Site percolation on planar graphs and circle packings

Ron Peled, Tel Aviv University

Oxford Discrete Mathematics and Probability Seminar

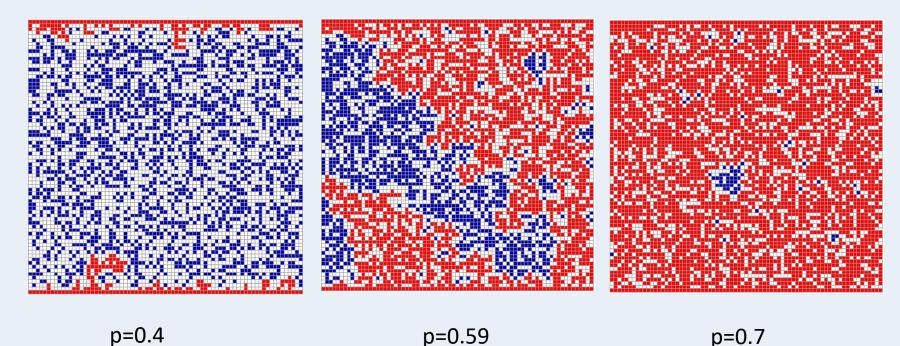
April 14, 2020

Site percolation

- Site percolation with probability 0 on a (simple, connected) graph <math>G is the random subgraph G_p formed by independently retaining each vertex of G with probability p, and otherwise deleting it.
- Research focuses on the connected components (clusters) of G_p . The probability that G_p contains an infinite cluster transitions from zero to one at a critical value $p_c \in [0,1]$ (the probability is 0 for $p < p_c$ and is 1 for $p > p_c$).
- Percolation is classically studied on structured graphs including lattices such as \mathbb{Z}^d , the complete graph (Erdős–Rényi G(n,p)) or regular trees, but the case of general graphs is also of great interest.
- In this talk we discuss percolation on infinite planar graphs and focus on the value of p_c .

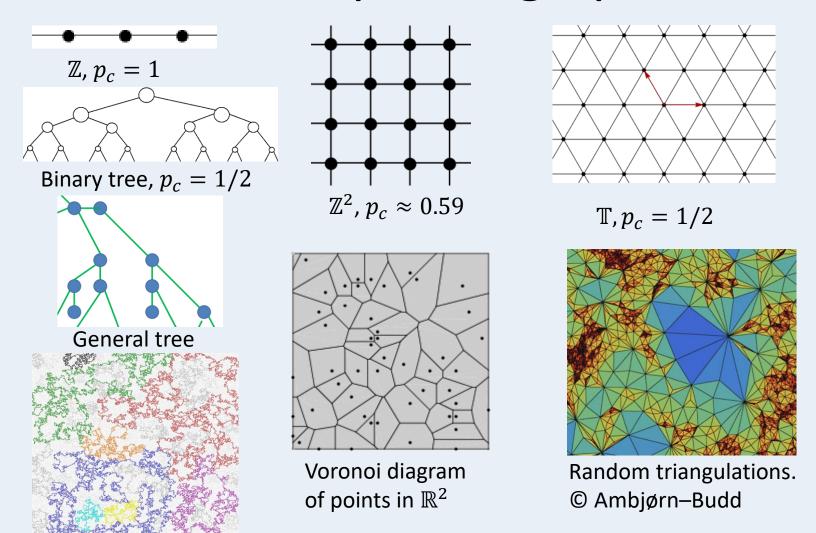
Site percolation on \mathbb{Z}^2

- Simulations of site percolation on a 75×75 grid in the square lattice \mathbb{Z}^2 (from Wolfram demonstrations project).
- Clusters of bottom and top highlighted in red.
- Site percolation threshold $p_c \approx 0.59274(10)$ (Derrida–Stuaffer 1985).



3

Infinite planar graphs



The random loops in the loop O(n) model Simulation by Y. Spinka.

Benjamini conjectures

- How high or low can the value of p_c be for planar graphs?
- General bound: $p_c(G) \geq \frac{1}{\Delta(G)-1}$ where $\Delta(G)$ is the maximal degree of G. Follows from union bound: At most $\Delta(G)(\Delta(G)-1)^{L-2}$ paths of length L from each vertex. Sharp for regular trees, so p_c can be arbitrarily low for planar graphs. There also exist planar graphs with $p_c < 1$ but arbitrarily close to 1.
- Can we say more for special classes of planar graphs? Benjamini (2018) relates the question to the behavior of simple random walk on G.
- G is recurrent if simple random walk on it returns to its starting point infinitely often. Otherwise, G is transient.
 G is one-ended if it has a unique infinite connected component after removing any finite set of vertices (e.g., Z² is one-ended but Z is not).
 A planar graph G is a triangulation if it has a planar drawing with all faces triangles.
- For site percolation with p=1/2 on bounded degree one-ended triangulations G: Conjecture (Benjamini): If G is transient then $G_{1/2}$ has an infinite cluster. Question (Benjamini): Does recurrence of G imply that $G_{1/2}$ has no infinite cluster? In particular, p_c cannot be arbitrarily high/low for such planar graphs.

Results

- Theorem (P. 2020): There exists $p_0>0$ such that the following holds for all one-ended triangulations G:
 - $_{\circ}$ If G is recurrent then G_{p_0} has no infinite cluster.
 - $_{\circ}$ If G is bounded degree and transient then $G_{1-p_{0}}$ has an infinite cluster.
- The emphasis is that p_0 is universal p_c is uniformly bounded on such graphs.
- Verifies Benjamini's predictions when the probability p=1/2 is replaced by a sufficiently low/high (but fixed!) probability.
- Recurrent case does not require G to be of bounded degree.

Tool: Circle Packings

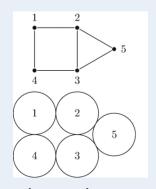
• A circle packing P is a collection of closed disks in \mathbb{R}^2 with disjoint interiors. Graph structure on P: disks adjacent if tangent.

Accumulation points of disks are allowed.

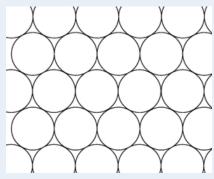
After site percolation with probability p, write P_p for the graph of retained disks.

Carrier of a circle packing representing a triangulation: Union of disks and interstices between disks.

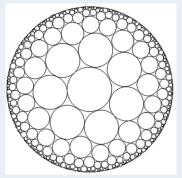
Theorem (Koebe 1936, Andreev, Thurston): Every (finite or infinite, simple)
planar graph can be represented by a circle packing.



Circle packing representing a graph



Carrier = \mathbb{R}^2



Carrier = unit disk \mathbb{D}

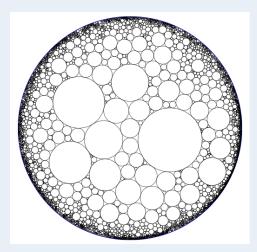
Circle packings and recurrence

- Theorem (He–Schramm 1995, uniformization theorem):
 - Let G be a one-ended triangulation. Then
 - 1) G may be represented by a circle packing with carrier \mathbb{R}^2 (CP-parabolic) or by a circle packing with carrier \mathbb{D} (CP-hyperbolic), but not by both.
 - 2) If *G* is recurrent then it is CP-parabolic.
 - 3) If G is of bounded degree and transient then it is CP-hyperbolic.



Carrier = \mathbb{R}^2 CP-parabolic

© Adam Marcus



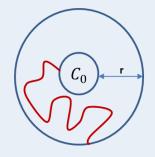
Carrier = unit disk \mathbb{D} CP-hyperbolic

© Angel–Hutchcroft–Nachmias–Ray

Main result

- Theorem (P. 2020): There exists $p_0 > 0$ such that for every circle packing P:
 - $_{\circ}$ The retained graph P_{p_0} contains no cluster of infinite (Euclidean) diameter.
 - _∞ Moreover, if D := $\sup_{C \in P} \operatorname{diam}(C) < \infty$ then for each disk $C_0 \in P$,

 $\mathbb{P}(C_0 \text{ is connected to distance } r \text{ after percolation}) \leq e^{-\frac{r}{D}}$



- Theorem says that while infinite clusters may exist after p_0 site percolation, they necessarily connect to accumulation points rather than to infinity.
- Result on recurrent one-ended triangulations follows as they are represented by circle packings with no accumulation points by the He-Schramm theorem.
 Transient case follows from the He-Schramm theorem and quantitative bound above using an additional argument.
- Conjecture that p_0 may be taken to be 1/2 in the first part of the theorem. Will imply a positive answer to Benjamini's question on recurrent triangulations.

Proof 1 (statement to prove)

- Technically convenient to prove result for square packings (circle packing case requires minor alterations). Convenient to draw pictures with ℓ_{∞} -distance. Square packing: a collection P of closed squares in \mathbb{R}^2 with disjoint interiors. Graph on P: squares adjacent if they intersect.
 - Percolation: Retain each square with a small probability p independently $(p = e^{-26})$ is sufficiently small for the argument).
- Write $\{S_0 \overset{\leq d}{\to} r\}$ for the event that the square S_0 is connected to distance r by retained squares whose diameters do not exceed d.
- Prove following result (general case is similar): Let P be a square packing with squares of diameter at least 1. For each r>0, integer $k\geq 0$ and $S_0\in P$ with $\mathrm{diam}(S_0)\leq 2^k$ have

$$\mathbb{P}\left(S_0 \xrightarrow{\leq 2^k} r\right) \leq e^{-\frac{r}{2^k}}.$$

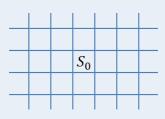
squares of diameter $\leq d$

Proof 2 (induction base)

• Let P be a square packing with squares of diameter at least 1. For each r > 0, integer $k \ge 0$ and $S_0 \in P$ with diam $(S_0) \le 2^k$ have

$$\mathbb{P}\left(S_0 \xrightarrow{\leq 2^k} r\right) \leq e^{-\frac{r}{2^k}}.$$

- Proof by double induction on k and r.
- Base case k=0: at most 8 neighbors to each square. Expected number of paths in P_p of length L is at most $8^{L-1} \cdot p^L$. Need path of length [r] to reach distance r. Probability at most e^{-r} when $p \leq \frac{1}{8}e^{-1}$.



- Induction hypothesis 1: Fix $k \ge 1$ and assume result known for k-1 and all r.
- Base case $r \le 2^{k+1}$: $\mathbb{P}\left(S_0 \xrightarrow{\le 2^k} r\right) \le \mathbb{P}(S_0 \text{ is retained}) = p \le e^{-2} \le e^{-\frac{r}{2^k}}$.
- Induction hypothesis 2: Fix $r > 2^{k+1}$ and assume result up to $r 2^k$.

Proof 3 (diameter of S_0)

- Diameter of S_0 : To use induction, wish to ensure that $diam(S_0) \le 2^{k-1}$. If this is not already the case:
 - Cut S_0 into four squares $S_0^1, S_0^2, S_0^3, S_0^4$.

- Replace (P, S_0) by (P^i, S_0^i) , for $1 \le i \le 4$, where $P^i = (P \setminus \{S_0\}) \cup \{S_0^i\}$.
- Prove the slightly stronger bound

$$\mathbb{P}\left(S_0^i \xrightarrow{\leq 2^k} r\right) \leq \frac{1}{4}e^{-\frac{r}{2^k}}.$$

• This will establish the result for (P, S_0) by a simple coupling with the percolations on the (P^i, S_0^i) .

Proof 4 (using the induction)

• Recap: P a square packing with squares of diameter at least 1. Fix $k \ge 1$.

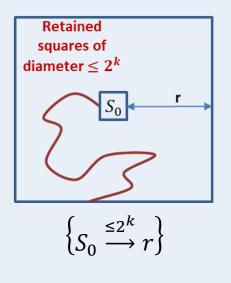
To prove: For each r > 0 and $S_0 \in P$ with $\operatorname{diam}(S_0) \leq 2^{k-1}$

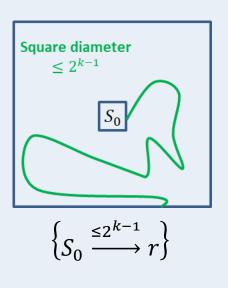
$$\mathbb{P}\left(S_0 \xrightarrow{\leq 2^k} r\right) \leq \frac{1}{4}e^{-\frac{r}{2^k}}.$$

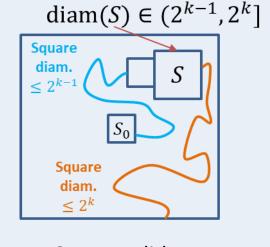
Bound holds by induction (without $\frac{1}{4}$) for k-1 and all r.

Fix $r > 2^{k+1}$. Bound holds by induction (without ¼) up to $r - 2^k$ (for fixed k).

Write event as the union:





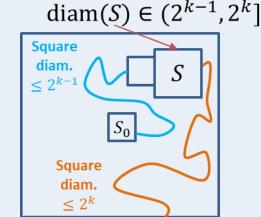


On next slide

• Note
$$\mathbb{P}\left(S_0 \xrightarrow{\leq 2^{k-1}} r\right) \leq e^{-\frac{r}{2^{k-1}}} = e^{-\frac{r}{2^k}} \cdot e^{-\frac{r}{2^k}}$$
 using the induction.

Proof 5 (using the induction 2)

- Second event states that there exists $S \in P$ with $d(S_0, S) \le r$ and $diam(S) \in (2^{k-1}, 2^k]$ such that
 - \circ S_0 connects to a neighbor of S with retained squares of diameter at most 2^{k-1} ,
 - $_{\circ}$ S connects to distance r from S_0 with retained squares of diameter at most 2^k ,
 - These connections use a disjoint set of squares.



By BK inequality and induction hypotheses, this event has probability at most

$$\mathbb{P}\left(S_{0} \xrightarrow{\leq 2^{k-1}} d(S_{0}, S) - 2^{k-1}\right) \cdot \mathbb{P}\left(S \xrightarrow{\leq 2^{k}} r - d(S_{0}, S) - 2^{k}\right)$$

$$\leq \begin{cases} \exp\left(-\frac{d(S_{0}, S) - 2^{k-1}}{2^{k-1}} - \frac{r - d(S_{0}, S) - 2^{k}}{2^{k}}\right) = e^{2} \cdot e^{-\frac{d(S_{0}, S)}{2^{k}}} \cdot e^{-\frac{r}{2^{k}}} \end{cases}$$

$$\leq \begin{cases} \exp\left(-\frac{r - d(S_{0}, S) - 2^{k}}{2^{k}}\right) = e^{1 + \frac{d(S_{0}, S)}{2^{k}}} \cdot p \cdot e^{-\frac{r}{2^{k}}} \end{cases}$$

Proof 6 (finish)

We have obtained

$$\mathbb{P}\left(S_0 \xrightarrow{\leq 2^k} r\right) \leq \left(e^{-\frac{r}{2^k}} + \sum_{S} \min\left\{e^2 \cdot e^{-\frac{d(S_0, S)}{2^k}}, e^{1 + \frac{d(S_0, S)}{2^k}} \cdot p\right\}\right) e^{-\frac{r}{2^k}}$$

where the sum is over all $S \in P$ with $d(S_0, S) \le r$ and $diam(S) \in (2^{k-1}, 2^k]$.

- It remains to note that by area considerations, the number of such S with $d(S_0, S) \le m \cdot 2^k$ is of order at most m^2 .
- Recalling also that $r > 2^{k+1}$, the expression in the parenthesis is seen to be at most $\frac{1}{4}$ when p is sufficiently small.
- Remark: The area considerations are the only place in the argument where the fact that we have squares rather than, say, rectangles, is used.

Extensions

• Theorem (in progress): Let (X, d) be a metric space and P be a countable collection of subsets of X of finite diameter (not necessarily a packing). Graph structure on P: Sets adjacent if have non-empty intersection. Suppose that for each $x \in X$ and $\rho, t > 0$,

$$|\{S \in P : d(x,S) \le \rho, \operatorname{diam}(S) \ge t\}| \le C_1 e^{C_2 \frac{\rho}{t}}.$$

Then there exists p depending only on C_1 , C_2 such that there is no connected component of infinite diameter in P_p .

- $_{\circ}$ Example: packing of shapes in \mathbb{R}^n whose volume is proportional to the nth power of their diameter with a uniform proportionality constant.
- Theorem (P. 2020): There exists p>0 such that the following holds. If G is a Benjamini-Schramm limit of (possibly random) finite planar graphs then there is no infinite cluster in G_p .
 - Used in study of the loop O(n) model (Crawford–Glazman–Harel–P. 2020).
 - Main lemma: Benjamini-Schramm limits have circle packing with at most one accumulation point (small extension of Benjamini-Schramm (2001)).
- Remove one-ended and triangulation assumptions from result on recurrent planar graphs (in progress. Replaces He-Schramm theorem with Gurel-Gurevich–Nachmias–Souto 2017).

Conjectures (general circle packings)

- 1. Conjecture 1: No cluster of infinite diameter after p=1/2 site percolation on any circle packing.
 - Implies no infinite cluster after p=1/2 site percolation on recurrent one-ended triangulations (positive answer to Benjamini's question).
- 2. Conjecture 2: For each p < 1/2 there exists f(p) > 0 such that: Let P be a circle packing with $D \coloneqq \sup_{C \in P} \operatorname{diam}(C) < \infty$. Let $C_0 \in P$. After percolation with parameter p,

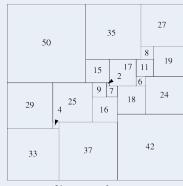
$$\mathbb{P}(C_0 \text{ is in a cluster of diameter } \geq r) \leq \exp\left(-f(p)\frac{r}{D}\right).$$

Implies existence of infinite cluster for p>1/2 site percolation on transient bounded-degree one-ended triangulations (almost proves Benjamini's conjecture).

• Similar conjectures for ellipse packings (or other shapes). In conjecture 2, f(p) is then replaced by f(p, M) with M the maximal aspect ratio. Interesting to understand dependence on M, even for small p (has applications to the loop O(n) model).

Conjectures (critical percolation on circle packings)

- Let P be a circle packing representing a triangulation with carrier \mathbb{R}^2 . If $D \coloneqq \sup_{C \in P} \operatorname{diam}(C) < \infty$, previous conjectures imply $p_c = 1/2$ (using duality). In fact, $p_c = 1/2$ may even hold under the assumption that the radii grow sublinearly in the distance to the origin (but may fail for linear growth).
- For such circle packings, is the scaling limit of p=1/2 site percolation the conformal loop ensemble CLE (as for the triangular lattice)?
- A related statement is to prove Russo–Seymour–Welsh type estimates at p=1/2: the probability of a left-right crossing of a large rectangle by retained disks is in [c,1-c] where c>0 depends only on the aspect ratio of the rectangle.
- Benjamini (2018) states a related conjecture: There exists c>0 so that the following holds. Tile a square with squares of varying sizes so that at most three squares meet at corners. In p=1/2 site percolation on the squares, the probability of a left-right crossing of retained squares is at least c.
- The presented results imply this when p=1/2 is replaced by a universal constant sufficiently close to 1.



21-square perfect square