skipless** chains in \(2^{[n]} \).

\(\mathcal{F} \) \(k \)-saturated.

Dilworth \(\Rightarrow \) \(\mathcal{F} \) decompose in \(C_1, C_2, \ldots, C_{k-1} \) chains.

Claim \(\Rightarrow \) all these chains start in layer \(O(\log k) \) and end in layer \(n - O(\log k) \).

Th. \(\Rightarrow \) \(\mathcal{F} \) coverable with \(k-1 \) **skipless disjoint** chains.

\(k \)-saturated \(\Rightarrow \) \(\mathcal{F} \) partitioned into \(k-1 \) **skipless** chains.
Theorem [B., Groenland, Jacob, Johnston, 2022+]

Any family of $k - 1$ chains in $2^{[n]}$ can be covered by a family of $k - 1$ disjoint skipless chains in $2^{[n]}$.

\mathcal{F} k-saturated.

Dilworth $\implies \mathcal{F}$ decompose in $C_1, C_2, \ldots, C_{k-1}$ chains.

Claim \implies all these chains start in layer $O(\log k)$ and end in layer $n - O(\log k)$.

Th. $\implies \mathcal{F}$ coverable with $k - 1$ skipless disjoint chains.

k-saturated $\implies \mathcal{F}$ partitioned into $k - 1$ skipless chains.

Every chain contains at least $n - \Theta(\log k)$ elements.
Theorem [B., Groenland, Jacob, Johnston, 2022+]

Any family of $k - 1$ chains in $2^{[n]}$ can be covered by a family of $k - 1$ disjoint skipless chains in $2^{[n]}$.

\mathcal{F} k-saturated.

Dilworth \implies \mathcal{F} decompose in $C_1, C_2, \ldots, C_{k-1}$ chains.

Claim \implies all these chains start in layer $O(\log k)$ and end in layer $n - O(\log k)$.

Th. \implies \mathcal{F} coverable with $k - 1$ skipless disjoint chains.

k-saturated \implies \mathcal{F} partitioned into $k - 1$ skipless chains.

Every chain contains at least $n - \Theta(\log k)$ elements.

\implies $|\mathcal{F}| \geq (n - 2\ell)(k - 1) = n(k - 1) - \Theta(k \log k)$
We now know that any F_k-saturated looks like this. To get an exact value, we need to improve both the upper bound and the lower bound. In the case $k - 1 = \ell \lfloor \frac{\ell}{2} \rfloor$, FKKMRSS (2017) improved the upper bound using the initial segment of colex.
We now know that any $\mathcal{F} k$-saturated looks like this. To get exact value, need to improve both the upper bound and the lower bound.
We now know that any \mathcal{F} k-saturated looks like this. To get **exact** value, need to improve both the **upper bound** and the **lower bound**.

In the case $k - 1 = \binom{\ell}{\lceil \ell/2 \rceil}$ FKKMRSS (2017) improved the upper bound. Using the initial segment of colex.
Let $\mathcal{F} \subseteq \binom{[n]}{t}$. Its **shadow** is

$$\partial \mathcal{F} = \left\{ X \in \binom{[n]}{t-1} : X \subseteq Y \in \mathcal{F} \right\}.$$

Let $\mathcal{C}(m, t)$ denote the initial segment of colex of size m on layer t, e.g.

$$\mathcal{C}(3, 6) = \{1, 2, 3\}, \{1, 2, 4\}, \{1, 3, 4\}, \{2, 3, 4\}, \{1, 2, 5\}, \{1, 3, 5\}, \{2, 3, 5\}.$$
Lower bound

\[F \cup \{1, 2, 7\} = \partial F = \{6\} \cup \{2, 7\} \cup \{2, 7\} \]

\[F \]

\[\mathcal{F} \]

Initial segments of colex minimise the size of the shadow.

Lemma (B., Groenland, Jacob, Johnston, 2023+): The initial segment of colex minimise the matching to the shadow.
Kruskal-Katona (1963)

Initial segments of colex minimise the size of the shadow.
Kruskal-Katona (1963)
Initial segments of colex minimise the size of the shadow.

Lemma (B., Groenland, Jacob, Johnston, 2023+)
The initial segment of colex minimise the matching to the shadow.
Lower bound

Kruskal-Katona (1963)
Initial segments of colex minimise the size of the shadow.

Lemma (B., Groenland, Jacob, Johnston, 2023+)
The initial segment of colex minimise the matching to the shadow.

\[
\binom{[6]}{3} \cup \{1, 2, 7\} = \mathcal{F}
\]

\[
\binom{[6]}{2} \cup \{\{1, 7\}, \{2, 7\}\} = \partial \mathcal{F}
\]
Exact values

\(\nu(F) \rightarrow \) the size of the maximum matching from \(F \) to its shadow \(\partial F \).

\(C(m, t) \rightarrow \) initial segment of colex of size \(m \) on layer \(t \).

Define the sequence \(c_{\lfloor \ell/2 \rfloor} = k - 1 \), and for \(0 \leq t < \lfloor \ell/2 \rfloor \), let \(c_t = \nu(C(c_{t+1}, t + 1)) \).

B, Groenland, Jacob and Johnston (2023+)

For \(n \geq 2\ell + 1 \),

\[
\text{sat}^*(n, k) = 2 \sum_{t=0}^{\lfloor \ell/2 \rfloor} c_t + (k - 1)(n - 1 - 2 \lfloor \ell/2 \rfloor).
\]

The lower bound still holds for \(n \geq \ell \) (and \(\text{sat}^*(n, k) = 2^n \) for \(n < \ell \)).
\(\nu(\mathcal{F}) \rightarrow \) the size of the maximum matching from \(\mathcal{F} \) to its shadow \(\partial \mathcal{F} \).

\(\mathcal{C}(m, t) \rightarrow \) initial segment of colex of size \(m \) on layer \(t \).

Define the sequence \(c_{[\ell/2]} = k - 1 \), and for \(0 \leq t < [\ell/2] \), let \(c_t = \nu(\mathcal{C}(c_{t+1}, t + 1)) \).

B, Groenland, Jacob and Johnston (2023+)

For \(n \geq 2\ell + 1 \),

\[
\text{sat}^*(n, k) = 2 \sum_{t=0}^{[\ell/2]} c_t + (k - 1)(n - 1 - 2[\ell/2]).
\]

The lower bound still holds for \(n \geq \ell \) (and \(\text{sat}^*(n, k) = 2^n \) for \(n < \ell \)).

Open question: What happens when \(n \leq 2\ell \)? Finding a matching between the top and the bottom is harder.
Lemma

There exist a “canonical” way to decompose any integer \(k \) in the following way:

\[
k - 1 = \binom{a_{r_1}}{r_1} + \cdots + \binom{a_{r_s}}{r_s},
\]

In particular if \(k - 1 = \binom{\ell}{\lfloor \ell/2 \rfloor} \),

\[
s = 1, \quad r_1 = \ell/2, \quad a_{r_1} = \ell
\]
Lemma

There exist a “canonical” way to decompose any integer k in the following way:

$$k - 1 = \left(\frac{a_{r_1}}{r_1} \right) + \cdots + \left(\frac{a_{r_s}}{r_s} \right),$$

satisfying the following conditions,

- $r_1 > \cdots > r_s \geq 1$;
- $a_{r_1} > \cdots > a_{r_s} \geq 1$;
- for all $i \in [s]$, we have $r_i \leq \lceil a_{r_i}/2 \rceil$.

In particular if $k - 1 = \left(\frac{\ell}{\lfloor \ell/2 \rfloor} \right)$,
$s = 1$, $r_1 = \ell/2$, $a_{r_1} = \ell$.
General saturation

A set system $F \subseteq \mathcal{P}[2^n]$ is P-saturated if:

- F has an induced copy of P;
- $F \cup \{x\}$ has an induced copy of P for any $x \in 2^n \setminus P$.

Theorem (Morrison, Noel and Scott 2014; Gerbner, Keszegh, Lemons, Palmer, Pálvölgyi, Patkós 2011)

$$\left(k - 3 \right) / 2 \leq \text{sat}^* (n, C_k) \leq 2^{0.98k^{17/24}}.$$
General saturation

<table>
<thead>
<tr>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mathcal{F} \subseteq 2^{[n]}$ a set system is P-saturated if:</td>
</tr>
<tr>
<td>- \mathcal{F} has induced copy of P;</td>
</tr>
<tr>
<td>- $\mathcal{F} \cup {x}$ has an induced copy of P for any $x \in 2^{[n]} \setminus P$.</td>
</tr>
</tbody>
</table>
General saturation

Definition

$\mathcal{F} \subseteq 2^{[n]}$ a set system is P-saturated if:

- \mathcal{F} has induced copy of P;
- $\mathcal{F} \cup \{x\}$ has an induced copy of P for any $x \in 2^{[n]} \setminus P$.

Theorem (Morrison, Noel and Scott 2014; Gerbner, Keszegh, Lemons, Palmer, Pálvölgyi, Patkós 2011)

$$\frac{(k-3)}{2} \leq \text{sat}^*(n, C_k) \leq 2^{0.98k}$$
Definition

$F \subseteq 2^{[n]}$ a set system is \mathcal{P}-saturated if:

- F has induced copy of \mathcal{P};
- $F \cup \{x\}$ has an induced copy of \mathcal{P} for any $x \in 2^{[n]} \setminus \mathcal{P}$.

Theorem (Morrison, Noel and Scott 2014; Gerbner, Keszegh, Lemons, Palmer, Pálvölgyi, Patkós 2011)

$$2^{(k-3)/2} \leq \text{sat}^*(n, C_k) \leq 2^{0.98k}$$
<table>
<thead>
<tr>
<th>poset P</th>
<th>$\text{sat}(n, P)$</th>
<th>$\text{sat}^*(n, P)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_2, chain</td>
<td>$= 1$</td>
<td>$= 1$</td>
</tr>
<tr>
<td>A_2, antichain</td>
<td>$= 1$</td>
<td>$= n + 1$</td>
</tr>
<tr>
<td>C_3, chain</td>
<td>$= 2$</td>
<td>$= 2$</td>
</tr>
<tr>
<td>$C_2 + C_1$, chain and single</td>
<td>$= 2$</td>
<td>$= 4$</td>
</tr>
<tr>
<td>\lor fork (or \land)</td>
<td>$= 2$</td>
<td>$= n + 1$</td>
</tr>
<tr>
<td>A_3, antichain</td>
<td>$= 2$</td>
<td>$= 3n - 1$</td>
</tr>
<tr>
<td>C_4, chain</td>
<td>$= 4$</td>
<td>$= 4$</td>
</tr>
<tr>
<td>\lor_3, fork with three tines</td>
<td>$= 3$</td>
<td>$\geq \log_2 n$</td>
</tr>
<tr>
<td>\Diamond, diamond</td>
<td>$= 3$</td>
<td>$\geq \sqrt{n}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\leq n + 1$</td>
</tr>
<tr>
<td>\Diamond^-, diamond minus an edge</td>
<td>$= 3$</td>
<td>$= 4$</td>
</tr>
<tr>
<td>\bowtie, butterfly</td>
<td>$= 4$</td>
<td>$\geq n + 1$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\leq 6n - 10$</td>
</tr>
<tr>
<td>Y</td>
<td>$= 3$</td>
<td>$\geq \log_2 n$</td>
</tr>
<tr>
<td>N</td>
<td>$= 3$</td>
<td>$\geq \sqrt{n}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\leq 2n$</td>
</tr>
<tr>
<td>$2C_2$</td>
<td>$= 3$</td>
<td>$\geq n + 2$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\leq 2n$</td>
</tr>
</tbody>
</table>

Figure 1: Table from Keszegh, Lemons, Martin, Pálvölgyi and Patkós 2022
<table>
<thead>
<tr>
<th>Table</th>
</tr>
</thead>
<tbody>
<tr>
<td>$C_3 + C_1$, chain and single</td>
</tr>
<tr>
<td>$\lor + 1$, fork and single</td>
</tr>
<tr>
<td>$C_2 + A_2$</td>
</tr>
<tr>
<td>A_4, antichain</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>C_5, chain</td>
</tr>
<tr>
<td>C_6, chain</td>
</tr>
<tr>
<td>C_k, chain ($k \geq 7$)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>A_k, antichain</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>$3C_2$</td>
</tr>
<tr>
<td>$5C_2$</td>
</tr>
<tr>
<td>$7C_2$</td>
</tr>
<tr>
<td>any poset on k elements</td>
</tr>
<tr>
<td>UCTP (def. in Section 3.2)</td>
</tr>
<tr>
<td>UCTP with top chain</td>
</tr>
<tr>
<td>chain + shallower</td>
</tr>
</tbody>
</table>

Figure 2: Table from Keszegh, Lemons, Martin, Pálvölgyi and Patkós 2022
Very recently, a general lower bound has been shown.

Theorem (Freschi, Piga, Sharifzadeh and Treglown 2023)

For any poset P either $\text{sat}^*(n, P) \geq 2\sqrt{n} - 2$ or $\text{sat}^*(n, P) = O_P(1)$.

What about a general upper bound? Can we hope to have $\text{sat}^*(n, P) \leq 2\sqrt{n}$ for every poset P?

Theorem (B., Groenland, Ivan, Johnston, 2023+)

For any poset P, $\text{sat}^*(n, P) \leq n|P|^2$.
General bounds

Very recently, a general lower bound has been shown.

Theorem (Freschi, Piga, Sharifzadeh and Treglown 2023)

For any poset P either $\text{sat}^* (n, P) \geq 2\sqrt{n} - 2$ or $\text{sat}^* (n, P) = \mathcal{O}_P(1)$.

What about a general upper bound? Can we hope to have $\text{sat}^* (n, P) \leq 2\sqrt{n}$ for every poset?
Very recently, a general lower bound has been shown.

Theorem (Freschi, Piga, Sharifzadeh and Treglown 2023)

For any poset P either $\text{sat}^*(n, P) \geq 2\sqrt{n} - 2$ or $\text{sat}^*(n, P) = O_P(1)$.

What about a general upper bound? Can we hope to have $\text{sat}^*(n, P) \leq 2\sqrt{n}$ for every poset?

Theorem (B., Groenland, Ivan, Johnston, 2023+)

For any poset P, $\text{sat}^*(n, P) \leq n|P|^2$.
For a poset \mathcal{P}, we define the **cube-height** $h^*(\mathcal{P})$ to be the minimum $h^* \in \mathbb{N}$ for which there exists $n \in \mathbb{N}$ such that $\left(\begin{bmatrix} n \\ \leq h^* \end{bmatrix}\right)$ contains an induced copy of \mathcal{P}.
For a poset \mathcal{P}, we define the **cube-height** $h^*(\mathcal{P})$ to be the minimum $h^* \in \mathbb{N}$ for which there exists $n \in \mathbb{N}$ such that $\left(\leq h^*\right)$ contains an induced copy of \mathcal{P}.

For a poset \mathcal{P}, we define the **cube-width** $w^*(\mathcal{P})$ to be the minimum $w^* \in \mathbb{N}$ such that there exists an induced copy of \mathcal{P} in $\left(\leq h^*(\mathcal{P})\right)$.
For a poset \mathcal{P}, we define the **cube-height** $h^*(\mathcal{P})$ to be the minimum $h^* \in \mathbb{N}$ for which there exists $n \in \mathbb{N}$ such that $\left(\begin{bmatrix} n \end{bmatrix}, \leq h^* \right)$ contains an induced copy of \mathcal{P}.

For a poset \mathcal{P}, we define the **cube-width** $w^*(\mathcal{P})$ to be the minimum $w^* \in \mathbb{N}$ such that there exists an induced copy of \mathcal{P} in $\left(\begin{bmatrix} w^* \end{bmatrix}, \leq h^*(\mathcal{P}) \right)$.
Theorem (B., Groenland, Ivan, Johnston, 2023+)

For any poset P, $\text{sat}^*(n, P) \leq n^{|P|^2}$.

We give a constructive proof.

- \mathcal{F}_0: first $h^*(P)$ layers.
- \mathcal{F}_1: Any completion.

Key lemma: \mathcal{F}_1 has bounded VC-dimension.

Main idea: if we shatter a large enough set, we can find a copy of $P \setminus \max(P)$ in the first $h^*(P)$ layers such that we have, in \mathcal{F}_0, all possible relations to this copy.
Theorem (B., Groenland, Ivan, Johnston, 2023+)

For any poset P, $\text{sat}^*(n, P) \leq n^{|P|^2}$.

We give a constructive proof.
Theorem (B., Groenland, Ivan, Johnston, 2023+)

For any poset P, $\text{sat}^*(n, P) \leq n^{|P|^2}$.

We give a constructive proof.

\mathcal{F}_0: first $h^*(P)$ layers.

\mathcal{F}_1: Any completion.
Theorem (B., Groenland, Ivan, Johnston, 2023+)

For any poset P, $\text{sat}^*(n, P) \leq n|P|^2$.

We give a constructive proof.

F_0: first $h^*(P)$ layers.

F_1: Any completion.

Key lemma: F_1 has bounded VC-dimension.

Main idea: if we shatter a large enough set, we can find a copy of $P \setminus \max(P)$ in the first $h^*(P)$ layers such that we have, in F_0, all possible relations to this copy.
Theorem (B., Groenland, Ivan, Johnston, 2023+)

For any poset P, $\text{sat}^*(n, P) \leq O(n^{w^*(P)}-1)$.

Remark

For every P, $h^*(P) \leq |P|$, $w^*(P) \leq |P| \cdot h^*(P) \leq |P|^2$.

With a bit more effort we proved:

Lemma (B., Groenland, Ivan, Johnston, 2023+)

For every P, $w^*(P) \leq |P|^2/4 + 1$.

Theorem (B., Groenland, Ivan, Johnston, 2023+)

For any poset P, $\text{sat}^*(n, P) \leq O(n^{w^*(P)-1})$.

Remark

For every P, $h^*(P) \leq |P|$, $w^*(P) \leq |P| \cdot h^*(P) \leq |P|^2$.
Theorem (B., Groenland, Ivan, Johnston, 2023+)

For any poset P, $\text{sat}^*(n, P) \leq O(n^{w^*(P)} - 1)$.

Remark

For every P, $h^*(P) \leq |P|$, $w^*(P) \leq |P| \cdot h^*(P) \leq |P|^2$.

With a bit more effort we proved:

Lemma (B., Groenland, Ivan, Johnston, 2023+)

For every P, $w^*(P) \leq |P|^2/4 + 1$.
Open question

Conjecture
For every poset \mathcal{P}, $w^*(\mathcal{P}) = O(|\mathcal{P}|)$.

That would directly improve our upper bound!
Open question

Conjecture
For every poset \mathcal{P}, $w^*(\mathcal{P}) = O(|\mathcal{P}|)$.

That would directly improve our upper bound!

Conjecture
For every poset \mathcal{P}, either $\text{sat}^*(n, \mathcal{P}) = O_\mathcal{P}(1)$ or $\text{sat}^*(n, \mathcal{P}) = \Theta_\mathcal{P}(n)$.

Open question

Conjecture
For every poset \mathcal{P}, $w^*(\mathcal{P}) = O(|\mathcal{P}|)$.

That would directly improve our upper bound!

Conjecture
For every poset \mathcal{P}, either $\text{sat}^*(n, \mathcal{P}) = O_{\mathcal{P}}(1)$ or $\text{sat}^*(n, \mathcal{P}) = \Theta_{\mathcal{P}}(n)$.

$sat^*(C_2, n) = 1$

$sat^*(2C_2, n) \geq n$

$sat^*(3C_2, n) \leq 14$
Conjecture

For every poset \mathcal{P}, $w^*(\mathcal{P}) = O(|\mathcal{P}|)$.

That would directly improve our upper bound!

Conjecture

For every poset \mathcal{P}, either $\text{sat}^*(n, \mathcal{P}) = O_{\mathcal{P}}(1)$ or $\text{sat}^*(n, \mathcal{P}) = \Theta_{\mathcal{P}}(n)$.

\[
\text{sat}^*(C_2, n) = 1 \\
\text{sat}^*(2C_2, n) \geq n \\
\text{sat}^*(3C_2, n) \leq 14
\]

Thank you!
<table>
<thead>
<tr>
<th>poset P</th>
<th>$\text{sat}(n, P)$</th>
<th>$\text{sat}^*(n, P)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_2, chain</td>
<td>= 1</td>
<td>= 1</td>
</tr>
<tr>
<td>A_2, antichain</td>
<td>= 1</td>
<td>= $n + 1$</td>
</tr>
<tr>
<td>C_3, chain</td>
<td>= 2</td>
<td>= 2</td>
</tr>
<tr>
<td>$C_2 + C_1$, chain and single</td>
<td>= 2</td>
<td>= 4</td>
</tr>
<tr>
<td>\lor fork (or \land)</td>
<td>= 2</td>
<td>= $n + 1$</td>
</tr>
<tr>
<td>A_3, antichain</td>
<td>= 2</td>
<td>= $3n - 1$</td>
</tr>
<tr>
<td>C_4, chain</td>
<td>= 4</td>
<td>= 4</td>
</tr>
<tr>
<td>\lor_3, fork with three tines</td>
<td>= 3</td>
<td>$\geq \log_2 n$</td>
</tr>
<tr>
<td>\lozenge, diamond</td>
<td>= 3</td>
<td>$\geq \sqrt{n}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\leq n + 1$</td>
</tr>
<tr>
<td>\lozenge^-, diamond minus an edge</td>
<td>= 3</td>
<td>= 4</td>
</tr>
<tr>
<td>\Join, butterfly</td>
<td>= 4</td>
<td>$\geq n + 1$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\leq 6n - 10$</td>
</tr>
<tr>
<td>Y</td>
<td>= 3</td>
<td>$\geq \log_2 n$</td>
</tr>
<tr>
<td>N</td>
<td>= 3</td>
<td>$\geq \sqrt{n}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\leq 2n$</td>
</tr>
<tr>
<td>$2C_2$</td>
<td>= 3</td>
<td>$\geq n + 2$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\leq 2n$</td>
</tr>
</tbody>
</table>

Figure 3: Table from [?]
<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
<th>Bound</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>$C_3 + C_1$, chain and single</td>
<td>3</td>
<td>≤ 8</td>
<td>[Prop. 3.18]</td>
</tr>
<tr>
<td>$\lor + 1$, fork and single</td>
<td>3</td>
<td>$\geq \log_2 n$</td>
<td>[F7]</td>
</tr>
<tr>
<td>$C_2 + A_2$</td>
<td>3</td>
<td>≤ 8</td>
<td>[Prop. 3.18]</td>
</tr>
<tr>
<td>A_4, antichain</td>
<td>3</td>
<td>$\geq 3n - 1$</td>
<td>[F7]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\leq 4n + 2$</td>
<td>[F7]</td>
</tr>
<tr>
<td>C_5, chain</td>
<td>8</td>
<td>8</td>
<td>[G6]+[MNS]</td>
</tr>
<tr>
<td>C_6, chain</td>
<td>16</td>
<td>16</td>
<td>[G6]+[MNS]</td>
</tr>
<tr>
<td>C_k, chain ($k \geq 7$)</td>
<td></td>
<td>$\geq 2^{(k-3)/2}$</td>
<td>[G6]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\leq 2^{0.98k}$</td>
<td>[MNS]</td>
</tr>
<tr>
<td>A_k, antichain</td>
<td>$k - 1$</td>
<td>$\geq \left(1 - \frac{1}{\log_2 k}\right) \frac{k}{\log_2 k} n$</td>
<td>[MSW]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\leq kn - k - \frac{1}{2} \log_2 k + O(1)$</td>
<td>[F7]</td>
</tr>
<tr>
<td>$3C_2$</td>
<td>5</td>
<td>14</td>
<td>[Prop. 3.13]</td>
</tr>
<tr>
<td>$5C_2$</td>
<td>9</td>
<td>42</td>
<td>[Prop. 3.18]</td>
</tr>
<tr>
<td>$7C_2$</td>
<td>13</td>
<td>60</td>
<td>[Prop. 3.18]</td>
</tr>
<tr>
<td>any poset on k elements</td>
<td></td>
<td>$\leq 2^{k-2}$</td>
<td>[Thm. 1.1]</td>
</tr>
<tr>
<td>UCTP (def. in Section 3.2)</td>
<td>$O(1)$</td>
<td>$\geq \log_2 n$</td>
<td>[F7]</td>
</tr>
<tr>
<td>UCTP with top chain</td>
<td>$O(1)$</td>
<td>$\geq \log_2 n$</td>
<td>[Thm. 3.6]</td>
</tr>
<tr>
<td>chain + shallower</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
<td>[Thm. 3.8]</td>
</tr>
</tbody>
</table>

Figure 4: Table from [?]