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1 On groups of finite upper rank

Dan Segal

April 27, 2021

Rank and upper rank

For a finite group G with Sylow p-subgroup P the rank and the p-rank of
G are defined by

r(G) = sup{d(H) | H ≤ G},

rp(G) = r(P ),

where as usual d(H) denotes the minimal size of a generating set for H . When
G is an arbitrary group, F(G) denotes the set of finite quotient groups of G,
and we define the (‘local’ and ‘global’) upper ranks of G:

urp(G) = sup{rp(Q) | Q ∈ F(G)}

ur(G) = sup{r(Q) | Q ∈ F(G)}.

A theorem of Lucchini [L], first proved for soluble groups by Kovács [K], asserts
that for a finite group G,

sup
p

rp(G) ≤ r(G) ≤ 1 + sup
p

rp(G),

so the analogue holds for the upper ranks of an infinite group; in particular,
ur(G) is finite if and only if the local upper ranks urp(G) are bounded as p
ranges over all primes.

Let us denote by U the class of all groups G such that urp(G) is finite for
every prime p. One can describe U more colourfully as the class of groups whose
profinite completion has a p-adic analytic Sylow pro-p subgroup for every prime
p [DDMS].

Background

More than 20 years ago, Alex Lubotzky conjectured that there is a ‘subgroup
growth gap’ for finitely generated soluble groups. We had recently established
that a finitely generated (f.g.) residually finite group has polynomial subgroup
growth if and only if it is virtually a soluble minimax group (see [LMS] or [LS],
Chapter 5). I showed in [S3] that there exist f.g. groups of arbitrarily slow
non-polynomial subgroup growth; the Lubotzky question amounts to: do there
exist such groups that are soluble?
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Now if a f.g. soluble group G has subgroup growth of type strictly less
than nlogn/(log logn)2 then urp(G) is finite for every prime p ([MS], Prop. 2.6,
[S2], Proposition C). On the other hand, it is known that a finitely generated
residually finite group has finite upper rank if and only if it is virtually a soluble
minimax group [MS1]. So Lubotzky’s conjecture would follow from

Conjecture A [S2] Let G be a f.g. soluble group. If G ∈ U then G has
finite upper rank.

Equivalently: if the upper p-ranks of G are all finite, then they are bounded.
If G is assumed to be residually finite, this conclusion is equivalent to saying
that G is a minimax group.

In fact, Conjecture A would imply that a f.g. soluble group canot have sub-
group growth of type strictly between polynomial and nlogn ([S5], Proposition
5.1).

I am now doubtful about this conjecture, having spent over two decades
failing to prove it. What follows is a survey of what is known on the topic.

Olshanski-Osin groups

In [MS] we raised the question: is Conjecture A true even without the solu-
bility hypothesis? If G is a group with ur2(G) finite then G has a subgroup H of
finite index such that every finite quotient of H is soluble ([LS], Theorem 5.5.1).
This (at first sight surprising) consequence of the Odd Order Theorem suggests
that the solubility hypothesis in Conjecture A may be redundant. Without that
hypothesis, however, the conjecture is false, as was recently pointed out to me
by Denis Osin. I am very grateful to him for allowing me to reproduce his
argument here. It depends on

Theorem 1 ([OO] Theorem 1.2) Let P = (pi) be an infinite sequence of primes.
There exists an infinite 2-generator periodic group G(P ) = G0 having a de-
scending chain of normal subgroups (Gi)i≥0 with

⋂
Gi = 1 such that Gi−1/Gi

is abelian of exponent dividing pi for each i ≥ 1.

Now let G = G(P ) where P consists of distinct primes. Each quotient G/Gn

is finite. Given m ∈ N there exists n such that pi ∤ m for all i ≥ n. It is easy
to see that each element of Gn has order coprime to m, whence Gn ≤ Gm. It
follows that for each prime p,

urp(G) = sup{urp(G/Gm) | m ∈ N}

= sup{rp(G/Gn) | n ∈ N} =

{
rp(G/Gk) if p = pk

0 if p 6= pi ∀i

}
< ∞.

Thus G ∈ U . On the other hand, G is residually finite and not virtually
soluble (as it is infinite, f.g. and periodic), and so G has infinite upper rank by
the theorem from [MS1] quoted above.

Whether Conjecture A holds with ‘soluble’ replaced by ‘torsion-free’ is still
an open problem.
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The groups of slow subgroup growth constructed in [S3] are built out of
finite simple groups. The groupsG(P ), in contrast, have all their finite quotients
soluble: I call such groups of prosoluble type (because their profinite completions
are prosoluble). As far as I know, these provide the first such examples with
arbitrarily slow non-polynomial subgroup growth; they show that Lubotzky’s
conjecture becomes false if ‘soluble’ is replaced by ‘of prosoluble type’:

Proposition 2 let f : N → R>0 be an unbounded non-decreasing function.
Then there exists a sequence P of primes such that the group G = G(P ) satisfies

sn(G) ≤ nf(n)

for all large n, but G does not have polynomial subgroup growth.

Here, sn(G) denotes the number of subgroups of index at most n in G.

Proof. Suppose that P = (pi) is a strictly increasing sequence of primes. Let
H be a proper subgroup of index ≤ n in G. Then G0 > H ≥ Gn! ≥ Gk for some
k. Let k be minimal such. Then Gk ≤ H ∩Gk−1 < Gk−1, so

pk | |Gk−1 : H ∩Gk−1| ≤ n.

It follows that
sn(G) = sn(G/Gk(n))

where k(n) is the largest k such that pk ≤ n.
Put Qn = G/Gk(n). According to [LS], Corollary 1.7.2,

sn(Qn) ≤ n2+r(n)

where r(n) = maxp rp(Qn). Write mj = |G : Gj−1| for each j ≥ 1. Since
G is a 2-generator group, Gj−1 can be generated by 1 + mj elements, and so
rpj

(Qn) ≤ 1 +mj for j ≤ k(n), while rp(Qn) = 0 if p /∈ {p1, . . . , pk(n)}.
Now we can choose the sequence P recursively as follows: p1 is arbitrary.

Set µ1 = 1. Given pi and µi for i ≤ t, set

µt+1 = µt · p
1+µt

t

and let pt+1 > pt be a prime so large that

f(pt+1) ≥ 3 + µt+1.

Note that |Gj−1 : Gj | ≤ p
1+mj

j for each j, so mj+1 ≤ mj · p
1+mj

j . It follows
that mj ≤ µj for all j. Then

r(n) ≤ max{1 +mj | j ≤ k(n)} ≤ max{1 + µj | j ≤ k(n)}

= 1 + µk(n)

≤ f(pk(n))− 2 ≤ f(n)− 2.
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Thus
sn(G) = sn(Qn) ≤ n2+r(n) ≤ nf(n).

Of course, G does not have polynomial subgroup growth because it has
infinite upper rank, as observed above.

Minimax groups: a reminder

Let us denote by S the class of all residually finite virtually soluble minimax
groups. The following known results will be used without special mention:

• If G ∈ S then G is virtually nilpotent-by-abelian.

• If G ∈ S then G is virtually residually (finite nilpotent).

• A minimax group is in S if and only if it is virtually torsion-free.

• The class S is extension-closed.

• If G is f.g. and virtually residually nilpotent then G is residually finite.

• If G has a nilpotent normal subgroup N such that G/N ′ is (a) minimax
resp. (b) of finite upper rank, then G is (a) minimax, resp. (b) of finite
upper rank.

• Let G be f.g. and residually finite. Then ur(G) is finite if and only if
G ∈ S.

For most of these, see [LR], Chapter 5 and Chapter 1. The penultimate claim
is an easy consequence of [LR], 1.2.11. The final claim is [MS1], Theorem A.

Some known cases

Proposition 3 Let G be a f.g. nilpotent-by-polycyclic group. If G ∈ U then G
is a minimax group.

Proof. Let N be a nilpotent normal subgroup of G with G/N polycyclic. It
will suffice to show that G/N ′ is minimax, so replacing G by this quotient we
may assume that N is abelian. Then N is Noetherian as a G/N -module, so the
torsion subgroup T of N has finite exponent, e say. Let σ be the set of prime
divisors of e.

By P Hall’s ‘generic freeness lemma’ (cf. [LR], 7.1.6) N/T has a free abelian
subgroup F1/T such that N/F1 is a π-group for some finite set of primes π.
Then F1 = T × F where F is free abelian, and N/F is a π ∪ σ-group.

Let p /∈ π ∪ σ be a prime. Then N = FNp and Np ∩ F = F p, so F/F p ∼=
N/Np. Now G/Np is residually finite and the image of N/Np in any finite
quotient of G/Np has rank at most urp(G) = rp; it follows that |F/F p| =
|N/Np| ≤ prp . Therefore F has rank at most rp. Hence for each prime q /∈ π∪σ
we have

urq(G) ≤ ur(G/N) + ur(F ) ≤ ur(G/N) + rp.
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It follows that ur(G) is finite, since G/N is polycyclic and π ∪ σ is finite.
As G is residually finite it follows that G is a minimax group. (For the

quoted properties of f.g. abelian-by-polycyclic groups, see for example [LR],
Chapters 4 and 7.)

The upper p-rank of a group G can equivalently be defined as the rank of
a Sylow pro-p subgroup P of Ĝ, the profinite completion of G, where for a
profinite group P , the rank of P is

r(P ) = sup{r(P/N) | N ⊳ P, N open}.

The pro-p groups of finite rank are well understood (see [DDMS]); in par-
ticular, they are linear groups in characteristic 0.

Proposition 4 ([LS], Window 8, Lemma 9) Let K be a f.g. residually nilpotent

group. Suppose that the pro-p completion K̂p of K has finite rank for some prime
p. Then there exists a finite set of primes π such that the natural map

K →
∏

q∈π
K̂q

is injective.

This is the key to

Theorem 5 ([S5], Theorem 5) Let G be a f.g. group that is virtually residually
nilpotent. If G ∈ U then G has finite upper rank.

Proof. It follows from Proposition 4 that G has a subgroup K of finite in-
dex such that K is residually (finite nilpotent of rank at most r); here r =
maxq∈π urq(G). By a result mentioned above, we may also take it that every
finite quotient of K is soluble. The main result of [S1] now shows that K is
virtually nilpotent-by-abelian (see also [LS], Window 8, Corollary 5), and the
result follows by Proposition 3.

Let H denote the class of all groups G with the property: every virtually
residually nilpotent quotient of G is a minimax group.

Theorem 5 shows that finitely generated groups in U belong to H. It is not
true that every f.g. soluble residually finite group in H has finite upper rank:

Proposition 6 ([PS], Proposition 10.1) Let p be a prime, let

H = 〈xn (n ∈ Z);xp
n = xn−1〉

be the additive group of Z[1/p] written multiplicatively, and let τ be the auto-
morphism of H sending xn to xn+1 for each n. Extend τ to an automorphism of
the group algebra FpH and then to an automorphism of W = FpH⋊H = Cp ≀H.
Set G = W ⋊ 〈τ〉. Then
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• G is a 3-generator residually finite abelian-by-minimax group

• G ∈ H

• urq(G) = 2 for every prime q 6= p

• urp(G) is infinite.

This shows, also, that the hypothesis of Conjecture A can’t be weakened by
omitting finitely many primes.

Still, the strongest result so far obtained towards Conjecture A rests on a
consideration of certain groups in H. It seems clear that the trouble with the
last example is due to the presence of ‘bad’ torsion; if we exclude this we obtain
the following:

Theorem 7 ([PS], Theorem 3.2) Let G ∈ H be f.g. and residually finite. Sup-
pose that G has a metabelian normal subgroup N with G/N polycyclic. Then
G/N ′ is minimax. If N ′ has no π-torsion where π = spec(G/N ′) then G is
minimax.

(For a minimax group H , spec(H) denotes the (finite) set of primes p such
Cp∞ is a section of H .)

From this, it is relatively straightforward to deduce

Theorem 8 (cf. [PS], Corollary 3.3) Let G be a finitely generated group that
is nilpotent-by-abelian-by-polycyclic. If G ∈ U then G has finite upper rank.

Proof. We may assume that G satisfies the hypotheses of Theorem 7. Keeping
the notation there, put A = N ′, an abelian normal subgroup of G. For a prime
p and K ⊳f G let Dp(K)/(A ∩ K) be the p′-component of the finite abelian
group A/(A ∩K). Then

rp(G/K) = rp(G/KDp(K)).

So if we set
D =

⋂

p/∈π
K⊳fG

KDp(K),

we have urp(G) = urp(G/D) for all p /∈ π.
Now AD/D ∼= A/(A ∩D) has no π-torsion, since each A/(A ∩KDp(K)) is

a p-group. Clearly G/D is residually finite, so Theorem 7 applies to show that
G/D is a minimax group. Hence

urp(G) = urp(G/D) ≤ ur(G/D) < ∞

for every p /∈ π, and as π is finite it follows that urp(G) is bounded over all
primes p.
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The hypotheses in Theorem 8 seem rather restrictive. However, if we could
only replace ‘nilpotent-by-abelian’ with ‘abelian-by-nilpotent’ then we could
deduce the full force of Conjecture A; this is explained below.

Modules of finite upper rank

Let G be a counterexample to Conjecture A of least possible derived length,
l; we may assume that G is residually finite. Let A be maximal among abelian
normal subgroups of G that contain G(l−1). Then G/A is residually finite (by
an elementary lemma) and has finite upper rank, so G/A is a minimax group.
In particular, G/A is virtually nilpotent-by-abelian and so G is abelian-by-
nilpotent-by-polycyclic: this is the point of the final remark in the preceding
section.

Putting Γ = G/A we consider A as a Γ-module, written additively as AΓ.
If B is a submodule of finite index in AΓ then G/B is residually finite

(because S is extension-closed), whence

rp(A/B) ≤ urp(G)

for each prime p; and it is clear that

ur(G/B) ≤ r(A/B) + ur(G/A).

Let us define the upper rank of a Γ-module M by ur(M) = sup{r(M/B) |
B ≤Γ M, M/B finite}, and set

urp(M) = sup{r(M/B) | pM ≤ B ≤Γ M, M/B finite}

= ur(M/pM).

I will say that M is a quasi-f.g. Γ-module if there exists a f.g. group G that
is an extension of M by Γ. The preceding observations now show that AΓ is a
counterexample to

Conjecture B Let Γ be a f.g. residually finite soluble minimax group and
let M be a quasi-f.g. Γ-module. If urp(M) is finite for every prime p then M
has finite upper rank.

Conversely, it is easy to see that if M is a counterexample to Conjecture B
then the corresponding extension G is a counterexample to Conjecture A. So
the two conjectures are equivalent.

Theorem 8 establishes Conjecture B for the special case where Γ is abelian-
by-polycyclic. A reduction step in the proof is Proposition 5.2 of [PS], which
shows that M contains a finitely generated Γ-submodule B such that the finite
module quotients of B are ‘nearly all’ isomorphic to finite quotients of M, and
conversely. The hypothesis that Γ is abelian-by-polycyclic is used in the proof of
this reduction, but can be dispensed with; this is explained in the next section.
The main part of the proof, however, does depend on Γ having an abelian normal
subgroup A such that Γ/A is polycyclic. Following a strategy devised by P. Hall
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[H] and further developed by Roseblade [R], one examines the structure of B
as a module for the group ring ZA, with Γ/A as a group of operators. The
necessary module theory is developed in [S4] and [S2].

For the general case of Conjecture B, it would seem necessary to generalize
this machinery in one of two directions: either allow A to be nilpotent (rather
than abelian), or allow Γ/A to be minimax (rather than polycyclic – while still
assuming Γ/CΓ(A) to be polycyclic, if one takes A inside the centre of the
Fitting subgroup of Γ). Whether either of these approaches is feasible remains
unclear. Machinery relevant to the first approach has been developed by Tushev
[T]. A major difficulty with the second approach is the fact that the ‘generic
freeness’ property mentioned above definitely fails when Γ/A is not polycyclic,
as observed by Kropholler and Lorensen in [KL], Cor. 5.6. Other aspects of the
Hall-Roseblade theory have been usefully generalized by Brookes [B].

On the other hand, if one is seeking a counterexample to conjecture B,
the simplest candidate would seem to be the following group: Let K be the
Heisenberg group over Z[1/2] and take Γ = K ⋊ 〈t〉 where t acts on a matrix by
doubling the off-diagonal entries (and multiplying the top right corner entry by
4). Then M could be the quotient ZΓ/J where J is a carefully constructed right
ideal: generators of J should be chosen to ensure that ZΓ/J has finite upper
p-rank for each prime p, but in such a way that these ranks are unbounded.

A possible reduction: quasi-f.g. modules.

Let Γ be a f.g. residually finite soluble minimax group. Then Γ has a nilpo-
tent normal subgroup K such that Γ/K is virtually abelian. We fix a normal
subgroup Z of Γ with Z ≤ Z(K), and let R = ZZ denote its group ring. For a
multiplicatively closed subset Λ of R, an R-module M is said to be Λ-torsion if
every element of M is annihilated by some element of Λ.

Proposition 9 Let A be a quasi-f.g. Γ-module. Then A has a finitely generated
Γ-submodule B such that A/B is Λ-torsion for each Λ of the form RrL where
L is a maximal ideal of finite index in R not containing the augmentation ideal
(Z − 1)R.

Before giving the proof we note a corollary. For a Γ-module M, let F(M)
denote the set of isomorphism types of finite quotient Γ-modules of M .

Corollary 10 For A and B as above, we have

F(A) r S = F(B)r S

where S consists of the finite Γ-modules that have a composition factor on which
Z acts trivially.

This is essentially a formal consequence of the stated condition on Λ-torsion,
which implies that

AJ +B = A, AJ ∩B = BJ
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whenever J is the annihilator in R of some finite Γ-module not in S. Thus
questions about the upper ranks of A might be reduced to questions about the
upper ranks of the finitely generated module B, if - by some subsidiary argument
- one could leave aside the quotients lying in S (this is in principle the approach
taken in [PS], §§5, 6).

To establish the Proposition, we consider a f.g. group E with an abelian
normal subgroup A such that E/A = Γ. In E there is a series of normal
subgroups

E ⊲ K1 ≥ Z1 ≥ A ≥ γc+1(K1)[Z1,K1]

where K1/A = K is nilpotent of class c, say, and Z1/A = Z. Now Z is an
abelian minimax group, hence contains a finite subset Y1 such that Z/ 〈Y1〉 is
divisible. Since E/K1

∼= Γ/K is virtually abelian and E is f.g., K1 is finitely
generated as a normal subgroup of E; we choose a finite set X = X−1 of normal
generators for K1 and assume that X contains a set Y of representatives for the
elements of Y1. Finally, let S = S−1 be a finite set of generators for E.

Lemma 11 Let L be a maximal ideal of finite index in R = ZZ not containing
Z − 1. Then Λ = Rr L satisfies

(Λg + 1) ∩ Y1 6= ∅ (1)

for every g ∈ E.

Proof. Write D = Z ∩ (L + 1). If (1) fails for g then Dg ⊇ Y1 which implies
Dg = Z since Z/ 〈Y1〉 is divisible while |Z : Dg| is finite. Hence D = Z and so
L ⊇ Z − 1.

Now we define B to be the E-submodule of A generated by the finite set

{[x, y], [xs, y] | x ∈ X, y ∈ Y, s ∈ S} .

We aim to show that if Λ is a multiplicatively closed subset of R satisfying (1)
for every g ∈ E, then the R-module A/B is Λ-torsion; with Lemma 11 this will
complete the proof of Proposition 9.

Note that γi+1(K1) is generated by the elements vi(x,w)g for g ∈ E and

vi(x,w) = [x0, x
w1

1 , . . . , xwi

i ],

xj ∈ X, wj ∈ E. Put

Ai = 〈[vi(x,w), z]g | xj ∈ X, z ∈ Y, g, wj ∈ E〉 ,

Bi = 〈[xv, y]g | x ∈ X, y ∈ Y, g, v ∈ E, l(v) ≤ i〉

where l(v) denotes the least n such that v = s1 . . . sn (sj ∈ S). Note that
B1 = B.

Claim: A/Ac is Λ-torsion.

9



To see this, choose y ∈ Y with y − 1 ∈ Λ where y = Ay. Then (mixing
additive and multiplicative notation)

A(y − 1)c = [A,c y] ⊆ γc+1(K1) ⊆ A.

Given a generator vc(x,w)g of γc+1(K1), choose z ∈ Y such that zg − 1 ∈ Λ.
Then

vc(x,w)g(zg − 1) = [vc(x,w), z]g ∈ Ac.

Claim: For i > 1, Bi/Bi−1 is Λ-torsion.

To see this, say b = [xγu, y]g is a generator of Bi where l(u) ≤ i− 1. Choose
z ∈ Y such that zug − 1 ∈ Λ. Then

(b(zug − 1))−g−1y = [xγu, y, zu]−y−1

= [zu, x−γu, y−1]x
γu

+ [y−1, z−u, xγu]z
u

.

The first term lies in B1 ≤ Bi−1 and the second term lies in Bi−1. The claim
follows since Bi−1 is E-invariant.

Claim: Write B∞ =
⋃

j Bj . Then for i > 1, Ai ⊆ B∞ +Ai−1.

To see this, let x = (x′, x) and w = (1, w1, . . .) = (w′, w) be (i + 1)-tuples
in X, E respectively, and let z ∈ Y . Then

[vi(x,w), z]−x−w

= [vi−1(x
′,w′), xw, z]−x−w

= [xw, z−1, vi−1(x
′,w′)]z + [z, vi−1(x

′,w′)−1, xw]vi−1(x
′,w′).

The first term lies in B∞ and the second term lies in Ai−1. The claim follows
since each of these modules is E-invariant.

The three claims together now imply that A/B is Λ-torsion, and the proof
is complete.

Further reductions

Suppose that the pair (Γ,M) furnishes a counterexample to Conjecture B,
where M is finitely generated as a Γ-module. With quite a lot of extra work,
generalizing some ideas from [S4], one can establish

Proposition 12 The module M has a torsion-free residually finite quotient M̃
of infinite upper rank such that every proper, π-torsion-free residually finite
quotient of M̃ has finite rank, where π = spec(Γ).

(Here spec(Γ) denotes the (finite) set of primes p such that Γ has a section
Cp∞ .)

This reduces the problem to consideration of a ‘minimal counterexample’,
in a rather weak sense. Whether this is any help is not clear, and there seems
little point in including the proof here.
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Further results that may be relevant are obtained in [KL1]; these can be used
to show that a module like our putative counterexample has many finite-rank
quotients that split as direct sums.
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[K] L. G. Kovács, On finite soluble groups, Math. Zeit. 103 (1968), 37-39.

[KL1] P. Kropholler and K. Lorensen, The cohomology of virtually torsion-free
solvable gorups of finite rank, Trans. American Math. Soc. 367 (2015),
6441-6459.

[KL] P. Kropholler and K. Lorensen, Group-graded rings satisfying the strong
rank condition, J. Algebra 539 (2019), 326-338.

[LS] A. Lubotzky and D. Segal, Subgroup Growth, Progress in Math. 212,
Birkhäuser, Basel, 2003.

[LMS] A. Lubotzky, A. Mann and D. Segal, Finitely generated groups of poly-
nomial subgroup growth, Israel J. Math. 82 (1993), 363-371.

[LR] J. C. Lennox and D. J. S. Robinson, The Theory of Infinite Soluble
Groups, Clarendon Press, Oxford 2004.

[L] A. Lucchini, A bound on the number of generators of a finite group,
Arch. Math. 53 (1989), 313-317.

[MS] A. Mann and D. Segal, Subgroup growth: some current developments, In-
finite Groups ’94 (de Giovanni and Newell, eds.), W. de Gruyter, Berlin,
1995.

[MS1] A. Mann and D. Segal, Uniform finiteness conditions in residually finite
groups, Proc. London Math. Soc. (3) 61 (1990), 529-545.

[OO] A. Olshanskii and D. Osin, Large groups and their periodic quotients,
Proc. AMS 136 (2008), 753-759.

[PS] L. Pyber and D. Segal, Finitely generated groups with polynomial index
growth, J. reine angew. Math. 612 (2007), 173-211.

11



[R] J. E. Roseblade, Group rings of polycyclic groups, J. Pure and Applied
Algebra 3 (1973), 307-328.

[S1] D. Segal, A footnote on residually finite groups. Israel J.Math. 94(1996),
1-5.

[S2] D. Segal, On modules of finite upper rank, Trans. AMS 353 (2000),
391–410.

[S3] D. Segal, The finite images of finitely generated groups, Proc. London
Math. Soc. (3) 82 (2001), 597-613.

[S4] D. Segal, On the group rings of abelian minimax groups, J. Algebra 237

(2001), 64–94.

[S5] D. Segal, On the finite images of infinite groups, in: Groups: topologi-
cal, combinatorial and arithmetic aspects, LMS Lect. Notes 311, CUP,
Cambridge (2004), 542–563.

[S6] D. Segal, On the group rings of abelian minimax groups, II: the singular
case, J. Algebra 306 (2006), 378–396.

[T] A. V. Tushev, On primitive representations of soluble groups of finite
rank, Matemat. Sbornik 191 (2000), 117-159 = Sbornik: Mathematics
191 (2000), 1707-1748.

12


