

Joint with Tom Hutchcroft

let G = (V, E) be a graph. [countable, locally finite, connected] let $p \in [0, i]$.

Bernoulli band percolation
$$P_{p}^{G} := \begin{cases} law of random spanning subgraph $w : E \rightarrow \{0, 1\} \\ (w(e))_{e \in E} \\ r id Bernoulli(P). \end{cases}$$$

Connected components of w one called clusters.

6 infinite transitive (Benjamini-Schramm '96)

Transitive means $\forall u, v \in V \exists \phi \in Aut G : \phi(u) = v$.

Regular tree

Cayley graph of infinite finitely generated group

Fact: $\exists P_c \in [0,1]$ such that $\mathbb{P}_p^G(\exists oo cluster) = \begin{cases} 0\\ 1\\ 2 \end{cases}$ ٥<٦ p > Pc P = Pc

Questions: When is Pc E (0,1)? How many as clusters ? Is Ppc (Joo cluster) = 0?

Ihm: (Duminil-Copin, Gosmani, Raoufi, Senero, Yadin 2018)
$$P_{c} \in (0,1)$$
 iff G is not 1-dimensional.

Converse remains open.

Is
$$P_{P_c}^{6}(\exists x) cluster) = 0$$
?
Conjectured to hold iff G is not 1-dimensional
Open for \mathbb{Z}^3 !

$$G_{n} = \text{complete graph on n natices} \qquad (Erdős, Rénzi '59)$$

Enumerate clusters K_{1}, K_{2}, \dots with $|K_{1}| \ge |K_{1}| \ge \dots$ $(|K| := * natices in K)$

 $|dt ||K|| := \frac{|K|}{|V(G)|}$

• (G_n) has a percolation threshold at (1/n):
(P_n) supercritical [i.e. limit
$$\frac{P_n}{n} > 1$$
] => $\exists \varepsilon > 0$: $\lim_{n \to \infty} \mathcal{P}_{P_n}^{G_n}(||K_1|| \ge \varepsilon) = 1$.
(P_n) submitted [i.e. limit $\frac{P_n}{n} < 1$] => $\forall \varepsilon > 0$: $\lim_{n \to \infty} \mathcal{P}_{P_n}^{G_n}(||K_1|| \ge \varepsilon) = 0$.

• (G_n) has the supercritical concentration property:

$$\forall$$
 supercritical (P_n): $||K_i|| - E_{P_n}^{G_n} ||K_i|| \xrightarrow{P} 0$ under $P_{P_n}^{G_n}$.

Gn finite transitive, [V(Gn)]→20

K_n
$$I_{0,I^{n}}$$
 $(2/n2)^{d}$ $K_{n} \square K_{2}$ $(2/n2)^{d}$ $K_{n} \square K_{2}$

Soy
$$(P_n)$$
 supercritical if $\exists \epsilon > 0 \quad \forall n : P_n^{G_n} (\|K_i\| \ge \epsilon) \ge \epsilon$
 $(1-\epsilon) P_n$

Warm-up: (Gn) has bounded vortex degrees

Conjecture: (Benjamini '01) (Gn) has the supercritical uniqueness property. (not reassaily transitive) expanders

1mm: (Hutchcroft, Tointon '21)

If (Gn) has "at least (1+2)-dimensional growth" then 32>0 Hn: P₁₋₂ (11K,112E) 2E.

Say $(G_n) \rightarrow G$ locally if $\forall R \exists N \forall n \ge N : B_R^{G_n} \cong B_R^G$.

The (E., Hutchcoft '22+) If (P. P. P. ...) is supercritical and $G_n \rightarrow G$ locally, then $P_p^{G_n}(O \in K_1) \longrightarrow P_p^G(O \in infinite cluster).$

Conjecture: (Schramm)

Let
$$(G_n)$$
 be a sequence of infinite transitive graphs with $\lim_{n \to \infty} P_c(G_n) < 1$.
If $G_n \to G$ locally, then $P_c(G_n) \to P_c(G)$.

The analogue for finite Gr should hold for "nice" sequences. Crot 1-dimensional? A curious case ...

Suppose
$$(G_n)$$
 is "nice"
• G is nonamenable
 $f = 3p > P_c(G)$ s.t. $P_p^G(\exists multiple \ \infty - durbars) = 1.$
• $G_n \rightarrow G$ locally.

How one uniqueness of the grant cluster in
$$P_p^{G_n}$$
 consistent?
non-uniqueness of the so cluster in P_p^G

same agument mortes for similar constructions, called molecules.

Ihm: (E., Hutchcroft '21, 22, 22+)

These are the only obstacles to

existence of percolation treshold
uparcifical uniqueves property · supercritical concentration property

Spetch of proof of Benjamini's conjecture

Fix (Gn) with bounded vertex degrees and IV(Gn)] -> 00.

(on: (Talagrand '94) Every increasing and Ant Gn-invariant event has threshold width $O\left(\frac{1}{\log|V(G_n)|}\right)$.

Fix
$$(P_n)$$
 supercritical.
Fick $\Delta > 0$ s.t. $(P_n - \Delta)$ supercritical.

WTS:
$$||K_2|| \xrightarrow{P} 0$$
 under $P_{\mu}^{G_{\mu}}$

Claim:
$$J(q_n)$$
 such that • $\forall n: P_n - \Delta \in Q_n \in P_n$
• $||K_i|| - (E_{q_n}^{G_n} ||K_i|| \xrightarrow{P} 0$ under $P_{q_n}^{G_n}$

•
$$P_{q-\frac{A}{N}}^{G_n} \left(\|K_1\| \ge M(q) - \frac{2}{N} \right) \ge \frac{1}{2}$$

• $P_{q+\frac{A}{N}}^{G_n} \left(\|K_1\| \le M(q) + \frac{2}{N} \right) \ge \frac{1}{2}$

Set $N = \int \log |V(G_n)|$ so that

[threshold midth] ~
$$\frac{1}{\log |V(G_n)|} << \frac{\Delta}{N}$$
.
Talagrand

Therefore :

•
$$\mathbb{P}_{q}^{G_{n}}\left(\|K_{i}\| \ge M(q) - \frac{1}{N}\right) = 1 - \mathcal{Q}(1)$$

•
$$(P_q^{G_n}(||K_1|| \in M(a) + \frac{1}{N}) = 1 - Q(1))$$

<u>Claim</u>: $||K_2|| \xrightarrow{P} 0$ under $P_{q_n}^{G_n}$. Proof: "concentration => uniqueress"

Assume for contradiction:
$$\exists z > 0 \quad \forall n : \quad \mathcal{B}_{p_n}^{G_n}(||K_2|| \ge z) \ge z$$

 $||K_1|| \xrightarrow{P} \propto \varepsilon(0, 1) \quad under \quad \mathcal{P}_{q_n}^{G_n}$

 $\mathcal{P}_{q_n}^{G_n}(\|K_2\| \ge \frac{\alpha}{2}) \ge \frac{\varepsilon}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}$ (outradiction for a large. 50

Claim:
$$\exists (S_n)$$
 such that $\forall u: S_n \subseteq G_n \text{ and } ||S_n|| \ge \varepsilon$
 $||K_1(w \setminus \overline{S_n})|| \xrightarrow{P} \propto under P_{2_n}^{G_n}$

So
$$||K_1(w_2)|| - d| \ge S$$
.
X Contradiction for large n

This claim contradicts concentration of 11K,11 under (Pq_ !

An open problem

let (G_n) be sequence of finite transitive graphs with $|V(G_n)| \rightarrow \infty$. Say (G_n) has the general uniqueness property if $\forall (P_n): ||K_2|| \xrightarrow{P} 0$ under $\mathcal{P}_{P_n}^{G_n}$.

Fails for approximately 1-dimensional examples.

Conjecture: (Alon, Benjamini, Stacey '04) If diam $G_n = O\left(\frac{|V(G_n)|}{\log |V(G_n)|}\right)$, then (G_n) has the general uniquess property.