Generalized birthday problem for October 12

Sumit Mukherjee, Department of Statistics, Columbia

Joint work with B.B. Bhattacharya (U Penn) and S. Mukherjee (NUS)

Outline

(1) Introduction
(2) Theorem I with examples
(3) Theorems II and III
(4) Proof overview of Theorem I
(5) Conclusion

The classical birthday problem

- Suppose there are n students in a class.

The classical birthday problem

- Suppose there are n students in a class. What is the chance that there are two students with the same birthday?

The classical birthday problem

- Suppose there are n students in a class. What is the chance that there are two students with the same birthday? Assume that a year has c days.

The classical birthday problem

- Suppose there are n students in a class. What is the chance that there are two students with the same birthday? Assume that a year has c days.
- The answer to this question is very well known.

The classical birthday problem

- Suppose there are n students in a class. What is the chance that there are two students with the same birthday? Assume that a year has c days.
- The answer to this question is very well known.
- In this case the number of student pairs with a common birthday is approximate Poisson with mean $\lambda=\frac{\binom{n}{2}}{c}$.

The classical birthday problem

- Suppose there are n students in a class. What is the chance that there are two students with the same birthday? Assume that a year has c days.
- The answer to this question is very well known.
- In this case the number of student pairs with a common birthday is approximate Poisson with mean $\lambda=\frac{\binom{n}{2}}{c}$.
- Consequently the chance of at least one common birthday is approximately $1-e^{-\lambda}$.

First variant: Unfriendly class

- Suppose in a class of size n, not everybody knows each other.

First variant: Unfriendly class

- Suppose in a class of size n, not everybody knows each other.
- There is a friendship graph G between the n nodes, which determines which pair of students are friends.

First variant: Unfriendly class

- Suppose in a class of size n, not everybody knows each other.
- There is a friendship graph G between the n nodes, which determines which pair of students are friends.
- What is the chance that there are two people who know each other, and have the same birthday?

First variant: Unfriendly class

- Suppose in a class of size n, not everybody knows each other.
- There is a friendship graph G between the n nodes, which determines which pair of students are friends.
- What is the chance that there are two people who know each other, and have the same birthday?
- It was shown in Bhattacharya-Diaconis-M., AAP-2017 that the number of friend pairs with a common birthday is approximate Poisson with mean $\lambda^{\prime}=\frac{|E(G)|}{c}$.

First variant: Unfriendly class

- Suppose in a class of size n, not everybody knows each other.
- There is a friendship graph G between the n nodes, which determines which pair of students are friends.
- What is the chance that there are two people who know each other, and have the same birthday?
- It was shown in Bhattacharya-Diaconis-M., AAP-2017 that the number of friend pairs with a common birthday is approximate Poisson with mean $\lambda^{\prime}=\frac{|E(G)|}{c}$. Consequently, the answer is $1-e^{-\lambda^{\prime}}$.

First variant: Unfriendly class

- Suppose in a class of size n, not everybody knows each other.
- There is a friendship graph G between the n nodes, which determines which pair of students are friends.
- What is the chance that there are two people who know each other, and have the same birthday?
- It was shown in Bhattacharya-Diaconis-M., AAP-2017 that the number of friend pairs with a common birthday is approximate Poisson with mean $\lambda^{\prime}=\frac{|E(G)|}{c}$. Consequently, the answer is $1-e^{-\lambda^{\prime}}$.
- Here $|E(G)|$ is the number of edges in G, i.e. the total number of friendship pairs in the class.

First variant: Unfriendly class

- Suppose in a class of size n, not everybody knows each other.
- There is a friendship graph G between the n nodes, which determines which pair of students are friends.
- What is the chance that there are two people who know each other, and have the same birthday?
- It was shown in Bhattacharya-Diaconis-M., AAP-2017 that the number of friend pairs with a common birthday is approximate Poisson with mean $\lambda^{\prime}=\frac{|E(G)|}{c}$. Consequently, the answer is $1-e^{-\lambda^{\prime}}$.
- Here $|E(G)|$ is the number of edges in G, i.e. the total number of friendship pairs in the class.
- The classical birthday problem is a special case with $G=K_{n}$, where everyone knows everyone else.

Second variant: Fix the date

- Suppose as before there is a graph G which determines the friendship structure.

Second variant: Fix the date

- Suppose as before there is a graph G which determines the friendship structure.
- But in addition, we now require both of them to be born on October 12.

Second variant: Fix the date

- Suppose as before there is a graph G which determines the friendship structure.
- But in addition, we now require both of them to be born on October 12.
- Question: What is the chance that there are two people who know each other, and have birthday October 12?

Second variant: Fix the date

- Suppose as before there is a graph G which determines the friendship structure.
- But in addition, we now require both of them to be born on October 12.
- Question: What is the chance that there are two people who know each other, and have birthday October 12?
- In this case things are more interesting, and the answer depends on the graph in a more delicate way (than just the number of edges).

Formal set up

- Suppose G_{n} is a large (non random) labelled graph on the vertex set $V\left(G_{n}\right):=\{1,2, \cdots, n\}$ with edge set $E\left(G_{n}\right)$.

Formal set up

- Suppose G_{n} is a large (non random) labelled graph on the vertex set $V\left(G_{n}\right):=\{1,2, \cdots, n\}$ with edge set $E\left(G_{n}\right)$.
- Color each vertex of G_{n} with one of c_{n} colors chosen uniformly at random, independent of other vertices.

Formal set up

- Suppose G_{n} is a large (non random) labelled graph on the vertex set $V\left(G_{n}\right):=\{1,2, \cdots, n\}$ with edge set $E\left(G_{n}\right)$.
- Color each vertex of G_{n} with one of c_{n} colors chosen uniformly at random, independent of other vertices.
- What is the limiting distribution of T_{n}, the number of monochromatic edges of color 1 ?

Formal set up

- Suppose G_{n} is a large (non random) labelled graph on the vertex set $V\left(G_{n}\right):=\{1,2, \cdots, n\}$ with edge set $E\left(G_{n}\right)$.
- Color each vertex of G_{n} with one of c_{n} colors chosen uniformly at random, independent of other vertices.
- What is the limiting distribution of T_{n}, the number of monochromatic edges of color 1 ?
- Note that

$$
T_{n}=\sum_{i<j} G_{n}(i, j) X_{i} X_{j},
$$

where $\left(X_{1}, \ldots, X_{n}\right)$ are i.i.d. $\operatorname{Bern}\left(p_{n}\right)$, with $p_{n}=\frac{1}{c_{n}}$.

Formal set up

- Suppose G_{n} is a large (non random) labelled graph on the vertex set $V\left(G_{n}\right):=\{1,2, \cdots, n\}$ with edge set $E\left(G_{n}\right)$.
- Color each vertex of G_{n} with one of c_{n} colors chosen uniformly at random, independent of other vertices.
- What is the limiting distribution of T_{n}, the number of monochromatic edges of color 1 ?
- Note that

$$
T_{n}=\sum_{i<j} G_{n}(i, j) X_{i} X_{j},
$$

where $\left(X_{1}, \ldots, X_{n}\right)$ are i.i.d. $\operatorname{Bern}\left(p_{n}\right)$, with $p_{n}=\frac{1}{c_{n}}$.

- We will assume that the sequence $\left\{G_{n}, p_{n}\right\}_{n \geq 1}$ are chosen such that $\mathbb{E} T_{n}=\frac{\left|E\left(G_{n}\right)\right|}{c_{n}^{2}}=O(1)$.

Example 0: Complete graph

- Suppose $G_{n}=K_{n}$ is the complete graph, and $p_{n}=\frac{1}{n}$.

Example 0: Complete graph

- Suppose $G_{n}=K_{n}$ is the complete graph, and $p_{n}=\frac{1}{n}$.
- In this case we have

$$
T_{n}=\sum_{i<j} X_{i} X_{j}
$$

Example 0: Complete graph

- Suppose $G_{n}=K_{n}$ is the complete graph, and $p_{n}=\frac{1}{n}$.
- In this case we have

$$
T_{n}=\sum_{i<j} X_{i} X_{j}=\frac{1}{2}\left[\left(\sum_{i=1}^{n} X_{i}\right)^{2}-\sum_{i=1}^{n} X_{i}\right] .
$$

Example 0: Complete graph

- Suppose $G_{n}=K_{n}$ is the complete graph, and $p_{n}=\frac{1}{n}$.
- In this case we have

$$
T_{n}=\sum_{i<j} X_{i} X_{j}=\frac{1}{2}\left[\left(\sum_{i=1}^{n} X_{i}\right)^{2}-\sum_{i=1}^{n} X_{i}\right] .
$$

- Now

$$
S_{n}:=\sum_{i=1}^{n} X_{i} \sim \operatorname{Bin}(n, 1 / n)
$$

Example 0: Complete graph

- Suppose $G_{n}=K_{n}$ is the complete graph, and $p_{n}=\frac{1}{n}$.
- In this case we have

$$
T_{n}=\sum_{i<j} X_{i} X_{j}=\frac{1}{2}\left[\left(\sum_{i=1}^{n} X_{i}\right)^{2}-\sum_{i=1}^{n} X_{i}\right] .
$$

- Now

$$
S_{n}:=\sum_{i=1}^{n} X_{i} \sim \operatorname{Bin}(n, 1 / n) \xrightarrow{D} S \sim \operatorname{Pois}(1) .
$$

Example 0: Complete graph

- Suppose $G_{n}=K_{n}$ is the complete graph, and $p_{n}=\frac{1}{n}$.
- In this case we have

$$
T_{n}=\sum_{i<j} X_{i} X_{j}=\frac{1}{2}\left[\left(\sum_{i=1}^{n} X_{i}\right)^{2}-\sum_{i=1}^{n} X_{i}\right] .
$$

- Now

$$
S_{n}:=\sum_{i=1}^{n} X_{i} \sim \operatorname{Bin}(n, 1 / n) \xrightarrow{D} S \sim \operatorname{Pois}(1) .
$$

- Thus $T_{n} \xrightarrow{D}\binom{S}{2}$, where $S \sim \operatorname{Pois}(1)$.

Example I: Erdős-Rényi graph

- Suppose G_{n} is an Erdős-Rényi random graph with parameter q fixed.

Example I: Erdős-Rényi graph

- Suppose G_{n} is an Erdős-Rényi random graph with parameter q fixed.
- Then the total number of vertices of color 1 is

$$
S_{n}=\sum_{i=1}^{n} X_{i} \sim \operatorname{Bin}(n, 1 / n)
$$

Example I: Erdős-Rényi graph

- Suppose G_{n} is an Erdős-Rényi random graph with parameter q fixed.
- Then the total number of vertices of color 1 is

$$
S_{n}=\sum_{i=1}^{n} X_{i} \sim \operatorname{Bin}(n, 1 / n)
$$

- Throwing away all vertices of other colors, we are left with a (smaller) Erdős-Rényi random graph on S_{n} vertices with parameter q.

Example I: Erdős-Rényi graph

- Suppose G_{n} is an Erdős-Rényi random graph with parameter q fixed.
- Then the total number of vertices of color 1 is

$$
S_{n}=\sum_{i=1}^{n} X_{i} \sim \operatorname{Bin}(n, 1 / n)
$$

- Throwing away all vertices of other colors, we are left with a (smaller) Erdős-Rényi random graph on S_{n} vertices with parameter q.
- Total number of edges in this smaller Erdős-Rényi random graph is $\operatorname{Bin}\left(\binom{S_{n}}{2}, q\right)$, and so

$$
T_{n} \stackrel{D}{=} \operatorname{Bin}\left(\binom{S_{n}}{2}, q\right)
$$

Example I: Erdős-Rényi graph

- Suppose G_{n} is an Erdős-Rényi random graph with parameter q fixed.
- Then the total number of vertices of color 1 is

$$
S_{n}=\sum_{i=1}^{n} X_{i} \sim \operatorname{Bin}(n, 1 / n)
$$

- Throwing away all vertices of other colors, we are left with a (smaller) Erdős-Rényi random graph on S_{n} vertices with parameter q.
- Total number of edges in this smaller Erdős-Rényi random graph is $\operatorname{Bin}\left(\binom{S_{n}}{2}, q\right)$, and so

$$
T_{n} \stackrel{D}{=} \operatorname{Bin}\left(\binom{S_{n}}{2}, q\right) \xrightarrow{D} \operatorname{Bin}\left(\binom{S}{2}, q\right), \text { where } S \sim \operatorname{Pois}(1) .
$$

Example II: Disjoint union of stars

- Suppose G_{n} is a disjoint union of \sqrt{n} many $K_{1, \sqrt{n}}$ graphs, and $p_{n}=\frac{1}{\sqrt{n}}$.
- Suppose G_{n} is a disjoint union of \sqrt{n} many $K_{1, \sqrt{n}}$ graphs, and $p_{n}=\frac{1}{\sqrt{n}}$.

Example II: Disjoint union of stars

- From the last figure,

$$
T_{n}=\sum_{i=1}^{\sqrt{n}} X_{i} \sum_{j=1}^{\sqrt{n}} Y_{i j},
$$

where $\left(X_{1}, \ldots, X_{\sqrt{n}}\right)$ and $\left(Y_{i j}\right)_{1 \leq i, j \leq \sqrt{n}}$ are mutually independent $\operatorname{Bern}\left(p_{n}\right)$.

Example II: Disjoint union of stars

- From the last figure,

$$
T_{n}=\sum_{i=1}^{\sqrt{n}} X_{i} \sum_{j=1}^{\sqrt{n}} Y_{i j},
$$

where $\left(X_{1}, \ldots, X_{\sqrt{n}}\right)$ and $\left(Y_{i j}\right)_{1 \leq i, j \leq \sqrt{n}}$ are mutually independent $\operatorname{Bern}\left(p_{n}\right)$.

- Note that

$$
\sum_{j=1}^{\sqrt{n}} Y_{i j} \sim \operatorname{Bin}\left(\sqrt{n}, \frac{1}{\sqrt{n}}\right)
$$

Example II: Disjoint union of stars

- From the last figure,

$$
T_{n}=\sum_{i=1}^{\sqrt{n}} X_{i} \sum_{j=1}^{\sqrt{n}} Y_{i j},
$$

where $\left(X_{1}, \ldots, X_{\sqrt{n}}\right)$ and $\left(Y_{i j}\right)_{1 \leq i, j \leq \sqrt{n}}$ are mutually independent $\operatorname{Bern}\left(p_{n}\right)$.

- Note that

$$
\sum_{j=1}^{\sqrt{n}} Y_{i j} \sim \operatorname{Bin}\left(\sqrt{n}, \frac{1}{\sqrt{n}}\right) \xrightarrow{D} Y_{i} \sim \operatorname{Pois}(1) .
$$

Example II: Disjoint union of stars

- From the last figure,

$$
T_{n}=\sum_{i=1}^{\sqrt{n}} X_{i} \sum_{j=1}^{\sqrt{n}} Y_{i j},
$$

where $\left(X_{1}, \ldots, X_{\sqrt{n}}\right)$ and $\left(Y_{i j}\right)_{1 \leq i, j \leq \sqrt{n}}$ are mutually independent $\operatorname{Bern}\left(p_{n}\right)$.

- Note that

$$
\sum_{j=1}^{\sqrt{n}} Y_{i j} \sim \operatorname{Bin}\left(\sqrt{n}, \frac{1}{\sqrt{n}}\right) \xrightarrow{D} Y_{i} \sim \operatorname{Pois}(1) .
$$

- Thus $T_{n} \stackrel{D}{\approx} \sum_{i=1}^{\sqrt{n}} X_{i} Y_{i}$.

Example II: Disjoint union of stars

- From the last figure,

$$
T_{n}=\sum_{i=1}^{\sqrt{n}} X_{i} \sum_{j=1}^{\sqrt{n}} Y_{i j},
$$

where $\left(X_{1}, \ldots, X_{\sqrt{n}}\right)$ and $\left(Y_{i j}\right)_{1 \leq i, j \leq \sqrt{n}}$ are mutually independent $\operatorname{Bern}\left(p_{n}\right)$.

- Note that

$$
\sum_{j=1}^{\sqrt{n}} Y_{i j} \sim \operatorname{Bin}\left(\sqrt{n}, \frac{1}{\sqrt{n}}\right) \xrightarrow{D} Y_{i} \sim \operatorname{Pois}(1) .
$$

- Thus $T_{n} \stackrel{D}{\approx} \sum_{i=1}^{\sqrt{n}} X_{i} Y_{i}$. Conditioning on $\left(X_{1}, \ldots, X_{\sqrt{n}}\right)$, this has a $\operatorname{Pois}\left(\sum_{i=1}^{\sqrt{n}} X_{i}\right)$ distribution.

Example II: Disjoint union of stars

- From the last figure,

$$
T_{n}=\sum_{i=1}^{\sqrt{n}} X_{i} \sum_{j=1}^{\sqrt{n}} Y_{i j},
$$

where $\left(X_{1}, \ldots, X_{\sqrt{n}}\right)$ and $\left(Y_{i j}\right)_{1 \leq i, j \leq \sqrt{n}}$ are mutually independent $\operatorname{Bern}\left(p_{n}\right)$.

- Note that

$$
\sum_{j=1}^{\sqrt{n}} Y_{i j} \sim \operatorname{Bin}\left(\sqrt{n}, \frac{1}{\sqrt{n}}\right) \xrightarrow{D} Y_{i} \sim \operatorname{Pois}(1) .
$$

- Thus $T_{n} \stackrel{D}{\approx} \sum_{i=1}^{\sqrt{n}} X_{i} Y_{i}$. Conditioning on $\left(X_{1}, \ldots, X_{\sqrt{n}}\right)$, this has a $\operatorname{Pois}\left(\sum_{i=1}^{\sqrt{n}} X_{i}\right)$ distribution.
- This gives $T_{n} \xrightarrow{D} \operatorname{Pois}(S)$, where $S \sim \operatorname{Pois}(1)$.

Question: Study T_{n}

- Can we characterize the class of all possible limit distributions of T_{n} ?

Question: Study T_{n}

- Can we characterize the class of all possible limit distributions of T_{n} ?
- As already seen, this class contains mixtures of Poissons, and Binomials of quadratic functions of Poissons.

Question: Study T_{n}

- Can we characterize the class of all possible limit distributions of T_{n} ?
- As already seen, this class contains mixtures of Poissons, and Binomials of quadratic functions of Poissons.
- Also, can we characterize when is this limit exactly a Poisson?

Outline

(1) Introduction
(2) Theorem I with examples
(3) Theorems II and III
(4) Proof overview of Theorem I
(5) Conclusion

Towards a general result

- The Erdős-Rényi example captures the contribution of the "dense" part of the graph, i.e. edges between high degree vertices.

Towards a general result

- The Erdős-Rényi example captures the contribution of the "dense" part of the graph, i.e. edges between high degree vertices.
- The disjoint star example captures the contribution of edges between high degree vertices and low degree vertices.

Towards a general result

- The Erdős-Rényi example captures the contribution of the "dense" part of the graph, i.e. edges between high degree vertices.
- The disjoint star example captures the contribution of edges between high degree vertices and low degree vertices.
- Finally, edges between low degree vertices gives rise to a Poisson limit.

Towards a general result

- The Erdős-Rényi example captures the contribution of the "dense" part of the graph, i.e. edges between high degree vertices.
- The disjoint star example captures the contribution of edges between high degree vertices and low degree vertices.
- Finally, edges between low degree vertices gives rise to a Poisson limit.
- Using this philosophy, we partition the edge set into 3 types,

$$
\text { High } \leftrightarrow \text { High, } \quad \text { High } \leftrightarrow \text { Low, } \quad \text { Low } \leftrightarrow \text { Low. }
$$

Adjacency matrix \mapsto function on positive reals

- Define a function $W_{G_{n}}(.,):,[0, \infty)^{2} \mapsto[0,1]$ by setting

$$
\begin{aligned}
W_{G_{n}}(x, y) & =1 \text { if }\left(\left\lceil x c_{n}\right\rceil,\left\lceil y c_{n}\right\rceil\right) \in E\left(G_{n}\right) \\
& =0 \text { otherwise }
\end{aligned}
$$

Adjacency matrix \mapsto function on positive reals

- Define a function $W_{G_{n}}(.,):,[0, \infty)^{2} \mapsto[0,1]$ by setting

$$
\begin{aligned}
W_{G_{n}}(x, y) & =1 \text { if }\left(\left\lceil x c_{n}\right\rceil,\left\lceil y c_{n}\right\rceil\right) \in E\left(G_{n}\right) \\
& =0 \text { otherwise }
\end{aligned}
$$

- By this definition, $W_{G_{n}}(x, y)=0$ outside $\left[0, n p_{n}\right]^{2}$.

Adjacency matrix \mapsto function on positive reals

- Define a function $W_{G_{n}}(.,):,[0, \infty)^{2} \mapsto[0,1]$ by setting

$$
\begin{aligned}
W_{G_{n}}(x, y) & =1 \text { if }\left(\left\lceil x c_{n}\right\rceil,\left\lceil y c_{n}\right\rceil\right) \in E\left(G_{n}\right) \\
& =0 \text { otherwise }
\end{aligned}
$$

- By this definition, $W_{G_{n}}(x, y)=0$ outside $\left[0, n p_{n}\right]^{2}$.
- Also,

$$
\int_{[0, \infty)^{2}} W_{G_{n}}(x, y) \mathrm{d} x \mathrm{~d} y=\frac{2\left|E\left(G_{n}\right)\right|}{c_{n}^{2}}=O(1) .
$$

Adjacency matrix \mapsto function on positive reals

- Define a function $W_{G_{n}}(.,):,[0, \infty)^{2} \mapsto[0,1]$ by setting

$$
\begin{aligned}
W_{G_{n}}(x, y) & =1 \text { if }\left(\left\lceil x c_{n}\right\rceil,\left\lceil y c_{n}\right\rceil\right) \in E\left(G_{n}\right) \\
& =0 \text { otherwise }
\end{aligned}
$$

- By this definition, $W_{G_{n}}(x, y)=0$ outside $\left[0, n p_{n}\right]^{2}$.
- Also,

$$
\int_{[0, \infty)^{2}} W_{G_{n}}(x, y) \mathrm{d} x \mathrm{~d} y=\frac{2\left|E\left(G_{n}\right)\right|}{c_{n}^{2}}=O(1) .
$$

- Let $d_{G_{n}}(x):=\int_{0}^{\infty} W_{G_{n}}(x, y) \mathrm{d} x$ be the degree function.

First assumption (A1)

- Given two bounded measurable functions f, g from $[0, K]^{2} \mapsto[0,1]$, define the strong cut distance between f and g by

$$
\sup _{A, B \subset[0,1]}\left|\int_{A \times B} f(x, y) \mathrm{d} x \mathrm{~d} y-\int_{A \times B} g(x, y) \mathrm{d} x \mathrm{~d} y\right| .
$$

First assumption (A1)

- Given two bounded measurable functions f, g from $[0, K]^{2} \mapsto[0,1]$, define the strong cut distance between f and g by

$$
\sup _{A, B \subset[0,1]}\left|\int_{A \times B} f(x, y) \mathrm{d} x \mathrm{~d} y-\int_{A \times B} g(x, y) \mathrm{d} x \mathrm{~d} y\right| .
$$

- Assumption (A1):

There is a function $W:[0, \infty)^{2} \mapsto[0,1]$, such that for every K fixed, the function $W_{G_{n}}$ converges in strong cut distance to the function W on $[0, K]^{2}$.

First assumption (A1)

- Given two bounded measurable functions f, g from $[0, K]^{2} \mapsto[0,1]$, define the strong cut distance between f and g by

$$
\sup _{A, B \subset[0,1]}\left|\int_{A \times B} f(x, y) \mathrm{d} x \mathrm{~d} y-\int_{A \times B} g(x, y) \mathrm{d} x \mathrm{~d} y\right| .
$$

- Assumption (A1):

There is a function $W:[0, \infty)^{2} \mapsto[0,1]$, such that for every K fixed, the function $W_{G_{n}}$ converges in strong cut distance to the function W on $[0, K]^{2}$.

- In some sense W captures the limit of the dense part of the graph.

First assumption (A1)

- Given two bounded measurable functions f, g from $[0, K]^{2} \mapsto[0,1]$, define the strong cut distance between f and g by

$$
\sup _{A, B \subset[0,1]}\left|\int_{A \times B} f(x, y) \mathrm{d} x \mathrm{~d} y-\int_{A \times B} g(x, y) \mathrm{d} x \mathrm{~d} y\right| .
$$

- Assumption (A1):

There is a function $W:[0, \infty)^{2} \mapsto[0,1]$, such that for every K fixed, the function $W_{G_{n}}$ converges in strong cut distance to the function W on $[0, K]^{2}$.

- In some sense W captures the limit of the dense part of the graph. Note that this assumption, along with Fatou's lemma automatically implies

$$
\int_{[0, \infty)^{2}}|W(x, y)| \mathrm{d} x \mathrm{~d} y<\infty
$$

Second assumption (A2)

- Assumption (A2):

There is a function $d:[0, \infty) \mapsto[0, \infty)$ such that for every $M, K>0$ we have

$$
\min \left(d_{W_{G_{n}}}, M\right) \xrightarrow{L_{1}[0, K]} \min (d(.), M)
$$

Second assumption (A2)

- Assumption (A2):

There is a function $d:[0, \infty) \mapsto[0, \infty)$ such that for every $M, K>0$ we have

$$
\min \left(d_{W_{G_{n}}}, M\right) \xrightarrow{L_{1}[0, K]} \min (d(.), M) .
$$

- Again Fatou's Lemma gives $\int_{[0, \infty)}|d(x)| \mathrm{d} x<\infty$.

Second assumption (A2)

- Assumption (A2):

There is a function $d:[0, \infty) \mapsto[0, \infty)$ such that for every $M, K>0$ we have

$$
\min \left(d_{W_{G_{n}}}, M\right) \xrightarrow{L_{1}[0, K]} \min (d(.), M) .
$$

- Again Fatou's Lemma gives $\int_{[0, \infty)}|d(x)| \mathrm{d} x<\infty$.
- Also, one has $\int_{0}^{\infty} W(x, y) \mathrm{d} y \leq d(x)$.

Second assumption (A2)

- Assumption (A2):

There is a function $d:[0, \infty) \mapsto[0, \infty)$ such that for every $M, K>0$ we have

$$
\min \left(d_{W_{G_{n}}}, M\right) \xrightarrow{L_{1}\left[0_{0} K\right]} \min (d(.), M) .
$$

- Again Fatou's Lemma gives $\int_{[0, \infty)}|d(x)| \mathrm{d} x<\infty$.
- Also, one has $\int_{0}^{\infty} W(x, y) \mathrm{d} y \leq d(x)$. Let

$$
\Delta(x):=d(x)-\int_{0}^{\infty} W(x, y) \mathrm{d} y .
$$

Second assumption (A2)

- Assumption (A2):

There is a function $d:[0, \infty) \mapsto[0, \infty)$ such that for every $M, K>0$ we have

$$
\min \left(d_{W_{G_{n}}}, M\right) \xrightarrow{L_{1}[0, K]} \min (d(.), M) .
$$

- Again Fatou's Lemma gives $\int_{[0, \infty)}|d(x)| \mathrm{d} x<\infty$.
- Also, one has $\int_{0}^{\infty} W(x, y) \mathrm{d} y \leq d(x)$. Let

$$
\Delta(x):=d(x)-\int_{0}^{\infty} W(x, y) \mathrm{d} y .
$$

- In some sense $\Delta(x)$ counts the edges between the high and low degree vertices.

Third assumption (A3)+Theorem I

- Assumption: (A3)

$$
\lim _{K \rightarrow \infty} \lim _{n \rightarrow \infty} \int_{[K, \infty)^{2}} W_{G_{n}}(x, y) \mathrm{d} x \mathrm{~d} y=2 \lambda_{0} .
$$

Third assumption (A3)+Theorem I

- Assumption: (A3)

$$
\lim _{K \rightarrow \infty} \lim _{n \rightarrow \infty} \int_{[K, \infty)^{2}} W_{G_{n}}(x, y) \mathrm{d} x \mathrm{~d} y=2 \lambda_{0} .
$$

- This assumption estimates the edges between the low degree vertices.

Third assumption (A3)+Theorem I

- Assumption: (A3)

$$
\lim _{K \rightarrow \infty} \lim _{n \rightarrow \infty} \int_{[K, \infty)^{2}} W_{G_{n}}(x, y) \mathrm{d} x \mathrm{~d} y=2 \lambda_{0} .
$$

- This assumption estimates the edges between the low degree vertices.

Theorem (Bhattacharya-Mukherjee-M., AAP 20)
If (A1), (A2), (A3) hold, then

$$
T_{n} \xrightarrow{D} Q_{1}+Q_{2}+Q_{3} .
$$

Third assumption (A3)+Theorem I

- Assumption: (A3)

$$
\lim _{K \rightarrow \infty} \lim _{n \rightarrow \infty} \int_{[K, \infty)^{2}} W_{G_{n}}(x, y) \mathrm{d} x \mathrm{~d} y=2 \lambda_{0}
$$

- This assumption estimates the edges between the low degree vertices.

Theorem (Bhattacharya-Mukherjee-M., AAP 20)
If (A1), (A2), (A3) hold, then

$$
T_{n} \xrightarrow{D} Q_{1}+Q_{2}+Q_{3} .
$$

- Here $Q_{3} \sim \operatorname{Pois}\left(\lambda_{0}\right)$.

Third assumption (A3)+Theorem I

- Assumption: (A3)

$$
\lim _{K \rightarrow \infty} \lim _{n \rightarrow \infty} \int_{[K, \infty)^{2}} W_{G_{n}}(x, y) \mathrm{d} x \mathrm{~d} y=2 \lambda_{0} .
$$

- This assumption estimates the edges between the low degree vertices.

Theorem (Bhattacharya-Mukherjee-M., AAP 20)
If (A1), (A2), (A3) hold, then

$$
T_{n} \xrightarrow{D} Q_{1}+Q_{2}+Q_{3} .
$$

- Here $Q_{3} \sim \operatorname{Pois}\left(\lambda_{0}\right)$.
- $\left(Q_{1}, Q_{2}\right)$ is jointly independent of Q_{3}.

Third assumption (A3)+Theorem I

- Assumption: (A3)

$$
\lim _{K \rightarrow \infty} \lim _{n \rightarrow \infty} \int_{[K, \infty)^{2}} W_{G_{n}}(x, y) \mathrm{d} x \mathrm{~d} y=2 \lambda_{0}
$$

- This assumption estimates the edges between the low degree vertices.

Theorem (Bhattacharya-Mukherjee-M., AAP 20)
If (A1), (A2), (A3) hold, then

$$
T_{n} \xrightarrow{D} Q_{1}+Q_{2}+Q_{3} .
$$

- Here $Q_{3} \sim \operatorname{Pois}\left(\lambda_{0}\right)$.
- $\left(Q_{1}, Q_{2}\right)$ is jointly independent of Q_{3}.
- The joint Mgf of $\left(Q_{1}, Q_{2}\right)$ appears on the next slide.

Mgf of $\left(Q_{1}, Q_{2}\right)$

- For $t_{1}, t_{2}>0, \mathbb{E} e^{-t_{1} Q_{1}-t_{2} Q_{2}}$ equals
$\mathbb{E} \exp \left\{\frac{1}{2} \int_{[0, \infty)^{2}} \phi_{W, t_{1}}(x, y) d N(x) d N(y)-\left(1-e^{-t_{2}}\right) \int_{[0, \infty)} \Delta(x) d N(x)\right\}$.

Mgf of $\left(Q_{1}, Q_{2}\right)$

- For $t_{1}, t_{2}>0, \mathbb{E} e^{-t_{1} Q_{1}-t_{2} Q_{2}}$ equals
$\mathbb{E} \exp \left\{\frac{1}{2} \int_{[0, \infty)^{2}} \phi_{W, t_{1}}(x, y) d N(x) d N(y)-\left(1-e^{-t_{2}}\right) \int_{[0, \infty)} \Delta(x) d N(x)\right\}$.
- Here

$$
\phi_{W, t_{1}}(x, y)=\log \left(1-W(x, y)+W(x, y) e^{-t_{1}}\right)
$$

is integrable,

Mgf of $\left(Q_{1}, Q_{2}\right)$

- For $t_{1}, t_{2}>0, \mathbb{E} e^{-t_{1} Q_{1}-t_{2} Q_{2}}$ equals
$\mathbb{E} \exp \left\{\frac{1}{2} \int_{[0, \infty)^{2}} \phi_{W, t_{1}}(x, y) d N(x) d N(y)-\left(1-e^{-t_{2}}\right) \int_{[0, \infty)} \Delta(x) d N(x)\right\}$.
- Here

$$
\phi_{W, t_{1}}(x, y)=\log \left(1-W(x, y)+W(x, y) e^{-t_{1}}\right)
$$

is integrable,

- $\{N(t)\}_{t \geq 1}$ is a homogenous Poisson process of rate 1 .

Mgf of $\left(Q_{1}, Q_{2}\right)$

- For $t_{1}, t_{2}>0, \mathbb{E} e^{-t_{1} Q_{1}-t_{2} Q_{2}}$ equals
$\mathbb{E} \exp \left\{\frac{1}{2} \int_{[0, \infty)^{2}} \phi_{W, t_{1}}(x, y) d N(x) d N(y)-\left(1-e^{-t_{2}}\right) \int_{[0, \infty)} \Delta(x) d N(x)\right\}$.
- Here

$$
\phi_{W, t_{1}}(x, y)=\log \left(1-W(x, y)+W(x, y) e^{-t_{1}}\right)
$$

is integrable,

- $\{N(t)\}_{t \geq 1}$ is a homogenous Poisson process of rate 1.
- $Q_{2} \stackrel{D}{=} \operatorname{Pois}\left(\int_{[0, \infty)} \Delta(x) d N(x)\right)$.

Mgf of $\left(Q_{1}, Q_{2}\right)$

- For $t_{1}, t_{2}>0, \mathbb{E} e^{-t_{1} Q_{1}-t_{2} Q_{2}}$ equals

$$
\mathbb{E} \exp \left\{\frac{1}{2} \int_{[0, \infty)^{2}} \phi_{W, t_{1}}(x, y) d N(x) d N(y)-\left(1-e^{-t_{2}}\right) \int_{[0, \infty)} \Delta(x) d N(x)\right\} .
$$

- Here

$$
\phi_{W, t_{1}}(x, y)=\log \left(1-W(x, y)+W(x, y) e^{-t_{1}}\right)
$$

is integrable,

- $\{N(t)\}_{t \geq 1}$ is a homogenous Poisson process of rate 1.
- $Q_{2} \stackrel{D}{=} \operatorname{Pois}\left(\int_{[0, \infty)} \Delta(x) d N(x)\right)$. This arises from the edges between the high and low degree.

Mgf of $\left(Q_{1}, Q_{2}\right)$

- For $t_{1}, t_{2}>0, \mathbb{E} e^{-t_{1} Q_{1}-t_{2} Q_{2}}$ equals

$$
\mathbb{E} \exp \left\{\frac{1}{2} \int_{[0, \infty)^{2}} \phi_{W, t_{1}}(x, y) d N(x) d N(y)-\left(1-e^{-t_{2}}\right) \int_{[0, \infty)} \Delta(x) d N(x)\right\}
$$

- Here

$$
\phi_{W, t_{1}}(x, y)=\log \left(1-W(x, y)+W(x, y) e^{-t_{1}}\right)
$$

is integrable,

- $\{N(t)\}_{t \geq 1}$ is a homogenous Poisson process of rate 1 .
- $Q_{2} \stackrel{D}{=} \operatorname{Pois}\left(\int_{[0, \infty)} \Delta(x) d N(x)\right)$. This arises from the edges between the high and low degree.
- Q_{1} arises from the edges between the high degree vertices, i.e. the dense part of the graph.

Stochastic Integral (Itô)

- Suppose $f:[0, \infty)^{2} \mapsto \mathbb{R}$ is such that

$$
\int_{[0, \infty)^{2}}|f(x, y)| \mathrm{d} x \mathrm{~d} y<\infty .
$$

Stochastic Integral (Itô)

- Suppose $f:[0, \infty)^{2} \mapsto \mathbb{R}$ is such that

$$
\int_{[0, \infty)^{2}}|f(x, y)| \mathrm{d} x \mathrm{~d} y<\infty .
$$

- Let $\{N(t)\}_{t \geq 1}$ is a homogenous Poisson process of rate 1 .

Stochastic Integral (Itô)

- Suppose $f:[0, \infty)^{2} \mapsto \mathbb{R}$ is such that

$$
\int_{[0, \infty)^{2}}|f(x, y)| \mathrm{d} x \mathrm{~d} y<\infty .
$$

- Let $\{N(t)\}_{t \geq 1}$ is a homogenous Poisson process of rate 1 .
- We want to define the bivariate stochastic integral

$$
I_{2}(f):=\int_{[0, \infty)^{2}} f(x, y) d N(x) N(y)
$$

Stochastic Integral (Itô)

- Suppose $f:[0, \infty)^{2} \mapsto \mathbb{R}$ is such that

$$
\int_{[0, \infty)^{2}}|f(x, y)| \mathrm{d} x \mathrm{~d} y<\infty .
$$

- Let $\{N(t)\}_{t \geq 1}$ is a homogenous Poisson process of rate 1 .
- We want to define the bivariate stochastic integral

$$
I_{2}(f):=\int_{[0, \infty)^{2}} f(x, y) d N(x) N(y)
$$

- First assume

$$
f=\sum_{i, j=1}^{k} c_{i j} 1_{A_{i} \times A_{j}}
$$

where $\left\{A_{1}, \ldots, A_{k}\right\}$ is a measurable partition of $[0,1]$, and $c_{i i}=0$ for $1 \leq i \leq k$.

Stochastic Integral (Itô)

- Suppose $f:[0, \infty)^{2} \mapsto \mathbb{R}$ is such that

$$
\int_{[0, \infty)^{2}}|f(x, y)| \mathrm{d} x \mathrm{~d} y<\infty .
$$

- Let $\{N(t)\}_{t \geq 1}$ is a homogenous Poisson process of rate 1 .
- We want to define the bivariate stochastic integral

$$
I_{2}(f):=\int_{[0, \infty)^{2}} f(x, y) d N(x) N(y)
$$

- First assume

$$
f=\sum_{i, j=1}^{k} c_{i j} 1_{A_{i} \times A_{j}}
$$

where $\left\{A_{1}, \ldots, A_{k}\right\}$ is a measurable partition of $[0,1]$, and $c_{i i}=0$ for $1 \leq i \leq k$.

- Define

$$
I_{2}(f):=\sum_{i, j=1}^{k} c_{i j} N\left(A_{i}\right) N\left(A_{j}\right) .
$$

Stochastic Integral (Itô)

- For a general $f \in L^{1}[0, \infty)^{2}$, approximate f by a sequence $\left\{f_{k}\right\}$ of simple functions from the last slide in $L^{1}[0, \infty)^{2}$.

Stochastic Integral (Itô)

- For a general $f \in L^{1}[0, \infty)^{2}$, approximate f by a sequence $\left\{f_{k}\right\}$ of simple functions from the last slide in $L^{1}[0, \infty)^{2}$.
- Then $I_{2}\left(f_{k}\right)$ is Cauchy in $L^{1}(\Omega)$, where Ω contains the Poisson process.

Stochastic Integral (Itô)

- For a general $f \in L^{1}[0, \infty)^{2}$, approximate f by a sequence $\left\{f_{k}\right\}$ of simple functions from the last slide in $L^{1}[0, \infty)^{2}$.
- Then $I_{2}\left(f_{k}\right)$ is Cauchy in $L^{1}(\Omega)$, where Ω contains the Poisson process.
- Define $I_{2}(f)=\lim _{k \rightarrow \infty} I_{2}\left(f_{k}\right)$, where the limit is in $L_{1}(\Omega)$.

Stochastic Integral (Itô)

- For a general $f \in L^{1}[0, \infty)^{2}$, approximate f by a sequence $\left\{f_{k}\right\}$ of simple functions from the last slide in $L^{1}[0, \infty)^{2}$.
- Then $I_{2}\left(f_{k}\right)$ is Cauchy in $L^{1}(\Omega)$, where Ω contains the Poisson process.
- Define $I_{2}(f)=\lim _{k \rightarrow \infty} I_{2}\left(f_{k}\right)$, where the limit is in $L_{1}(\Omega)$.
- Then $I_{2}(f)$ is well defined, and

$$
\mathbb{E}\left|I_{2}(f)\right| \leq\|f\|_{L_{1}[0, \infty)^{2}}
$$

Example I (Erdős-Rényi)

- Suppose G_{n} is an Erdős-Rényi graph with parameter q, and $p_{n}=\frac{1}{n}$.

Example I (Erdős-Rényi)

- Suppose G_{n} is an Erdős-Rényi graph with parameter q, and $p_{n}=\frac{1}{n}$.
- Then the conditions of our theorem hold with

$$
W(x, y)=q 1\left\{[x, y] \in[0,1]^{2}\right\}, \quad \Delta(x)=0, \quad \lambda_{0}=0 .
$$

Example I (Erdős-Rényi)

- Suppose G_{n} is an Erdős-Rényi graph with parameter q, and $p_{n}=\frac{1}{n}$.
- Then the conditions of our theorem hold with

$$
W(x, y)=q 1\left\{[x, y] \in[0,1]^{2}\right\}, \quad \Delta(x)=0, \quad \lambda_{0}=0 .
$$

- Thus our theorem gives $T_{n} \xrightarrow{D} Q_{1}$, where

$$
\mathbb{E} e^{-t_{1} Q_{1}}=\mathbb{E} \exp \left\{\frac{1}{2} \int_{[0, \infty)^{2}} \phi_{q, t_{1}}(x, y) d N(x) d N(y)\right\} .
$$

Example I (Erdős-Rényi)

- Suppose G_{n} is an Erdős-Rényi graph with parameter q, and $p_{n}=\frac{1}{n}$.
- Then the conditions of our theorem hold with

$$
W(x, y)=q 1\left\{[x, y] \in[0,1]^{2}\right\}, \quad \Delta(x)=0, \quad \lambda_{0}=0 .
$$

- Thus our theorem gives $T_{n} \xrightarrow{D} Q_{1}$, where

$$
\mathbb{E} e^{-t_{1} Q_{1}}=\mathbb{E} \exp \left\{\frac{1}{2} \int_{[0, \infty)^{2}} \phi_{q, t_{1}}(x, y) d N(x) d N(y)\right\}
$$

- Here

$$
\phi_{q, t_{1}}(x, y)=\log \left(1-q+q e^{-t_{1}}\right) \text { if }(x, y) \in[0,1]^{2} .
$$

Example I (Erdős-Rényi)

- Thus we need to compute

$$
\frac{1}{2} \log \left(1-q+q e^{-t_{1}}\right) \int_{[0,1]^{2}} d N(x) d N(y) .
$$

Example I (Erdős-Rényi)

- Thus we need to compute

$$
\frac{1}{2} \log \left(1-q+q e^{-t_{1}}\right) \int_{[0,1]^{2}} d N(x) d N(y) .
$$

- The inside integral equals $N(1)^{2}-N(1)$.

Example I (Erdős-Rényi)

- Thus we need to compute

$$
\frac{1}{2} \log \left(1-q+q e^{-t_{1}}\right) \int_{[0,1]^{2}} d N(x) d N(y)
$$

- The inside integral equals $N(1)^{2}-N(1)$.
- Combining we have

$$
\mathbb{E} e^{-t Q_{1}}=\mathbb{E} \exp \left\{\binom{N(1)}{2} \log \left(1-q+q e^{-t_{1}}\right)\right\} .
$$

Example I (Erdős-Rényi)

- Thus we need to compute

$$
\frac{1}{2} \log \left(1-q+q e^{-t_{1}}\right) \int_{[0,1]^{2}} d N(x) d N(y)
$$

- The inside integral equals $N(1)^{2}-N(1)$.
- Combining we have

$$
\mathbb{E} e^{-t Q_{1}}=\mathbb{E} \exp \left\{\binom{N(1)}{2} \log \left(1-q+q e^{-t_{1}}\right)\right\} .
$$

- This is the Mgf of a $\operatorname{Bin}\left(\binom{N(1)}{2}, q\right)$.

Example I (Erdős-Rényi)

- Thus we need to compute

$$
\frac{1}{2} \log \left(1-q+q e^{-t_{1}}\right) \int_{[0,1]^{2}} d N(x) d N(y)
$$

- The inside integral equals $N(1)^{2}-N(1)$.
- Combining we have

$$
\mathbb{E} e^{-t Q_{1}}=\mathbb{E} \exp \left\{\binom{N(1)}{2} \log \left(1-q+q e^{-t_{1}}\right)\right\} .
$$

- This is the Mgf of a $\operatorname{Bin}\left(\binom{N(1)}{2}, q\right)$.
- Since $N(1) \sim \operatorname{Pois}(1)$, we have the same limit distribution as before.

Example I': Stochastic Block Model

- Suppose $p_{n}=\frac{1}{n}$, and G_{n} is a sequence of random graphs such that

$$
\begin{aligned}
\mathbb{P}\left(G_{n}(i, j)=1\right) & =a_{11} \text { if } i, j<\frac{n}{2} \\
& =a_{12} \text { if } i<\frac{n}{2}, j \geq \frac{n}{2} \text { or } i \geq \frac{n}{2}, j<\frac{n}{2}, \\
& =a_{22} \text { if } i, j \geq \frac{n}{2} .
\end{aligned}
$$

Example I': Stochastic Block Model

- Suppose $p_{n}=\frac{1}{n}$, and G_{n} is a sequence of random graphs such that

$$
\begin{aligned}
\mathbb{P}\left(G_{n}(i, j)=1\right) & =a_{11} \text { if } i, j<\frac{n}{2} \\
& =a_{12} \text { if } i<\frac{n}{2}, j \geq \frac{n}{2} \text { or } i \geq \frac{n}{2}, j<\frac{n}{2}, \\
& =a_{22} \text { if } i, j \geq \frac{n}{2}
\end{aligned}
$$

- In this case the conditions of our theorem hold with $\Delta \equiv 0, \lambda_{0}=0$, and W on $[0,1]^{2}$ given by

$$
\begin{aligned}
W(x, y) & =a_{11} \text { if } x, y<\frac{1}{2}, \\
& =a_{12} \text { if } x<\frac{1}{2}, y \geq \frac{1}{2} \text { or } x \geq \frac{1}{2}, y<\frac{1}{2}, \\
& =a_{22} \text { if } x, y \geq \frac{1}{2} .
\end{aligned}
$$

Example I': Stochastic Block Model

- Our theorem gives $T_{n} \xrightarrow{D} Q_{1}$, where $\mathbb{E} e^{-t_{1} Q_{1}}$ is in terms of a stochastic integral with respect to a block function.

Example I': Stochastic Block Model

- Our theorem gives $T_{n} \xrightarrow{D} Q_{1}$, where $\mathbb{E} e^{-t_{1} Q_{1}}$ is in terms of a stochastic integral with respect to a block function.
- Analyzing this stochastic integral gives

$$
Q_{1} \stackrel{D}{=} \frac{1}{2} \operatorname{Bin}\left(\binom{S_{1}}{2}, a_{11}\right)+\frac{1}{2} \operatorname{Bin}\left(\binom{S_{2}}{2}, a_{22}\right)+\operatorname{Bin}\left(S_{1} S_{2}, a_{12}\right) .
$$

Example I': Stochastic Block Model

- Our theorem gives $T_{n} \xrightarrow{D} Q_{1}$, where $\mathbb{E} e^{-t_{1} Q_{1}}$ is in terms of a stochastic integral with respect to a block function.
- Analyzing this stochastic integral gives

$$
Q_{1} \stackrel{D}{=} \frac{1}{2} \operatorname{Bin}\left(\binom{S_{1}}{2}, a_{11}\right)+\frac{1}{2} \operatorname{Bin}\left(\binom{S_{2}}{2}, a_{22}\right)+\operatorname{Bin}\left(S_{1} S_{2}, a_{12}\right) .
$$

- Here $S_{1}=N(1 / 2)$ and $S_{2}=N(1)-N(1 / 2)$ are iid Poissons with mean $1 / 2$.

Example I': Stochastic Block Model

- Our theorem gives $T_{n} \xrightarrow{D} Q_{1}$, where $\mathbb{E} e^{-t_{1} Q_{1}}$ is in terms of a stochastic integral with respect to a block function.
- Analyzing this stochastic integral gives

$$
Q_{1} \stackrel{D}{=} \frac{1}{2} \operatorname{Bin}\left(\binom{S_{1}}{2}, a_{11}\right)+\frac{1}{2} \operatorname{Bin}\left(\binom{S_{2}}{2}, a_{22}\right)+\operatorname{Bin}\left(S_{1} S_{2}, a_{12}\right) .
$$

- Here $S_{1}=N(1 / 2)$ and $S_{2}=N(1)-N(1 / 2)$ are iid Poissons with mean $1 / 2$.
- Similar results apply to unequal blocks, or more than 2 blocks.

Example-II (Disjoint union of stars)

- Suppose G_{n} is a disjoint union of \sqrt{n} many $K_{1, \sqrt{n}}$, and $p_{n}=\frac{1}{\sqrt{n}}$.

Example-II (Disjoint union of stars)

- Suppose G_{n} is a disjoint union of \sqrt{n} many $K_{1, \sqrt{n}}$, and $p_{n}=\frac{1}{\sqrt{n}}$.
- This satisfies the conditions of our theorem with

$$
W \equiv 0, \quad \Delta(x)=1\{x \in[0,1]\}, \quad \lambda_{0}=0 .
$$

Example-II (Disjoint union of stars)

- Suppose G_{n} is a disjoint union of \sqrt{n} many $K_{1, \sqrt{n}}$, and $p_{n}=\frac{1}{\sqrt{n}}$.
- This satisfies the conditions of our theorem with

$$
W \equiv 0, \quad \Delta(x)=1\{x \in[0,1]\}, \quad \lambda_{0}=0 .
$$

- Using our theorem, it follows that

$$
T_{n} \xrightarrow{D} \operatorname{Pois}\left(\int_{[0, \infty)} \Delta(x) d N(x)\right)
$$

Example-II (Disjoint union of stars)

- Suppose G_{n} is a disjoint union of \sqrt{n} many $K_{1, \sqrt{n}}$, and $p_{n}=\frac{1}{\sqrt{n}}$.
- This satisfies the conditions of our theorem with

$$
W \equiv 0, \quad \Delta(x)=1\{x \in[0,1]\}, \quad \lambda_{0}=0 .
$$

- Using our theorem, it follows that

$$
T_{n} \xrightarrow{D} \operatorname{Pois}\left(\int_{[0, \infty)} \Delta(x) d N(x)\right)=\operatorname{Pois}(N(1)) .
$$

Example-II (Disjoint union of stars)

- Suppose G_{n} is a disjoint union of \sqrt{n} many $K_{1, \sqrt{n}}$, and $p_{n}=\frac{1}{\sqrt{n}}$.
- This satisfies the conditions of our theorem with

$$
W \equiv 0, \quad \Delta(x)=1\{x \in[0,1]\}, \quad \lambda_{0}=0 .
$$

- Using our theorem, it follows that

$$
T_{n} \xrightarrow{D} \operatorname{Pois}\left(\int_{[0, \infty)} \Delta(x) d N(x)\right)=\operatorname{Pois}(N(1)) .
$$

- Since $N(1) \sim \operatorname{Pois}(1)$, we have the same limit distribution as before.

Example-III (Co-Existence)

- In all examples so far, either W or Δ is 0 , and so either Q_{1} or Q_{2} is 0 .

Example-III (Co-Existence)

- In all examples so far, either W or Δ is 0 , and so either Q_{1} or Q_{2} is 0 .
- We now construct an example where the terms $\left(Q_{1}, Q_{2}\right)$ both survive in the limit.

Example-III (Co-Existence)

- In all examples so far, either W or Δ is 0 , and so either Q_{1} or Q_{2} is 0 .
- We now construct an example where the terms $\left(Q_{1}, Q_{2}\right)$ both survive in the limit.
- Let K_{n} be the complete graph on n vertices.

Example-III (Co-Existence)

- In all examples so far, either W or Δ is 0 , and so either Q_{1} or Q_{2} is 0 .
- We now construct an example where the terms $\left(Q_{1}, Q_{2}\right)$ both survive in the limit.
- Let K_{n} be the complete graph on n vertices.
- Put a star graph $K_{1, n}$ centered on every vertex of K_{n}.

Example-III (Co-Existence)

- In all examples so far, either W or Δ is 0 , and so either Q_{1} or Q_{2} is 0 .
- We now construct an example where the terms $\left(Q_{1}, Q_{2}\right)$ both survive in the limit.
- Let K_{n} be the complete graph on n vertices.
- Put a star graph $K_{1, n}$ centered on every vertex of K_{n}.
- Then the entire graph G_{n} has $n+n^{2} \sim n^{2}$ vertices, and $\binom{n}{2}+n^{2} \sim \frac{3 n^{2}}{2}$ edges.

Co-existence example

EG: $\quad n=5$
TOTAL VERTICES $=5+5 \times 5=30$
TOTAL EDGES $=\binom{5}{2}+5 \times 5=35$

Example-III (Co-Existence)

- In this case, with $p_{n}=\frac{1}{n}$ the conditions of our theorem hold with

$$
W(x, y)=1\left\{(x, y) \in[0,1]^{2}\right\}, \quad \Delta(x)=1\{x \in[0,1]\}, \quad \lambda_{0}=0 .
$$

Example-III (Co-Existence)

- In this case, with $p_{n}=\frac{1}{n}$ the conditions of our theorem hold with

$$
W(x, y)=1\left\{(x, y) \in[0,1]^{2}\right\}, \quad \Delta(x)=1\{x \in[0,1]\}, \quad \lambda_{0}=0 .
$$

- Applying our theorem gives $T_{n} \xrightarrow{D} Q_{1}+Q_{2}$, where

$$
\mathbb{E} e^{-t_{1} Q_{1}-t_{2} Q_{2}}=\mathbb{E} \exp \left\{-t_{1}\binom{S}{2}-\left(1-e^{-t_{2}}\right) S\right\} .
$$

Example-III (Co-Existence)

- In this case, with $p_{n}=\frac{1}{n}$ the conditions of our theorem hold with

$$
W(x, y)=1\left\{(x, y) \in[0,1]^{2}\right\}, \quad \Delta(x)=1\{x \in[0,1]\}, \quad \lambda_{0}=0 .
$$

- Applying our theorem gives $T_{n} \xrightarrow{D} Q_{1}+Q_{2}$, where

$$
\mathbb{E} e^{-t_{1} Q_{1}-t_{2} Q_{2}}=\mathbb{E} \exp \left\{-t_{1}\binom{S}{2}-\left(1-e^{-t_{2}}\right) S\right\} .
$$

- Here $S=N(1) \sim \operatorname{Pois}(1)$.

Example-III (Co-Existence)

- In this case, with $p_{n}=\frac{1}{n}$ the conditions of our theorem hold with

$$
W(x, y)=1\left\{(x, y) \in[0,1]^{2}\right\}, \quad \Delta(x)=1\{x \in[0,1]\}, \quad \lambda_{0}=0 .
$$

- Applying our theorem gives $T_{n} \xrightarrow{D} Q_{1}+Q_{2}$, where

$$
\mathbb{E} e^{-t_{1} Q_{1}-t_{2} Q_{2}}=\mathbb{E} \exp \left\{-t_{1}\binom{S}{2}-\left(1-e^{-t_{2}}\right) S\right\} .
$$

- Here $S=N(1) \sim \operatorname{Pois}(1)$.
- This gives

$$
Q_{1}+Q_{2} \xrightarrow{D}\binom{S}{2}+\operatorname{Pois}(S), \text { where } S \sim \operatorname{Pois}(1) .
$$

Example-IV (Non-compact support)

- In all examples so far, the functions W and Δ have compact support.

Example-IV (Non-compact support)

- In all examples so far, the functions W and Δ have compact support.
- We will now construct an example where support of both W and Δ are non-compact.

Example-IV (Non-compact support)

- In all examples so far, the functions W and Δ have compact support.
- We will now construct an example where support of both W and Δ are non-compact.
- Set $a_{k}=\frac{1}{16^{k}}, b_{k}=4^{k}$, and $c_{k}=\frac{1}{32^{k}}$ for $k \geq 1$.

Example-IV (Non-compact support)

- In all examples so far, the functions W and Δ have compact support.
- We will now construct an example where support of both W and Δ are non-compact.
- Set $a_{k}=\frac{1}{16^{k}}, b_{k}=4^{k}$, and $c_{k}=\frac{1}{32^{k}}$ for $k \geq 1$.
- Fix $k \in\left\{1,2, \ldots, \log _{4} n\right\}$, and draw $n b_{k}$ many $n a_{k}$ stars (i.e $K_{1, n a_{k}}$).

Example-IV (Non-compact support)

- In all examples so far, the functions W and Δ have compact support.
- We will now construct an example where support of both W and Δ are non-compact.
- Set $a_{k}=\frac{1}{16^{k}}, b_{k}=4^{k}$, and $c_{k}=\frac{1}{32^{k}}$ for $k \geq 1$.
- Fix $k \in\left\{1,2, \ldots, \log _{4} n\right\}$, and draw $n b_{k}$ many $n a_{k}$ stars (i.e $K_{1, n a_{k}}$).
- These $n b_{k}$ many stars have $n b_{k}$ many central vertices.

Example-IV (Non-compact support)

- Connect the edges between these $n b_{k}$ many central vertices independently, with probability c_{k}.

Example-IV (Non-compact support)

- Connect the edges between these $n b_{k}$ many central vertices independently, with probability c_{k}.
- Do this for every $k \in\left\{1,2, \ldots \log _{4} n\right\}$.

Example-IV (Non-compact support)

- Connect the edges between these $n b_{k}$ many central vertices independently, with probability c_{k}.
- Do this for every $k \in\left\{1,2, \ldots \log _{4} n\right\}$.
- This ensures that G_{n} has $\Theta\left(n^{2}\right)$ vertices, and $\Theta_{P}\left(n^{2}\right)$ many edges.

Example-IV (Non-compact support)

- Connect the edges between these $n b_{k}$ many central vertices independently, with probability c_{k}.
- Do this for every $k \in\left\{1,2, \ldots \log _{4} n\right\}$.
- This ensures that G_{n} has $\Theta\left(n^{2}\right)$ vertices, and $\Theta_{P}\left(n^{2}\right)$ many edges.
- For the choice $p_{n}=\frac{1}{n}$, our theorem applies with

$$
\begin{aligned}
W(x, y) & =c_{k} \text { if } x, y \in\left(r_{k-1}, r_{k}\right] \text { for some } k \geq 1 \\
& =0 \text { otherwise }
\end{aligned}
$$

Example-IV (Non-compact support)

- Also,

$$
\Delta(x)=a_{k} \text { if } x \in\left(r_{k-1}, r_{k}\right] \text { for some } k \geq 1 .
$$

Example-IV (Non-compact support)

- Also,

$$
\Delta(x)=a_{k} \text { if } x \in\left(r_{k-1}, r_{k}\right] \text { for some } k \geq 1 .
$$

- Here $r_{k}:=\sum_{i=0}^{k} b_{i} \rightarrow \infty$, and so both W, Δ have non-compact support.

Example-IV (Non-compact support)

- Also,

$$
\Delta(x)=a_{k} \text { if } x \in\left(r_{k-1}, r_{k}\right] \text { for some } k \geq 1 .
$$

- Here $r_{k}:=\sum_{i=0}^{k} b_{i} \rightarrow \infty$, and so both W, Δ have non-compact support.
- Using our theorem gives

$$
T_{n} \xrightarrow{D} \sum_{k=1}^{\infty} \operatorname{Bin}\left(\binom{S_{k}}{2}, c_{k}\right)+\text { Pois }\left(\sum_{k=1}^{\infty} a_{k} S_{k}\right),
$$

where $S_{k} \sim \operatorname{Pois}\left(b_{k}\right)$ are mutually independent.

Outline

(1) Introduction
(2) Theorem I with examples
(3) Theorems II and III
(4) Proof overview of Theorem I
(5) Conclusion

Theorem II

- Our first result shows that under (A1), (A2), (A3), the limit of T_{n} can be expressed as $\psi(W, d, \lambda)$ for suitable W, d, λ.
- Our first result shows that under (A1), (A2), (A3), the limit of T_{n} can be expressed as $\psi(W, d, \lambda)$ for suitable W, d, λ.

Theorem (Bhattacharya-Mukherjee-M., AAP-2020)

Suppose $\mathbb{E} T_{n}=O(1)$. Then (under no other assumption) if T_{n} converges in distribution to a limit, then the limit must be in the closure of $\psi(W, d, \lambda)$.

Theorem II

- Our first result shows that under (A1), (A2), (A3), the limit of T_{n} can be expressed as $\psi(W, d, \lambda)$ for suitable W, d, λ.

```
Theorem (Bhattacharya-Mukherjee-M., AAP-2020)
Suppose \(\mathbb{E} T_{n}=O(1)\). Then (under no other assumption) if \(T_{n}\) converges in distribution to a limit, then the limit must be in the closure of \(\psi(W, d, \lambda)\).
```

- Essentially, after permuting the remaining vertices, the assumptions of the theorem does (approximately) hold along a subsequence.

Theorem II

- Our first result shows that under (A1), (A2), (A3), the limit of T_{n} can be expressed as $\psi(W, d, \lambda)$ for suitable W, d, λ.

```
Theorem (Bhattacharya-Mukherjee-M., AAP-2020)
Suppose \(\mathbb{E} T_{n}=O(1)\). Then (under no other assumption) if \(T_{n}\) converges in distribution to a limit, then the limit must be in the closure of \(\psi(W, d, \lambda)\).
```

- Essentially, after permuting the remaining vertices, the assumptions of the theorem does (approximately) hold along a subsequence.
- We claim that the class $\psi(W, d, \lambda)$ is closed under weak topology.

Theorem III

- So far we have not shown any examples where the limit is just a Poisson.
- So far we have not shown any examples where the limit is just a Poisson.
- To address this, let's first state a characterization result for Poisson convergence.

Theorem III

- So far we have not shown any examples where the limit is just a Poisson.
- To address this, let's first state a characterization result for Poisson convergence.

Theorem (Bhattacharya-Mukherjee-M., AAP-2020)

If $\mathbb{E} T_{n}=O(1)$, the following are equivalent:
(i) $T_{n} \xrightarrow{D} \operatorname{Pois}(\lambda)$.
(ii)

$$
\lim _{M \rightarrow \infty} \lim _{n \rightarrow \infty} \mathbb{E}\left(T_{n, M}\right)=\lambda, \quad \lim _{M \rightarrow \infty} \lim _{n \rightarrow \infty} \operatorname{Var}\left(T_{n, M}\right)=\lambda .
$$

- Here

$$
T_{n, M}:=\sum_{i<j} G_{n}(i, j) X_{i} X_{j} 1\left\{d_{i} \leq M c_{n}, d_{j} \leq M c_{n}\right\}
$$

is a truncated version of T_{n}.

Theorem III

- Here

$$
T_{n, M}:=\sum_{i<j} G_{n}(i, j) X_{i} X_{j} 1\left\{d_{i} \leq M c_{n}, d_{j} \leq M c_{n}\right\}
$$

is a truncated version of T_{n}.

- The last theorem can be viewed as a truncated second moment phenomenon.

Theorem III

- Here

$$
T_{n, M}:=\sum_{i<j} G_{n}(i, j) X_{i} X_{j} 1\left\{d_{i} \leq M c_{n}, d_{j} \leq M c_{n}\right\}
$$

is a truncated version of T_{n}.

- The last theorem can be viewed as a truncated second moment phenomenon.
- This immediately implies the following simpler second moment phenomenon:

$$
\begin{aligned}
& \text { Corollary (Bhattacharya-Mukherjee-M., AAP-2020) } \\
& \text { If } \mathbb{E} T_{n} \rightarrow \lambda \text { and } \operatorname{Var}\left(T_{n}\right) \rightarrow \lambda, \text { then } T_{n} \xrightarrow{D} \operatorname{Pois}(\lambda) .
\end{aligned}
$$

Theorem III

- Here

$$
T_{n, M}:=\sum_{i<j} G_{n}(i, j) X_{i} X_{j} 1\left\{d_{i} \leq M c_{n}, d_{j} \leq M c_{n}\right\}
$$

is a truncated version of T_{n}.

- The last theorem can be viewed as a truncated second moment phenomenon.
- This immediately implies the following simpler second moment phenomenon:

Corollary (Bhattacharya-Mukherjee-M., AAP-2020)

If $\mathbb{E} T_{n} \rightarrow \lambda$ and $\operatorname{Var}\left(T_{n}\right) \rightarrow \lambda$, then $T_{n} \xrightarrow{D} \operatorname{Pois}(\lambda)$.

- Compare this with the more well studied fourth moment phenomenon for the Gaussian distribution (see Ivan Nourdin's webpage for a list of papers on this topic).

Example-I (Erdős-Rényi)

- Suppose G_{n} is an Erdős-Rényi graph with parameter $q_{n} \rightarrow 0$ such that $q_{n} \gg \frac{1}{n^{2}}$

Example-I (Erdős-Rényi)

- Suppose G_{n} is an Erdős-Rényi graph with parameter $q_{n} \rightarrow 0$ such that $q_{n} \gg \frac{1}{n^{2}}$ (needed to ensure $\left|E\left(G_{n}\right)\right| \xrightarrow{P} \infty$).

Example-I (Erdős-Rényi)

- Suppose G_{n} is an Erdős-Rényi graph with parameter $q_{n} \rightarrow 0$ such that $q_{n} \gg \frac{1}{n^{2}}$ (needed to ensure $\left|E\left(G_{n}\right)\right| \xrightarrow{P} \infty$).
- Then it has approximately $\binom{n}{2} q_{n} \sim \frac{n^{2} q_{n}}{2}$ edges with high probability.

Example-I (Erdős-Rényi)

- Suppose G_{n} is an Erdős-Rényi graph with parameter $q_{n} \rightarrow 0$ such that $q_{n} \gg \frac{1}{n^{2}}$ (needed to ensure $\left|E\left(G_{n}\right)\right| \xrightarrow{P} \infty$).
- Then it has approximately $\binom{n}{2} q_{n} \sim \frac{n^{2} q_{n}}{2}$ edges with high probability.
- Let p_{n} be such that $p_{n}^{2} \frac{n^{2} q_{n}}{2} \rightarrow \lambda$.

Example-I (Erdős-Rényi)

- Suppose G_{n} is an Erdős-Rényi graph with parameter $q_{n} \rightarrow 0$ such that $q_{n} \gg \frac{1}{n^{2}}$ (needed to ensure $\left|E\left(G_{n}\right)\right| \xrightarrow{P} \infty$).
- Then it has approximately $\binom{n}{2} q_{n} \sim \frac{n^{2} q_{n}}{2}$ edges with high probability.
- Let p_{n} be such that $p_{n}^{2} \frac{n^{2} q_{n}}{2} \rightarrow \lambda$.
- Then $T_{n} \xrightarrow{d} \operatorname{Pois}(\lambda)$.

Example-I (Erdős-Rényi)

- Suppose G_{n} is an Erdős-Rényi graph with parameter $q_{n} \rightarrow 0$ such that $q_{n} \gg \frac{1}{n^{2}}$ (needed to ensure $\left|E\left(G_{n}\right)\right| \xrightarrow{P} \infty$).
- Then it has approximately $\binom{n}{2} q_{n} \sim \frac{n^{2} q_{n}}{2}$ edges with high probability.
- Let p_{n} be such that $p_{n}^{2} \frac{n^{2} q_{n}}{2} \rightarrow \lambda$.
- Then $T_{n} \xrightarrow{d} \operatorname{Pois}(\lambda)$.
- Similar results hold for sparse block models, and random regular graphs.

Example-II (Why Truncate?)

- Suppose G_{n} is a disjoint union of $K_{1, n}$, and n disjoint edges.

Example-II (Why Truncate?)

- Suppose G_{n} is a disjoint union of $K_{1, n}$, and n disjoint edges.

Example-II (Why Truncate?)

- Then G_{n} has $n+1+2 n \sim 3 n$ vertices, and $n+n=2 n$ edges.

Example-II (Why Truncate?)

- Then G_{n} has $n+1+2 n \sim 3 n$ vertices, and $n+n=2 n$ edges.
- Then with $p_{n}=\frac{1}{n}$, we have $\mathbb{E} T_{n}=p_{n}\left|E\left(G_{n}\right)\right| \rightarrow 2$.

Example-II (Why Truncate?)

- Then G_{n} has $n+1+2 n \sim 3 n$ vertices, and $n+n=2 n$ edges.
- Then with $p_{n}=\frac{1}{n}$, we have $\mathbb{E} T_{n}=p_{n}\left|E\left(G_{n}\right)\right| \rightarrow 2$.
- However, it is not hard to check that $T_{n} \xrightarrow{D} \operatorname{Pois}(1)$.

Example-II (Why Truncate?)

- Then G_{n} has $n+1+2 n \sim 3 n$ vertices, and $n+n=2 n$ edges.
- Then with $p_{n}=\frac{1}{n}$, we have $\mathbb{E} T_{n}=p_{n}\left|E\left(G_{n}\right)\right| \rightarrow 2$.
- However, it is not hard to check that $T_{n} \xrightarrow{D} \operatorname{Pois}(1)$.
- This is because with high probability, there are no monochromatic edges of color 1 in the star graph.

Example-II (Why Truncate?)

- Then G_{n} has $n+1+2 n \sim 3 n$ vertices, and $n+n=2 n$ edges.
- Then with $p_{n}=\frac{1}{n}$, we have $\mathbb{E} T_{n}=p_{n}\left|E\left(G_{n}\right)\right| \rightarrow 2$.
- However, it is not hard to check that $T_{n} \xrightarrow{D} \operatorname{Pois}(1)$.
- This is because with high probability, there are no monochromatic edges of color 1 in the star graph.
- The truncated second moment result captures this behavior automatically.

Outline

(1) Introduction
(2) Theorem I with examples
(3) Theorems II and III
(4) Proof overview of Theorem I
(5) Conclusion

Proof idea of Theorem I

- With c_{n} the number of colors, we split the vertices into three groups,
(i) degree less that εc_{n} (low degree vertices);

Proof idea of Theorem I

- With c_{n} the number of colors, we split the vertices into three groups,
(i) degree less that εc_{n} (low degree vertices);
(ii) degree between εc_{n} and $M c_{n}$ (high degree vertices);

Proof idea of Theorem I

- With c_{n} the number of colors, we split the vertices into three groups,
(i) degree less that εc_{n} (low degree vertices);
(ii) degree between εc_{n} and $M c_{n}$ (high degree vertices);
(iii) degree greater than $M c_{n}$ (super high degree vertices).

Proof idea of Theorem I

- With c_{n} the number of colors, we split the vertices into three groups,
(i) degree less that εc_{n} (low degree vertices);
(ii) degree between εc_{n} and $M c_{n}$ (high degree vertices);
(iii) degree greater than $M c_{n}$ (super high degree vertices).
- By using a first moment computation using Markov's inequality, we show that the super high degree vertices do not contribute for M large.

Proof idea of Theorem-I

- Thus there are three terms which contribute to the limit:

Proof idea of Theorem-I

- Thus there are three terms which contribute to the limit:
(i) $T_{3, n}$, which counts monochromatic edges between low degree and low degree vertices.

Proof idea of Theorem-I

- Thus there are three terms which contribute to the limit:
(i) $T_{3, n}$, which counts monochromatic edges between low degree and low degree vertices. This gives $Q_{3} \sim$ Poisson.

Proof idea of Theorem-I

- Thus there are three terms which contribute to the limit:
(i) $T_{3, n}$, which counts monochromatic edges between low degree and low degree vertices. This gives $Q_{3} \sim$ Poisson.
(ii) $T_{2, n}$, which counts monochromatic edges between low and high degree vertices.

Proof idea of Theorem-I

- Thus there are three terms which contribute to the limit:
(i) $T_{3, n}$, which counts monochromatic edges between low degree and low degree vertices. This gives $Q_{3} \sim$ Poisson.
(ii) $T_{2, n}$, which counts monochromatic edges between low and high degree vertices. This gives Q_{2}, the Poisson mixture.

Proof idea of Theorem-I

- Thus there are three terms which contribute to the limit:
(i) $T_{3, n}$, which counts monochromatic edges between low degree and low degree vertices. This gives $Q_{3} \sim$ Poisson.
(ii) $T_{2, n}$, which counts monochromatic edges between low and high degree vertices. This gives Q_{2}, the Poisson mixture.
(iii) $T_{1, n}$, which counts monochromatic edges between high and high degree vertices.

Proof idea of Theorem-I

- Thus there are three terms which contribute to the limit:
(i) $T_{3, n}$, which counts monochromatic edges between low degree and low degree vertices. This gives $Q_{3} \sim$ Poisson.
(ii) $T_{2, n}$, which counts monochromatic edges between low and high degree vertices. This gives Q_{2}, the Poisson mixture.
(iii) $T_{1, n}$, which counts monochromatic edges between high and high degree vertices. This gives Q_{1}, which in many examples is the sum of Binomials with quadratic Poisson parameters.

Proof idea of Theorem-I

- Thus there are three terms which contribute to the limit:
(i) $T_{3, n}$, which counts monochromatic edges between low degree and low degree vertices. This gives $Q_{3} \sim$ Poisson.
(ii) $T_{2, n}$, which counts monochromatic edges between low and high degree vertices. This gives Q_{2}, the Poisson mixture.
(iii) $T_{1, n}$, which counts monochromatic edges between high and high degree vertices. This gives Q_{1}, which in many examples is the sum of Binomials with quadratic Poisson parameters.
- We argue using method of moments that $T_{3, n}$ is asymptotically independent from $T_{1, n}$ and $T_{2, n}$.

Proof idea of Theorem-I

- Using
(i) (A1): strong cut metric convergence of $W_{G_{n}}$ on $[0, K]^{2}$ $+$
(ii) (A2): the convergence of the degree function $d_{G_{n}}$ in $L^{1}[0, K]$, we argue that the joint moments of $T_{1, n}$ and $T_{2, n}$ converge.

Proof idea of Theorem-I

- Using
(i) (A1): strong cut metric convergence of $W_{G_{n}}$ on $[0, K]^{2}$ $+$
(ii) (A2): the convergence of the degree function $d_{G_{n}}$ in $L^{1}[0, K]$, we argue that the joint moments of $T_{1, n}$ and $T_{2, n}$ converge.
- We also show that the limiting moments determine their joint distribution.

Proof idea of Theorem-I

- Using
(i) (A1): strong cut metric convergence of $W_{G_{n}}$ on $[0, K]^{2}$ $+$
(ii) (A2): the convergence of the degree function $d_{G_{n}}$ in $L^{1}[0, K]$, we argue that the joint moments of $T_{1, n}$ and $T_{2, n}$ converge.
- We also show that the limiting moments determine their joint distribution.
- To identify the distribution of $\left(Q_{1}, Q_{2}\right)$, we compute the Mgf along a well chosen sequence of inhomogeneous random graphs.

Proof idea of Theorem-I

- Using
(i) (A1): strong cut metric convergence of $W_{G_{n}}$ on $[0, K]^{2}$ $+$
(ii) (A2): the convergence of the degree function $d_{G_{n}}$ in $L^{1}[0, K]$, we argue that the joint moments of $T_{1, n}$ and $T_{2, n}$ converge.
- We also show that the limiting moments determine their joint distribution.
- To identify the distribution of $\left(Q_{1}, Q_{2}\right)$, we compute the Mgf along a well chosen sequence of inhomogeneous random graphs.
- This gives the joint Mgf of $\left(Q_{1}, Q_{2}\right)$, thereby proving Theorem I.

Outline

(1) Introduction
(2) Theorem I with examples
(3) Theorems II and III
(4) Proof overview of Theorem I
(5) Conclusion

Summary of our results

- Motivated by graph coloring problems, we study asymptotic distribution of quadratic forms of Bernoulli random variables.

Summary of our results

- Motivated by graph coloring problems, we study asymptotic distribution of quadratic forms of Bernoulli random variables.
- We characterize the class of all possible limits of Bernoulli quadratic forms.

Summary of our results

- Motivated by graph coloring problems, we study asymptotic distribution of quadratic forms of Bernoulli random variables.
- We characterize the class of all possible limits of Bernoulli quadratic forms.
- As an application, we characterize exactly when is the limit a Poisson random variable.

Summary of our results

- Motivated by graph coloring problems, we study asymptotic distribution of quadratic forms of Bernoulli random variables.
- We characterize the class of all possible limits of Bernoulli quadratic forms.
- As an application, we characterize exactly when is the limit a Poisson random variable.
- We apply our theorem to several examples, which includes both deterministic and random graphs.

Future Scope

- Can one characterize the class of all possible limit distributions for the number of monochromatic triangles of color 1 ?

Future Scope

- Can one characterize the class of all possible limit distributions for the number of monochromatic triangles of color 1? What about other subgraphs?

Future Scope

- Can one characterize the class of all possible limit distributions for the number of monochromatic triangles of color 1? What about other subgraphs?
- Here we consider the case when the number of colors $c=c_{n} \rightarrow \infty$.

Future Scope

- Can one characterize the class of all possible limit distributions for the number of monochromatic triangles of color 1? What about other subgraphs?
- Here we consider the case when the number of colors $c=c_{n} \rightarrow \infty$. What can be said if c is fixed, and does not grow with n ?

Future Scope

- Can one characterize the class of all possible limit distributions for the number of monochromatic triangles of color 1? What about other subgraphs?
- Here we consider the case when the number of colors $c=c_{n} \rightarrow \infty$. What can be said if c is fixed, and does not grow with n ? Here we expect a similar result, but with Weiner process/Brownian motion replacing the Poisson process.

Future Scope

- Can one characterize the class of all possible limit distributions for the number of monochromatic triangles of color 1? What about other subgraphs?
- Here we consider the case when the number of colors $c=c_{n} \rightarrow \infty$. What can be said if c is fixed, and does not grow with n ? Here we expect a similar result, but with Weiner process/Brownian motion replacing the Poisson process.
- Finally, our quadratic form is (in terms of) the adjacency matrix of a simple graph.

Future Scope

- Can one characterize the class of all possible limit distributions for the number of monochromatic triangles of color 1? What about other subgraphs?
- Here we consider the case when the number of colors $c=c_{n} \rightarrow \infty$. What can be said if c is fixed, and does not grow with n ? Here we expect a similar result, but with Weiner process/Brownian motion replacing the Poisson process.
- Finally, our quadratic form is (in terms of) the adjacency matrix of a simple graph. Does a similar analysis apply for general quadratic forms?

