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The classical birthday problem

Suppose there are n students in a class.

What is the chance that
there are two students with the same birthday? Assume that a
year has c days.

The answer to this question is very well known.

In this case the number of student pairs with a common birthday

is approximate Poisson with mean λ =
(n
2)
c .

Consequently the chance of at least one common birthday is
approximately 1− e−λ.
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First variant: Unfriendly class

Suppose in a class of size n, not everybody knows each other.

There is a friendship graph G between the n nodes, which
determines which pair of students are friends.

What is the chance that there are two people who know each
other, and have the same birthday?

It was shown in Bhattacharya-Diaconis-M., AAP-2017 that the
number of friend pairs with a common birthday is approximate

Poisson with mean λ′ = |E(G)|
c . Consequently, the answer is

1− e−λ′
.

Here |E(G)| is the number of edges in G, i.e. the total number of
friendship pairs in the class.

The classical birthday problem is a special case with G = Kn,
where everyone knows everyone else.
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Second variant: Fix the date

Suppose as before there is a graph G which determines the
friendship structure.

But in addition, we now require both of them to be born on
October 12.

Question: What is the chance that there are two people who
know each other, and have birthday October 12?

In this case things are more interesting, and the answer depends
on the graph in a more delicate way (than just the number of
edges).
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Formal set up

Suppose Gn is a large (non random) labelled graph on the vertex
set V (Gn) := {1, 2, · · · , n} with edge set E(Gn).

Color each vertex of Gn with one of cn colors chosen uniformly at
random, independent of other vertices.

What is the limiting distribution of Tn, the number of
monochromatic edges of color 1?

Note that
Tn =

∑
i<j

Gn(i, j)XiXj ,

where (X1, . . . , Xn) are i.i.d. Bern(pn), with pn = 1
cn

.

We will assume that the sequence {Gn, pn}n≥1 are chosen such

that ETn = |E(Gn)|
c2n

= O(1).
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Example 0: Complete graph

Suppose Gn = Kn is the complete graph, and pn = 1
n .

In this case we have

Tn =
∑
i<j

XiXj =
1

2

[( n∑
i=1

Xi

)2
−

n∑
i=1

Xi

]
.

Now

Sn :=

n∑
i=1

Xi ∼ Bin(n, 1/n)
D→ S ∼ Pois(1).

Thus Tn
D→
(
S
2

)
, where S ∼ Pois(1).
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Example I: Erdős-Rényi graph

Suppose Gn is an Erdős-Rényi random graph with parameter q
fixed.

Then the total number of vertices of color 1 is

Sn =
n∑
i=1

Xi ∼ Bin(n, 1/n)

Throwing away all vertices of other colors, we are left with a
(smaller) Erdős-Rényi random graph on Sn vertices with
parameter q.

Total number of edges in this smaller Erdős-Rényi random graph
is Bin(

(
Sn

2

)
, q), and so

Tn
D
= Bin

((Sn
2

)
, q
)
D→ Bin

((S
2

)
, q
)
, where S ∼ Pois(1).
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(smaller) Erdős-Rényi random graph on Sn vertices with
parameter q.

Total number of edges in this smaller Erdős-Rényi random graph
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is Bin(

(
Sn

2

)
, q), and so

Tn
D
= Bin

((Sn
2

)
, q
)
D→ Bin

((S
2

)
, q
)
, where S ∼ Pois(1).

Sumit Mukherjee, Department of Statistics, Columbia Generalized birthday problem for October 12 8/46



Example II: Disjoint union of stars

Suppose Gn is a disjoint union of
√
n many K1,

√
n graphs, and

pn = 1√
n

.
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Example II: Disjoint union of stars

From the last figure,

Tn =

√
n∑

i=1

Xi

√
n∑

j=1

Yij ,

where (X1, . . . , X√n) and (Yij)1≤i,j≤
√
n are mutually independent

Bern(pn).

Note that
√
n∑

j=1

Yij ∼ Bin(
√
n,

1√
n

)
D→ Yi ∼ Pois(1).

Thus Tn
D
≈
∑√n
i=1XiYi. Conditioning on (X1, . . . , X√n), this has a

Pois
(∑√n

i=1Xi

)
distribution.

This gives Tn
D→ Pois(S), where S ∼ Pois(1).
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Question: Study Tn

Can we characterize the class of all possible limit distributions of
Tn?

As already seen, this class contains mixtures of Poissons, and
Binomials of quadratic functions of Poissons.

Also, can we characterize when is this limit exactly a Poisson?
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Towards a general result

The Erdős-Rényi example captures the contribution of the
“dense” part of the graph, i.e. edges between high degree vertices.

The disjoint star example captures the contribution of edges
between high degree vertices and low degree vertices.

Finally, edges between low degree vertices gives rise to a Poisson
limit.

Using this philosophy, we partition the edge set into 3 types,

High↔ High, High↔ Low, Low↔ Low.
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Adjacency matrix 7→ function on positive reals

Define a function WGn
(., , ) : [0,∞)2 7→ [0, 1] by setting

WGn
(x, y) =1 if (dxcne, dycne) ∈ E(Gn)

=0 otherwise

By this definition, WGn
(x, y) = 0 outside [0, npn]2.

Also, ∫
[0,∞)2

WGn
(x, y)dxdy =

2|E(Gn)|
c2n

= O(1).

Let dGn
(x) :=

∫∞
0
WGn

(x, y)dx be the degree function.
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First assumption (A1)

Given two bounded measurable functions f, g from
[0,K]2 7→ [0, 1], define the strong cut distance between f and g by

sup
A,B⊂[0,1]

∣∣∣∣∫
A×B

f(x, y)dxdy −
∫
A×B

g(x, y)dxdy

∣∣∣∣ .

Assumption (A1):

There is a function W : [0,∞)2 7→ [0, 1], such that for every K
fixed, the function WGn

converges in strong cut distance to the
function W on [0,K]2.

In some sense W captures the limit of the dense part of the
graph. Note that this assumption, along with Fatou’s lemma
automatically implies∫

[0,∞)2
|W (x, y)|dxdy <∞.

Sumit Mukherjee, Department of Statistics, Columbia Generalized birthday problem for October 12 15/46



First assumption (A1)

Given two bounded measurable functions f, g from
[0,K]2 7→ [0, 1], define the strong cut distance between f and g by

sup
A,B⊂[0,1]

∣∣∣∣∫
A×B

f(x, y)dxdy −
∫
A×B

g(x, y)dxdy

∣∣∣∣ .
Assumption (A1):

There is a function W : [0,∞)2 7→ [0, 1], such that for every K
fixed, the function WGn

converges in strong cut distance to the
function W on [0,K]2.

In some sense W captures the limit of the dense part of the
graph. Note that this assumption, along with Fatou’s lemma
automatically implies∫

[0,∞)2
|W (x, y)|dxdy <∞.

Sumit Mukherjee, Department of Statistics, Columbia Generalized birthday problem for October 12 15/46



First assumption (A1)

Given two bounded measurable functions f, g from
[0,K]2 7→ [0, 1], define the strong cut distance between f and g by

sup
A,B⊂[0,1]

∣∣∣∣∫
A×B

f(x, y)dxdy −
∫
A×B

g(x, y)dxdy

∣∣∣∣ .
Assumption (A1):

There is a function W : [0,∞)2 7→ [0, 1], such that for every K
fixed, the function WGn

converges in strong cut distance to the
function W on [0,K]2.

In some sense W captures the limit of the dense part of the
graph.

Note that this assumption, along with Fatou’s lemma
automatically implies∫

[0,∞)2
|W (x, y)|dxdy <∞.

Sumit Mukherjee, Department of Statistics, Columbia Generalized birthday problem for October 12 15/46



First assumption (A1)

Given two bounded measurable functions f, g from
[0,K]2 7→ [0, 1], define the strong cut distance between f and g by

sup
A,B⊂[0,1]

∣∣∣∣∫
A×B

f(x, y)dxdy −
∫
A×B

g(x, y)dxdy

∣∣∣∣ .
Assumption (A1):

There is a function W : [0,∞)2 7→ [0, 1], such that for every K
fixed, the function WGn

converges in strong cut distance to the
function W on [0,K]2.

In some sense W captures the limit of the dense part of the
graph. Note that this assumption, along with Fatou’s lemma
automatically implies∫

[0,∞)2
|W (x, y)|dxdy <∞.

Sumit Mukherjee, Department of Statistics, Columbia Generalized birthday problem for October 12 15/46



Second assumption (A2)

Assumption (A2):

There is a function d : [0,∞) 7→ [0,∞) such that for every
M,K > 0 we have

min(dWGn
,M)

L1[0,K]→ min(d(.),M).

Again Fatou’s Lemma gives
∫
[0,∞)

|d(x)|dx <∞.

Also, one has
∫∞
0
W (x, y)dy ≤ d(x). Let

∆(x) := d(x)−
∫ ∞
0

W (x, y)dy.

In some sense ∆(x) counts the edges between the high and low
degree vertices.
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Third assumption (A3)+Theorem I

Assumption: (A3)

lim
K→∞

lim
n→∞

∫
[K,∞)2

WGn
(x, y)dxdy = 2λ0.

This assumption estimates the edges between the low degree
vertices.

Theorem (Bhattacharya-Mukherjee-M., AAP 20)

If (A1), (A2), (A3) hold, then

Tn
D→ Q1 +Q2 +Q3.

Here Q3 ∼ Pois(λ0).

(Q1, Q2) is jointly independent of Q3.

The joint Mgf of (Q1, Q2) appears on the next slide.
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Mgf of (Q1, Q2)

For t1, t2 > 0, Ee−t1Q1−t2Q2 equals

E exp
{1

2

∫
[0,∞)2

φW,t1(x, y)dN(x)dN(y)−(1−e−t2)

∫
[0,∞)

∆(x)dN(x)
}
.

Here

φW,t1(x, y) = log
(
1−W (x, y) +W (x, y)e−t1

)
is integrable,

{N(t)}t≥1 is a homogenous Poisson process of rate 1.

Q2
D
= Pois(

∫
[0,∞)

∆(x)dN(x)). This arises from the edges

between the high and low degree.

Q1 arises from the edges between the high degree vertices, i.e.
the dense part of the graph.
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Stochastic Integral (Itô)

Suppose f : [0,∞)2 7→ R is such that∫
[0,∞)2

|f(x, y)|dxdy <∞.

Let {N(t)}t≥1 is a homogenous Poisson process of rate 1.

We want to define the bivariate stochastic integral

I2(f) :=

∫
[0,∞)2

f(x, y)dN(x)N(y).

First assume

f =

k∑
i,j=1

cij1Ai×Aj ,

where {A1, . . . , Ak} is a measurable partition of [0, 1], and cii = 0
for 1 ≤ i ≤ k.

Define

I2(f) :=

k∑
i,j=1

cijN(Ai)N(Aj).
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Stochastic Integral (Itô)

For a general f ∈ L1[0,∞)2, approximate f by a sequence {fk} of
simple functions from the last slide in L1[0,∞)2.

Then I2(fk) is Cauchy in L1(Ω), where Ω contains the Poisson
process.

Define I2(f) = limk→∞ I2(fk), where the limit is in L1(Ω).

Then I2(f) is well defined, and

E|I2(f)| ≤ ‖f‖L1[0,∞)2 .
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Example I (Erdős-Rényi)

Suppose Gn is an Erdős-Rényi graph with parameter q, and
pn = 1

n .

Then the conditions of our theorem hold with

W (x, y) = q1{[x, y] ∈ [0, 1]2}, ∆(x) = 0, λ0 = 0.

Thus our theorem gives Tn
D→ Q1, where

Ee−t1Q1 = E exp
{1

2

∫
[0,∞)2

φq,t1(x, y)dN(x)dN(y)
}
.

Here

φq,t1(x, y) = log(1− q + qe−t1) if (x, y) ∈ [0, 1]2.
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Example I (Erdős-Rényi)

Thus we need to compute

1

2
log(1− q + qe−t1)

∫
[0,1]2

dN(x)dN(y).

The inside integral equals N(1)2 −N(1).

Combining we have

Ee−tQ1 = E exp
{(N(1)

2

)
log(1− q + qe−t1)

}
.

This is the Mgf of a Bin
((
N(1)
2

)
, q
)

.

Since N(1) ∼ Pois(1), we have the same limit distribution as
before.
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Example I′: Stochastic Block Model

Suppose pn = 1
n , and Gn is a sequence of random graphs such

that

P(Gn(i, j) = 1) =a11 if i, j <
n

2

=a12 if i <
n

2
, j ≥ n

2
or i ≥ n

2
, j <

n

2
,

=a22 if i, j ≥ n

2
.

In this case the conditions of our theorem hold with
∆ ≡ 0, λ0 = 0, and W on [0, 1]2 given by

W (x, y) =a11 if x, y <
1

2
,

=a12 if x <
1

2
, y ≥ 1

2
or x ≥ 1

2
, y <

1

2
,

=a22 if x, y ≥ 1

2
.
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Example I′: Stochastic Block Model

Our theorem gives Tn
D→ Q1, where Ee−t1Q1 is in terms of a

stochastic integral with respect to a block function.

Analyzing this stochastic integral gives

Q1
D
=

1

2
Bin

((
S1

2

)
, a11

)
+

1

2
Bin

((
S2

2

)
, a22

)
+Bin (S1S2, a12) .

Here S1 = N(1/2) and S2 = N(1)−N(1/2) are iid Poissons with
mean 1/2.

Similar results apply to unequal blocks, or more than 2 blocks.
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Example-II (Disjoint union of stars)

Suppose Gn is a disjoint union of
√
n many K1,

√
n, and pn = 1√

n
.

This satisfies the conditions of our theorem with

W ≡ 0, ∆(x) = 1{x ∈ [0, 1]}, λ0 = 0.

Using our theorem, it follows that

Tn
D→ Pois

(∫
[0,∞)

∆(x)dN(x)
)

= Pois(N(1)).

Since N(1) ∼ Pois(1), we have the same limit distribution as
before.
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Example-III (Co-Existence)

In all examples so far, either W or ∆ is 0, and so either Q1 or Q2

is 0.

We now construct an example where the terms (Q1, Q2) both
survive in the limit.

Let Kn be the complete graph on n vertices.

Put a star graph K1,n centered on every vertex of Kn.

Then the entire graph Gn has n+ n2 ∼ n2 vertices, and(
n
2

)
+ n2 ∼ 3n2

2 edges.
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Co-existence example
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Example-III (Co-Existence)

In this case, with pn = 1
n the conditions of our theorem hold with

W (x, y) = 1{(x, y) ∈ [0, 1]2}, ∆(x) = 1{x ∈ [0, 1]}, λ0 = 0.

Applying our theorem gives Tn
D→ Q1 +Q2, where

Ee−t1Q1−t2Q2 = E exp
{
− t1

(
S

2

)
− (1− e−t2)S

}
.

Here S = N(1) ∼ Pois(1).

This gives

Q1 +Q2
D→
(
S

2

)
+ Pois(S), where S ∼ Pois(1).
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Example-IV (Non-compact support)

In all examples so far, the functions W and ∆ have compact
support.

We will now construct an example where support of both W and
∆ are non-compact.

Set ak = 1
16k

, bk = 4k, and ck = 1
32k

for k ≥ 1.

Fix k ∈ {1, 2, . . . , log4 n}, and draw nbk many nak stars (i.e
K1,nak).

These nbk many stars have nbk many central vertices.
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Example-IV (Non-compact support)

Connect the edges between these nbk many central vertices
independently, with probability ck.

Do this for every k ∈ {1, 2, . . . log4 n}.

This ensures that Gn has Θ(n2) vertices, and ΘP (n2) many
edges.

For the choice pn = 1
n , our theorem applies with

W (x, y) =ck if x, y ∈ (rk−1, rk] for some k ≥ 1,

=0 otherwise .
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For the choice pn = 1
n , our theorem applies with

W (x, y) =ck if x, y ∈ (rk−1, rk] for some k ≥ 1,

=0 otherwise .
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Example-IV (Non-compact support)

Also,

∆(x) =ak if x ∈ (rk−1, rk] for some k ≥ 1.

Here rk :=
∑k
i=0 bi →∞, and so both W,∆ have non-compact

support.

Using our theorem gives

Tn
D→
∞∑
k=1

Bin

((
Sk
2

)
, ck

)
+ Pois

( ∞∑
k=1

akSk

)
,

where Sk ∼ Pois(bk) are mutually independent.
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Theorem II

Our first result shows that under (A1), (A2), (A3), the limit of
Tn can be expressed as ψ(W,d, λ) for suitable W,d, λ.

Theorem (Bhattacharya-Mukherjee-M., AAP-2020)

Suppose ETn = O(1). Then (under no other assumption) if Tn
converges in distribution to a limit, then the limit must be in the
closure of ψ(W,d, λ).

Essentially, after permuting the remaining vertices, the
assumptions of the theorem does (approximately) hold along a
subsequence.

We claim that the class ψ(W,d, λ) is closed under weak topology.
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Theorem III

So far we have not shown any examples where the limit is just a
Poisson.

To address this, let’s first state a characterization result for
Poisson convergence.

Theorem (Bhattacharya-Mukherjee-M., AAP-2020)

If ETn = O(1), the following are equivalent:

(i) Tn
D→ Pois(λ).

(ii)
lim

M→∞
lim

n→∞
E(Tn,M ) = λ, lim

M→∞
lim

n→∞
V ar(Tn,M ) = λ.
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Theorem III

Here

Tn,M :=
∑
i<j

Gn(i, j)XiXj1{di ≤Mcn, dj ≤Mcn}

is a truncated version of Tn.

The last theorem can be viewed as a truncated second moment
phenomenon.

This immediately implies the following simpler second moment
phenomenon:

Corollary (Bhattacharya-Mukherjee-M., AAP-2020)

If ETn → λ and V ar(Tn)→ λ, then Tn
D→ Pois(λ).

Compare this with the more well studied fourth moment
phenomenon for the Gaussian distribution (see Ivan Nourdin’s
webpage for a list of papers on this topic).
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Example-I (Erdős-Rényi)

Suppose Gn is an Erdős-Rényi graph with parameter qn → 0 such

that qn � 1
n2

(needed to ensure |E(Gn)| P→∞).

Then it has approximately
(
n
2

)
qn ∼ n2qn

2 edges with high
probability.

Let pn be such that p2n
n2qn
2 → λ.

Then Tn
d→ Pois(λ).

Similar results hold for sparse block models, and random regular
graphs.
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Example-II (Why Truncate?)

Suppose Gn is a disjoint union of K1,n, and n disjoint edges.
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Example-II (Why Truncate?)

Then Gn has n+ 1 + 2n ∼ 3n vertices, and n+ n = 2n edges.

Then with pn = 1
n , we have ETn = pn|E(Gn)| → 2.

However, it is not hard to check that Tn
D→ Pois(1).

This is because with high probability, there are no
monochromatic edges of color 1 in the star graph.

The truncated second moment result captures this behavior
automatically.
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Proof idea of Theorem I

With cn the number of colors, we split the vertices into three
groups,

(i) degree less that εcn (low degree vertices);

(ii) degree between εcn and Mcn (high degree vertices);

(iii) degree greater than Mcn (super high degree vertices).

By using a first moment computation using Markov’s inequality,
we show that the super high degree vertices do not contribute for
M large.
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Proof idea of Theorem-I

Thus there are three terms which contribute to the limit:

(i) T3,n, which counts monochromatic edges between low degree and
low degree vertices. This gives Q3 ∼ Poisson.

(ii) T2,n, which counts monochromatic edges between low and high
degree vertices. This gives Q2, the Poisson mixture.

(iii) T1,n, which counts monochromatic edges between high and high
degree vertices. This gives Q1, which in many examples is the
sum of Binomials with quadratic Poisson parameters.

We argue using method of moments that T3,n is asymptotically
independent from T1,n and T2,n.
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Proof idea of Theorem-I

Using

(i) ( A1): strong cut metric convergence of WGn on [0,K]2

+
(ii) (A2): the convergence of the degree function dGn in L1[0,K],

we argue that the joint moments of T1,n and T2,n converge.

We also show that the limiting moments determine their joint
distribution.

To identify the distribution of (Q1, Q2), we compute the Mgf
along a well chosen sequence of inhomogeneous random graphs.

This gives the joint Mgf of (Q1, Q2), thereby proving Theorem I.
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Summary of our results

Motivated by graph coloring problems, we study asymptotic
distribution of quadratic forms of Bernoulli random variables.

We characterize the class of all possible limits of Bernoulli
quadratic forms.

As an application, we characterize exactly when is the limit a
Poisson random variable.

We apply our theorem to several examples, which includes both
deterministic and random graphs.
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Future Scope

Can one characterize the class of all possible limit distributions
for the number of monochromatic triangles of color 1?

What
about other subgraphs?

Here we consider the case when the number of colors
c = cn →∞. What can be said if c is fixed, and does not grow
with n? Here we expect a similar result, but with Weiner
process/Brownian motion replacing the Poisson process.

Finally, our quadratic form is (in terms of) the adjacency matrix
of a simple graph. Does a similar analysis apply for general
quadratic forms?
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