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Spanning trees

Let G = (V ,E) be a finite connected graph – V = vertices and E = edges.

Definition

A tree is a connected graph with no cycles. A spanning tree of G is a subgraph
of G which is a tree and has vertex set V .
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Random trees

Let G = (V ,E) be a finite connected graph.

Let T be the set of all spanning trees of G . Pick T uniformly at random from
T . We call T a uniform spanning tree – UST.

-

credit: Sam Watson

This is the uniform spanning tree of Z2
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Spanning trees

The study of spanning trees goes back to the work of Kirchhoff in 1847.
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Gustav Kirchhoff

In his 1847 paper he developed a set of rules that
formalise that current and energy are conserved in
electrical circuits.

In his work it is the first time that the connection
between UST and electrical networks was
established:

Reff(e) =
#spanning trees containing e

|T |

In his 8 page long paper, he also proved the
Matrix Tree Theorem – counting the number of
spanning trees of a graph.
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Gustav Kirchhoff

His motivation was not probabilistic.

Instead to set the foundations for the theory of
electrical networks.

His insight has been fruitful in both directions.

Electrical networks are an important tool to
understand the geometry of large UST’s.
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Why do we study UST?

Picking a uniform spanning tree is an essential component in many
randomised algorithms in computer science.

It is connected to models in statistical physics, such as the random cluster
model.

Connections between UST, electrical networks and random walks.

Study of scaling limit of UST led Oded Schramm to develop the
beautiful theory of SLE that describes the scaling limits of conformally
invariant processes on the plane.

Perla Sousi The four dimensional uniform spanning tree



Why do we study UST?

Picking a uniform spanning tree is an essential component in many
randomised algorithms in computer science.

It is connected to models in statistical physics, such as the random cluster
model.

Connections between UST, electrical networks and random walks.

Study of scaling limit of UST led Oded Schramm to develop the
beautiful theory of SLE that describes the scaling limits of conformally
invariant processes on the plane.

Perla Sousi The four dimensional uniform spanning tree



Why do we study UST?

Picking a uniform spanning tree is an essential component in many
randomised algorithms in computer science.

It is connected to models in statistical physics, such as the random cluster
model.

Connections between UST, electrical networks and random walks.

Study of scaling limit of UST led Oded Schramm to develop the
beautiful theory of SLE that describes the scaling limits of conformally
invariant processes on the plane.

Perla Sousi The four dimensional uniform spanning tree



Why do we study UST?

Picking a uniform spanning tree is an essential component in many
randomised algorithms in computer science.

It is connected to models in statistical physics, such as the random cluster
model.

Connections between UST, electrical networks and random walks.

Study of scaling limit of UST led Oded Schramm to develop the
beautiful theory of SLE that describes the scaling limits of conformally
invariant processes on the plane.

Perla Sousi The four dimensional uniform spanning tree



SLE(8)

credit: Russ Lyons
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Sampling algorithms

Let G = (V ,E) be a finite connected graph.

Algorithms for sampling a UST

First sampling algorithm (1847) using Matrix Tree Theorem – Kirchhoff

Wilson’s algorithm using loop erased walks

Aldous – Broder (and Diaconis) algorithm
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Loop-erased random walk

Let γ be a finite path of vertices in G .

We remove loops chronologically as they appear until there are no more loops
left

⇒ yields the loop-erasure of γ.

Loop-erasing simple random walk path yields loop-erased random walk.

Take a loop erased random walk on Z2 and rescale space  SLE(2) curve.
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Wilson’s algorithm for UST

Back to the finite case, G = (V ,E).

Designate a root vertex r and order V \ {r} = {v1, . . . , vn−1}.

Start a simple random walk from v1 and run until it first hits r .

Erase loops.

Start a random walk from v2 and run until it hits the first path. Erase
loops.

Continue until you exhaust all vertices.

We obtained a spanning tree!

Theorem (Wilson)

The tree we obtained has the same distribution as the UST.
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Large UST’s

Generate a “uniform” spanning tree of Z2

Designate 0 as the root vertex and order the rest.

Start a simple random walk from the first vertex in the ordering till it
hits 0.

Erase loops.

Start a SRW from the next vertex in the ordering till it hits the previous
path. Erase loops.

Perla Sousi The four dimensional uniform spanning tree



Large UST’s

Generate a “uniform” spanning tree of Z2

Designate 0 as the root vertex and order the rest.

Start a simple random walk from the first vertex in the ordering till it
hits 0.

Erase loops.

Start a SRW from the next vertex in the ordering till it hits the previous
path. Erase loops.

Perla Sousi The four dimensional uniform spanning tree



Large UST’s

Generate a “uniform” spanning tree of Z2

Designate 0 as the root vertex and order the rest.

Start a simple random walk from the first vertex in the ordering till it
hits 0.

Erase loops.

Start a SRW from the next vertex in the ordering till it hits the previous
path. Erase loops.

Perla Sousi The four dimensional uniform spanning tree



Large UST’s

Generate a “uniform” spanning tree of Z2

Designate 0 as the root vertex and order the rest.

Start a simple random walk from the first vertex in the ordering till it
hits 0.

Erase loops.

Start a SRW from the next vertex in the ordering till it hits the previous
path. Erase loops.

Perla Sousi The four dimensional uniform spanning tree



Large UST’s

Generate a “uniform” spanning tree of Z2

Designate 0 as the root vertex and order the rest.

Start a simple random walk from the first vertex in the ordering till it
hits 0.

Erase loops.

Start a SRW from the next vertex in the ordering till it hits the previous
path. Erase loops.

Perla Sousi The four dimensional uniform spanning tree



UST on Z2

SRW on Z2 is recurrent. It visits every vertex ∞ many times.

So this algorithm is guaranteed to visit all vertices of Z2 and produce a
connected tree.

credit: Sam Watson

This is the uniform spanning tree of Z2
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Higher dimensions

What is the canonical way to define the UST in Zd , d ≥ 3?

Consider the UST measure on finite exhaustions of the ∞ graph.

Take Gn = [−n, n]d ∩ Zd and let µn be the UST measure on Gn.

The sequence µn converges weakly to a limiting measure µ as n→∞.

We call µ the Uniform Spanning Forest (USF) measure on Zd .

Indeed, by construction µ is supported on acyclic graphs  forests.

Theorem (Pemantle (1991))

The USF on Zd has one tree with probability 1 for d ≤ 4 and infinitely many
trees for d ≥ 5.

Perla Sousi The four dimensional uniform spanning tree



Higher dimensions

What is the canonical way to define the UST in Zd , d ≥ 3?

Consider the UST measure on finite exhaustions of the ∞ graph.

Take Gn = [−n, n]d ∩ Zd and let µn be the UST measure on Gn.

The sequence µn converges weakly to a limiting measure µ as n→∞.

We call µ the Uniform Spanning Forest (USF) measure on Zd .

Indeed, by construction µ is supported on acyclic graphs  forests.

Theorem (Pemantle (1991))

The USF on Zd has one tree with probability 1 for d ≤ 4 and infinitely many
trees for d ≥ 5.

Perla Sousi The four dimensional uniform spanning tree



Higher dimensions

What is the canonical way to define the UST in Zd , d ≥ 3?

Consider the UST measure on finite exhaustions of the ∞ graph.

Take Gn = [−n, n]d ∩ Zd and let µn be the UST measure on Gn.

The sequence µn converges weakly to a limiting measure µ as n→∞.

We call µ the Uniform Spanning Forest (USF) measure on Zd .

Indeed, by construction µ is supported on acyclic graphs  forests.

Theorem (Pemantle (1991))

The USF on Zd has one tree with probability 1 for d ≤ 4 and infinitely many
trees for d ≥ 5.

Perla Sousi The four dimensional uniform spanning tree



Higher dimensions

What is the canonical way to define the UST in Zd , d ≥ 3?

Consider the UST measure on finite exhaustions of the ∞ graph.

Take Gn = [−n, n]d ∩ Zd and let µn be the UST measure on Gn.

The sequence µn converges weakly to a limiting measure µ as n→∞.

We call µ the Uniform Spanning Forest (USF) measure on Zd .

Indeed, by construction µ is supported on acyclic graphs  forests.

Theorem (Pemantle (1991))

The USF on Zd has one tree with probability 1 for d ≤ 4 and infinitely many
trees for d ≥ 5.

Perla Sousi The four dimensional uniform spanning tree



Higher dimensions

What is the canonical way to define the UST in Zd , d ≥ 3?

Consider the UST measure on finite exhaustions of the ∞ graph.

Take Gn = [−n, n]d ∩ Zd and let µn be the UST measure on Gn.

The sequence µn converges weakly to a limiting measure µ as n→∞.

We call µ the Uniform Spanning Forest (USF) measure on Zd .

Indeed, by construction µ is supported on acyclic graphs  forests.

Theorem (Pemantle (1991))

The USF on Zd has one tree with probability 1 for d ≤ 4 and infinitely many
trees for d ≥ 5.

Perla Sousi The four dimensional uniform spanning tree



Higher dimensions

What is the canonical way to define the UST in Zd , d ≥ 3?

Consider the UST measure on finite exhaustions of the ∞ graph.

Take Gn = [−n, n]d ∩ Zd and let µn be the UST measure on Gn.

The sequence µn converges weakly to a limiting measure µ as n→∞.

We call µ the Uniform Spanning Forest (USF) measure on Zd .

Indeed, by construction µ is supported on acyclic graphs  forests.

Theorem (Pemantle (1991))

The USF on Zd has one tree with probability 1 for d ≤ 4 and infinitely many
trees for d ≥ 5.

Perla Sousi The four dimensional uniform spanning tree



Higher dimensions

What is the canonical way to define the UST in Zd , d ≥ 3?

Consider the UST measure on finite exhaustions of the ∞ graph.

Take Gn = [−n, n]d ∩ Zd and let µn be the UST measure on Gn.

The sequence µn converges weakly to a limiting measure µ as n→∞.

We call µ the Uniform Spanning Forest (USF) measure on Zd .

Indeed, by construction µ is supported on acyclic graphs  forests.

Theorem (Pemantle (1991))

The USF on Zd has one tree with probability 1 for d ≤ 4 and infinitely many
trees for d ≥ 5.

Perla Sousi The four dimensional uniform spanning tree



One ended trees

An infinite tree is k-ended if there exist exactly k distinct infinite simple paths
starting at each vertex of the tree.

Examples: Z is 2-ended, N is 1-ended.

Theorem (Pemantle (1991); Benjamini, Lyons, Peres and Schramm (2001))

All trees in the USF in Zd are one-ended for all d ≥ 2.
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Quantifying one-endedness

past of 0 = {0} ∪ finite piece disconnected from ∞ by 0

Theorem (Hutchcroft (2017) d ≥ 5)

P(past of 0 contains a path of length n) � 1

n

P(past of 0 ∩ ∂B(0, n) 6= ∅) � 1

n2

P(|past of 0 | ≥ n) � 1√
n

What happens at d = 4?
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d = 4

Theorem (Hutchcroft and S. (2020) d=4)

P(past of 0 contains a path of length n) � (log n)1/3

n

P(past of 0 ∩ ∂B(0, n) 6= ∅) � (log n)2/3+o(1)

n2

P(|past of 0| ≥ n) � (log n)1/6√
n
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Proof ideas

Small detour

Aldous - Broder algorithm for generating a UST of a finite graph G

Let o be a vertex of G .

Start a random walk from o and run until
the cover time (1st time walk has
visited every vertex)

For every vertex v 6= o, keep the edge
that was used when visiting v for the first
time.

The collection of all these edges
constitutes a spanning tree.

Theorem (Aldous - Broder (discussions with Diaconis) 1990)

The distribution of the spanning tree generated is that of the UST.

Clear how to generalise the algorithm for an ∞ recurrent graph (walk visits
every vertex with probability 1).
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Proof ideas

Hutchcroft’s generalisation for transient graphs

Replace the walk with Sznitman’s random interlacements (RI)

RI = Poisson process of bi-∞ random walk trajectories arriving in time

P(RI has not hit K by time t) = exp (−t · Cap(K)) ,

Cap(K) =
∑

x∈K Px(never hit K again) for K finite.

Discrete analogue of the Newtonian capacity: for A ⊆ Rd compact

1

Cap(A)
= inf

{∫ ∫
G(x , y)dµ(x)dµ(y) : µ prob. measure on A

}
(G is the Green kernel)
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Proof ideas

This dynamic way of generating the USF is best suited for calculating tail
probabilities.

Lower bound Let ε to be determined later.

A = {0 is hit by a unique trajectory W of RI in [0, ε]}.
Apply Aldous Broder to W |[0,∞)  η = LERW in Z4.

B = { W |(−∞,0) ∩ η[0, n] = ∅ } P(B) � (log n)−1/3 [Lawler]

C = { no other trajectory of RI hits η[0, n] in [0, ε] }.

So P(past of 0 contains a path of length n) ≥ P(A ∩ B ∩ C) and

P(A ∩ B ∩ C) � ε · 1

(log n)1/3
· E

[
e−εCap(η[0,n])

]
.

Need to estimate E
[
e−εCap(η[0,n])

]
, where η LERW in Z4.
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Capacity

Recall Cap(K) =
∑

x∈K Px(never hit K again).

Equivalently

Cap(K) = limx→∞
Px(hit K)
G(x)

Cap(η[0, n]) =⇒ intersection probabilities between LERW and SRW

Step back: Let X ,Y be independent SRW’s in Z4 with ‖X0 − Y0‖ �
√
n.

P(X [0, n] ∩ Y [0,∞) 6= ∅) � 1
log n

[Lawler ’90’s]

This easily then yields

E[Cap(X [0, n])] � n

log n
.
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Capacity

Theorem (Lyons, Peres and Schramm)

Let X and Y be transient chains. Then

P(LE(X ) ∩ Y [0,∞) 6= ∅) � P(X ∩ Y [0,∞) 6= ∅) .

 E[Cap(LE(X [0, n]))] � E[Cap(X [0, n])] � n
log n

.

Theorem (Lawler)

n(log n)1/3 steps of SRW produce n steps of LERW.

 E[Cap(η[0, n])] � E
[
Cap(X [0, n(log n)1/3])

]
� n

(log n)2/3
.
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Back to the lower bound

Recall we showed

P(past of 0 contains a path of length n) ≥ ε · 1

(log n)1/3
· E

[
e−εCap(η[0,n])

]

Substitute Cap(η[0, n]) = n

(log n)2/3
(typical value)and take ε = (log n)2/3

n

P(past of 0 contains a path of length n) ≥ (log n)1/3

n
.
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Upper bound

Upper bound: more delicate
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Upper bound: more delicate

Let Q(n) = P( past of 0 contains a path of length n)
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Upper bound

Upper bound: more delicate

Let Q(n) = P( past of 0 contains a path of length n)

Idea prove an inductive inequality

Q(2n) ≤ C(log n)1/3

n
+

1

4
Q(n)
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Upper bound

Upper bound: more delicate

Let Q(n) = P( past of 0 contains a path of length n)

Idea prove an inductive inequality

Q(2n) ≤ C(log n)1/3

n
+

1

4
Q(n)

Useful tools developed in work with Asselah and Schapira on the capacity of
the range of a SRW.
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d = 4

Theorem (Hutchcroft and S. (2020) d=4)

P(past of 0 contains a path of length n) � (log n)1/3

n

P(past of 0 ∩ ∂B(0, n) 6= ∅) � (log n)2/3+o(1)

n2

P(|past of 0| ≥ n) � (log n)1/6√
n
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