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Based on a completely different method to
Berger

Most interesting when do 6 x Is where the model
is not expected to be mean field no previous power
law upper

bounds known

Same proof gives
similar results forgroups other than
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exist antical exponents S and y such that
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Our bounds are of reasonable order inside
the conjectured long range

dominant regime



Prof overview

Two base strategies for proving no
percolation at pc.IR

Supercntral strategy
Prove that if infiniteclusters exist then they must

be large
in some

way that guarantees they
have pet

This shares that p
clusters exist3 is open

does not typically yield quantitative control

of antral percolation
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Subentral
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by proving that some non trivial upper
bound

on the distribution of Ko holds uniformly on
10 pal

Often uses a bootstrapping unrest

Prove that some non trivial bound implies a strictly
stronger version of itself
E g Hwa Slade lace expasm method roughly

works by showing that in high dimensions
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If CH is established a continuity argument
yields that the strong form of

the band
holds uniformly a cop and henk at pc also



Our proof is also
based

on a bootstrapping

argument

Builds on ideas
originally

used to analyze
percolation on some biggroups some jointwith Jonathan Herman

One
key ingredient is the twoghost inequality
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Let's now prove that if a cd4
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Two ingredients to improve this proof

Find a better
way

to convert volume
tail bounds into two pointbounds

Tppcxey

Improved twoghost inequality
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Gets something out ofthe bootstrapping hypothesis

Handles lay x better



Universal tightness of the maximum
cluster size

G CU E J weighted graph
J E Lo n percolation defined

as before

Given A EV finite define
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essentially the

median makes eggs come
out more nicely

We will
prove that lkmaxttt.tl

is always of order Mp Ht with
universal upper and lower tabitands



This has the following consequence

If G is such that Rakuten aAn 0
that

then in fact
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Proof is just calculus



I
ThB inequality is extremely useful

Corollary If Aca and Goat are
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Similarly lets us get upper
bound for high dim

tar at p gion Rd results of HookSlade

Yields the hyperscaling inequality
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Believed to be an equality in
low

dimensions



Deduction of the corollary for the theorem
Write M MpHH As before
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Let's now prove the universal tightness
theorem

Key combinatorial lemma

Let G K a connected
locally finite graph

and let A E V be finite I Al z 3

Then F E Ez EE disjoint such that

Ei Ez both span connected subgraphs ofG

The sets VCE and V Ee of veties
incident to the two edge sets satisfy

IAl E NCE in Al E EstAl i 4,2



Proof Suffices to consider the case 6
otherwise

a tree taking a
spanning hee

We will take Ei Ez to be a portion
of the edge set
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Otherwise it has at least 2 children
not incident toEi

Prk the child that has the fewest
elements of A descended from it

EH Ei u all edges in subtree with
this child
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Stop when
every

vertex of A touches Ei
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Given this lemma the universal

tightness
theorem follows faBK t.heegual.ly
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The Aizenman Kersten Newman
method Af weehammetime

Wp Bernoulli
p
bond percolation

theorem Aizenman Kester
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