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Algorithms and phase transitions

• When are phase transitions barriers to efficient algorithms?


• Does the type of phase transition play a role?


• Can we use tools from statistical physics to design new 
algorithms?


• Can we use the algorithmic perspective to understand phase 
transitions?



Based on:

• “Efficient sampling and counting algorithms for the Potts model 
on  at all temperatures” (joint w/ Borgs, Chayes, Helmuth, 
Tetali, STOC 2020)


• “Finite-size scaling and phase coexistence for the random 
cluster model on random graphs” (joint w/ Helmuth, Jenssen 
on arxiv soon!)
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Outline

• Potts model and random cluster model


• What is a phase transition?  What is a first-order phase 
transition?


• Contour representations, Pirogov-Sinai theory


• Algorithms on  and random graphsℤd



Potts model
Probability distribution on q-colorings   of the vertices of G:σ : V(G) → [q]

μ(σ) =
eβm(G,σ)

ZG(β)

 is the number of monochromatic edges of G under 

 

m(G, σ) σ

 is the inverse temperature.   is the ferromagnetic case: same color preferred β β ≥ 0

   is the partition function. ZG(β) = ∑
σ∈[q]V

eβm(G,σ)



Potts model

High temperature (  small)β Low temperature (  large)β



Phase transitions
• On  the Potts model undergoes a phase transition as  increases


• For small  influence of boundary conditions diminishes as volume 
grows; for large  influence of boundary conditions persists in infinite 
volume 

• For small , correlations decay exponentially fast, configurations are 
disordered (on, say, the discrete torus)


• For large , we have long range order (and a dominant color in a typical 
configuration)
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Random cluster model
The random cluster model is a generalization of the Potts model.


Probability distribution on subsets of edges of G:





 is the number of connected components of .

μq,β(A) = qc(A)(eβ − 1)|A|/ZG(q, β)

c(A) (V, A)

 can be non-integral.   corresponds to 
independent edge percolation
q > 0 q = 1



Random cluster model

Edwards-Sokal coupling:


1. Pick a set of edges 
according to the random 
cluster measure


2. Determine the connected 
components



Random cluster model

Edwards-Sokal coupling:


1. Pick a set of edges 
according to the random 
cluster measure


2. Determine the connected 
components


3. Assign one of the q colors 
uniformly and independently 
to each connected 
component



Phase transitions
• Another definition of a phase transition: plot the limiting value of an 

observable against .  A phase transition occurs at a non-analytic pointβ

First-order Second-order

βc βc



Large q behavior
• For q large enough as a function of d, the random cluster model exhibits a 

first-order phase transition. 


• No middle ground: for all  typical configurations consist of very few or 
very many edges (say,  or  for large enough q)


• Conditioned on number of edges, nice probabilistic properties, including  
exponential decay of correlations


• Proved by Laanait, Messager, Miracle-Sole, Ruiz, Shlosman, 1991 using 
Pirogov-Sinai theory

β
≤ |E | /10 ≥ 9 |E | /10



Phase transitions and algorithms

• Two main computational problems associated to a statistical physics 
model: approximate the partition function (counting) and output an 
approximate sample from the model (sampling)


• Many different approaches including Markov chains, correlation decay 
method, polynomial interpolation.  All are limited by or must bypass 
phase transitions (slow mixing, long-range correlations, accumulation of 
zeroes on real axis)



Markov chains
• For the Potts model we have several useful Markov chains: 


• Glauber dynamics - pick a random vertex and update color


• Swendsen—Wang dynamics - pick a cluster and update color


• Glauber dynamics mix slowly for  - there is a bottleneck between 
mostly Red and mostly Green configurations


• Swendsen-Wang mixes slowly at  - the middle ground is a 
bottleneck (Gore-Jerrum for , Borgs-Chayes-Frieze-Kim-Tetali-Vigoda-
Vu and Borgs-Chayes-Tetali for , Galanis-Stefankovic-Vigoda-Yang for 
random graphs. Consequence of the first-order phase transition

β ≥ βc

β = βc
Kn
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Contour models

• Random cluster model has two ground states: the disordered state 
 and the ordered state .


• In the Potts model these correspond to choosing the color of each vertex 
independently and choosing a single color for all vertices. 


• Contours provide a geometric way of separating a RC configuration into 
ordered and disordered regions

A = ∅ A = E



Contour models

• Idea of Pirogov-Sinai theory is to use contour models to separate 
configurations into mostly ordered and mostly disordered 


• Leads to two new partition functions  and 


• These can be controlled via the cluster expansion

Zdis Zord



Free energies

Let     and  


By showing no middle ground, it follows that 




 is the point at which  

fdis = lim
n→∞

1
n

log Z̃dis ford = lim
n→∞

1
n

log Z̃ord

f = lim
n→∞

1
n

log Z = max{fdis, ford}

βc fdis = ford



Free energies

βc



At criticality

• At ,    and   match on an exponential scale.


• On discrete torus, 


• Smaller order corrections in n (volume of torus) are finite-size effects 
(Borgs—Kotecky—Miracle-Sole, 1991)


• .   Typical configurations look either 
disordered or ordered — no mixtures!  unlike in second-order phase 
transition

β = βc Zdis Zord

Zord(βc) ≈ q ⋅ Zdis(βc)

Z = Zord + Zdis + exp(−Θ(n(d−1)/d))



What’s new
• The cluster expansion (and Pirogov-Sinai theory) can be made 

algorithmic: approximate  and  separately.  


• First-order phase transition means that this suffices at criticality.


• Efficient sampling and counting for Potts and RC on  at all 
temperatures (large q)  [BCHTP]


• Apply the same approach to other graphs: efficient algorithms at all 
temperatures on random -regular graphs (large q) [HJP]. 


• This gives us a detailed phase diagram of the random cluster model on 
random graphs: correlation decay, local weak convergence, precise phase 
coexistence etc. (see also Galanis-Stefankovic-Vigoda-Yang)

Zdis Zord
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Rest of the talk

• High-level picture of contour models and cluster expansions


• How to makes these tools algorithmic


• What to do for random graphs?  We lose some geometry but gain 
expansion.



Constructing Contours



Contour representation
We can describe a configuration geometrically:

Ordered: occupied edges

Disordered: unoccupied edges

Boundaries between ordered/
disordered regions are 
contours

Contours are non-intersecting, 
nested, with labels indicating 
the exterior and interior ground 
state



Contour representation
We can describe a configuration geometrically:

Ordered: occupied edges

Disordered: unoccupied edges

A configuration is (dis)ordered 
if the only region that wraps 
around the torus (winding 
number >0) is (dis)ordered

If any contour wraps around, 
the configuration is part of the 
middle ground.



Contour representation
We can express the RC weight of a 
configuration in terms of its contours.

Ordered regions B have a volume factor 
q(eβ − 1)d|B|

Disordered regions B have a volume factor 
q|B|

Contours have a penalty factor 
exponentially small in their size (number of 
edges crossing the contour) e−κ∥γ∥



Contour representation

Weight of this configuration:


(eβ − 1)nd/2 ⋅ e−κ∥γ∥ ⋅ ( q
(eβ − 1)d )

|Int(γ)|

 is increasing in q.  
κ βc ≈ log q/d



Contour representation

Outer contours



Contour representation

Outer contours

Weight of all configurations with these 
outer contours:





where  is the partition function 
with disordered boundary conditions 

(eβ − 1)nd∏
γ∈Γ

e−κ∥γ∥Zdis(Int(γ))(eβ − 1)−|Int(γ)|

Zdis(Λ)



Contour representation

Outer contours

Express  as a sum over collections of 
compatible outer contours:


Zord

Zord = q(eβ − 1)nd ∑
Γ

∏
γ∈Γ

e−κ∥γ∥Zdis(Int(γ))(eβ − 1)−|Int(γ)|

This looks like a generalized hard-core 
model: sum over `independent set’, 
product of weights



Contour representation
With some additional manipulations (standard in Pirogov-Sinai theory) we 
have (sums are over collections of non-intersecting contours): 

Zord = q(eβ − 1)nd ∑
Γ

∏
γ∈Γ

Kord(γ)

Zdis = qn ∑
Γ

∏
γ∈Γ

Kdis(γ)

For q large, either  or  is exponentially small in  (  
and  respectively)

Kord(γ) Kdis(γ) ∥γ∥ β ≥ βc
β ≤ βc



Cluster expansion
• The cluster expansion is a tool from mathematical physics for analyzing 

probability laws on ‘dilute’ collections of geometric objects.


• It applies to a very general weighted independent set model — on a 
graph with inhomogeneous weights and unbounded vertex degrees. Each 
vertex represents a geometric object, neighboring objects overlap.

Z = ∑
Γ

∏
γ∈Γ

wγ



Cluster expansion

• The cluster expansion says that, under some conditions,

log Z = ∑
Γc

Φ(Γc) ∏
γ∈Γc

wγ

• The sum is over connected collections of objects. Informally, the 
conditions say that the weights are exponentially small in the size of the 
objects.




Algorithms
Making the cluster expansion algorithmic requires:


Enumerating contours of size : essentially enumerating connected 
subgraphs in a bounded degree graph


Computing contour weights : tricky because weights involve ratios 
of partition functions, but this can be done inductively using the cluster expansion


Sampling is done via self-reducibility on the level of contours

O(log n)

Kdis(γ), Kord(γ)



Random graphs
We can apply a similar approach to the random cluster model on -regular  
random graphs.

Δ

Thm (Helmuth, Jenssen, P.)  For ,  large enough:


There are efficient approximate counting and sampling algorithms for the 
Potts and random cluster models on random -regular graphs at all 
temperatures.

Δ ≥ 5 q = q(Δ)

Δ



Random graphs
Thm (Helmuth, Jenssen, P.)  For ,  large enough:


•Determine distribution of  at 


•Exponential decay of correlations for 


•Local convergence of RC measure to free or wired RC measure on infinite 
-regular tree

Δ ≥ 5 q = q(Δ)
Zdis/Zord βc

β ≠ βc

Δ

Compare to Galanis-Stefankovic-Vigoda; Montanari-Mossel-Sly; Dembo-
Montanari-Sly-Sun; Sly-Sun; very different techniques based on verifying the 
predictions of the cavity method; these results are generally on the level of 
the free energy



Random graphs
Random graphs are very good expanders and are locally tree-like.


We can define  and  via polymer models representing deviations 
from the disordered and ordered ground state.


Zdis Zord

We don’t have to define weights inductively since the boundary of polymers 
is proportional to volume.  But we lose the geometry of  and have to argue 
indirectly about the non-local RC interaction via expansion. 
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Summary
• The first-order phase transition in the Potts and Random Cluster model 

is a barrier to Markov chains like Swendsen-Wang


• But it facilitates a different type of algorithm based on approximating / 
sampling from ordered and disordered configurations separately 


• This allows us to find efficient algorithms at all temperatures, including 
critical 


• We can follow this framework for random graphs as well, obtaining new 
algorithms and new probabilistic results



Open questions
• Are there provably fast Markov chain algorithms to sample from these 

models at all temperatures? 


• Can we deal with boundary conditions and interfaces algorithmically?


• How can we deal with second-order phase transitions algorithmically?

Thank you!


