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Overview

@ Mathematical analysis of kinetic models of dilute polymeric fluids
(Navier-Stokes—Fokker—Planck (NSFP) systems):

— existence of global-in-time large-data weak solutions
— rigorous macroscopic closure

@ Numerical approximation of Navier—Stokes—Fokker—Planck systems
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Incompressible Newtonian fluid (Navier-Stokes equations)
Find w:Qx[0,7] =R%andp: Qx(0,T] =R such that:
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Incompressible Newtonian fluid (Navier-Stokes equations)
Find w:Qx[0,7] =R%andp: Qx(0,T] =R such that:

Ve -u=0 in Q x (0,77,
0
(gtU) + Ve - (pu®u) = Vy - 2uD(u) —pl) =pf  inQx(0,T],
u=20 on 09 x (0,71,

u(z,0) = ug(z) for z € Q.

Notation:

p mass density u  velocity # >0 dynamic viscosity

p pressure f density of body forces D(u) = % (Vou) + (Vou)h)



Incompressible Newtonian fluid (Navier-Stokes equations)
Find w:Qx[0,7] =R%andp: Qx(0,T] =R such that:

Ve -u=0 in Q x (0,77,

d(pu)
ot

+Vx'(PU®U)—V:¢'(2MD(U)—PI)pr inQX(O,T],

u=20 on 09 x (0,71,
u(z,0) = ug(z) for z € Q.

History:

Navier (1822)

Poisson (1829) } — based on molecular arguments

Saint Venant (1843)

Stokes (1845) } — based on continuum mechanics arguments
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Incompressible Newtonian fluid (Navier-Stokes equations)
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Ve -u=0 in Q x (0,77,
a(ath) + Ve - (pu®u) = Vy - 2uD(u) —pl) =pf  inQx(0,T],
u=20 on 09 x (0,71,
u(x,0) =up(z) forz e Q.

Claude Louis Marie Henri Navier George Gabriel Stokes
1785-1836 1819-1903



Incompressible Newtonian fluid (Navier-Stokes equations)
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Incompressible Newtonian fluid (Navier-Stokes equations)

Find w:Qx[0,7] =R%andp: Qx(0,T] =R such that:

Ve -u=0 in Q x (0,77,
8(gtU)+Vm (pu®u) = Vo 2uD(u) —pl) =pf  inQx(0,T],
u=20 on 8QX(O,T],
u(x,0) =up(z) forz e Q.

Formal energy identity:

d 1
3 | et 0P do s 2 [ 1D(u(e,0)Pde = [ pf(e0)- u(et)do
Q Q
for all ¢ € (0,T7.



Compressible Newtonian fluid (Navier-Stokes equations)

Compressible, barotropic, viscous, isothermal Newtonian fluid in a bounded
domain Q C R?, d € {2,3}, and T > 0. Find:

density p: (z,t) € Q@ x[0,T] — p(z,t) € R,
velocity u : (z,t) € Q x [0,T] — u(z,t) € RY, such that



Compressible Newtonian fluid (Navier-Stokes equations)

Compressible, barotropic, viscous, isothermal Newtonian fluid in a bounded
domain Q C R?, d € {2,3}, and T > 0. Find:
density p: (z,t) € Q@ x[0,T] — p(z,t) € R,
velocity u : (z,t) € Q x [0,T] — u(z,t) € RY, such that
Balance of mass:
dp

8t+Vm-(pu):0 in Q x (0,77,

p(x,0) = po(x) x €.




Compressible Newtonian fluid (Navier-Stokes equations)

Compressible, barotropic, viscous, isothermal Newtonian fluid in a bounded
domain Q C R?, d € {2,3}, and T > 0. Find:
density p: (z,t) € Q@ x[0,T] — p(z,t) € R,
velocity u : (z,t) € Q x [0,T] — u(z,t) € RY, such that
Balance of mass:
dp

8t+vm (pu):(] mQX(O,T],

p(x,0) = po(z) x €.

Balance of linear momentum (Navier-Stokes equation):

I(pu)
ot

IV, (pueu) -V, S+ Vap()=pf  in@x(0,T],
u=0 on 92 x (0,71,
(pu)(z,0)=(poup)(x) = €.

v
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S(u) is the stress tensor, defined by

where I is the d x d identity matrix,

D(u) := 5(Vou+ (Vo u)")

and p® >0, u® > 0 are the shear- and bulk-viscosity coefficient.



S(u) is the stress tensor, defined by

where I is the d x d identity matrix,
D(u) == 5(Vau+ (Vo u)")
and p® >0, u® > 0 are the shear- and bulk-viscosity coefficient.

p = p(p) is the pressure satisfying, e.g., the barotropic equation of state

plp)=cp’, >0, y>1



S(u) is the stress tensor, defined by

where I is the d x d identity matrix,
D(u) := 5(Vau+ (Vo u)")
and p® >0, u® > 0 are the shear- and bulk-viscosity coefficient.

p = p(p) is the pressure satisfying, e.g., the barotropic equation of state

plp)=cp’, >0, y>1

Existence of global weak solutions (d = 3):
o P-L. Lions (1998, v > 2), E. Feireisl (2001, v > 3).



Formal energy identity

2

d dzx

1
— D(u) — =
a /., (u)

1
[p|u|2 +P<p>} a2 |
2 o d

+uB/ \Vz-u|2dx:/pf-udx
Q Q

(Vg -u)I

for all t € (0,77, with



Part 1.

The mathematical model.
kinetic theory of dilute polymers

Navier—Stokes—Fokker—Planck systems
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The mathematical model
The solvent is a compressible, barotropic, viscous, isothermal Newtonian
fluid in a bdd. domain Q C R, d € {2,3}, and T > 0. Find:

density p : (z,t) € Q2 x[0,T] — p(z,t) € R,

velocity u : (z,t) € Q x [0,T] — u(z,t) € RY, such that



The mathematical model

The solvent is a compressible, barotropic, viscous, isothermal Newtonian
fluid in a bdd. domain Q C R, d € {2,3}, and T > 0. Find:
density p : (z,t) € Q2 x[0,T] — p(z,t) € R,
velocity u : (z,t) € Q x [0,T] — u(z,t) € RY, such that
Balance of mass:
dp

p(z,0) = po(z)  x €.




The mathematical model

The solvent is a compressible, barotropic, viscous, isothermal
fluid in a bdd. domain Q C R, d € {2,3}, and T > 0. Find:

density p : (z,t) € Q2 x[0,T] — p(z,t) € R,

Newtonian

velocity u : (z,t) € Q x [0,T] — u(z,t) € RY, such that

Balance of mass:
0

p(z,0) = po(z)  x €.

Balance of linear momentum (Navier—Stokes equation

I(pu)
ot

+Va - (pu®u) =V, - S(u) +Vep(p) =p f
u=20
(pu)(z,0) = (po uo)(x)

):

in Q x (0,71,

on 90 x (0,77,

z €.




The mathematical model

The solvent is a compressible, barotropic, viscous, isothermal Newtonian
fluid in a bdd. domain Q C R, d € {2,3}, and T > 0. Find:
density p : (z,t) € Q2 x[0,T] — p(z,t) € R,
velocity u : (z,t) € Q x [0,T] — u(z,t) € RY, such that
Balance of mass:
0
8—f+vx~(pu):0 in Q x (0,7,

p(z,0) = po(z)  x €.

Balance of linear momentum (Navier-Stokes equation + elastic effects):

I(pu)
ot

+V, - (pu®u) =V, -Sw)+Veplp)=pf+Vy -7 inQx(0,T],
u=20 on 90 x (0,77,
(pu)(x,0) = (pouo)(z) =€




The mathematical model

The solvent is a compressible, barotropic, viscous, isothermal Newtonian
fluid in a bdd. domain Q C R, d € {2,3}, and T > 0. Find:
density p : (z,t) € Q2 x[0,T] — p(z,t) € R,
velocity u : (z,t) € Q x [0,T] — u(z,t) € RY, such that
Balance of mass:
0
8—?+Vx~(pu):0 in Q x (0,7,

p(z,0) = po(z)  x €.

Balance of linear momentum (Navier-Stokes equation + elastic effects):

I(pu)
ot

+V, - (pu®u) =V, -Sw)+Veplp)=pf+Vy -7 inQx(0,T],
u=20 on 90 x (0,77,
(pu)(x,0) = (pouo)(z) =€

|BUT WHAT IS 7 ?|




a) Macroscopic approach: Oldroyd-B model

By J. G. Ouprovyp, Courtaulds Limited, Research Laboratory, Maidenhead, Berks.

On the formulation of rheological equations of state

(Communicated by A. H. Wilson, F.R.S.—Received 26 July 1949—
Revised 4 November 1949)

The invariant forms of rheolog\cnl equations of state for a | b itabl

for application to all di of motion and stress, are discussed. The right invariance
properties can most readily be recognized if the frame of reference is a co-ordinate system con-
vected with the material, but it is A to transfe to a fixed frame uf reference in order
to solve the equations of state simul y with the equations of i y and of motion.
An llluntmhon is given of '.he process of formulatmg equations of state suitable for universal

on btained from a simple experiment or structural
theory Anisotropic materials, and materials whose properties depend on previous rheological
history, are included within the scope of the paper.

J.G. Oldroyd: On the formulation of rheological equations of state.

James G. Oldroyd
1921-1982

Proc. Royal Soc., Ser. A, Math. & Phys. Sci., 200 (1063): 523-541, 1950.
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@ J.G. Oldroyd: On the formulation of rheological equations of state.

Proc. Royal Soc., Ser. A, Math. & Phys. Sci., 200 (1063): 523-541, 1950.

A1 = characteristic relaxation time > 0

\%
T+ MT Hp (“) p = polymeric viscosity > 0

10 / 31



= — Fu-Vor — (Vou)r — 7(Veu)T.

[Upper-convected (Oldroyd) derivative]
Hence the Oldroyd-B evolution equation for the polymeric stress tensor is:

T+ M (?97,; +u-Ver — (Vou)r — T(VxU)T> = 2up D(u).
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Hence the Oldroyd-B evolution equation for the polymeric stress tensor is:

T+ M (?97,; +u-Ver — (Veu)r — T(VxU)T> = 2up D(u).

It has been widely used in simulations, but there are known difficulties
associated with its numerical solution as well as its mathematical analysis.
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= — Fu-Vor — (Vou)r — 7(Veu)T.
[Upper-convected (Oldroyd) derivative]
Hence the Oldroyd-B evolution equation for the polymeric stress tensor is:

ot
It has been widely used in simulations, but there are known difficulties
associated with its numerical solution as well as its mathematical analysis.

T+ M (87— +u-Vyr — (Vau) — T(qu)T> = 2u,D(u).

@ M. Renardy and B. Thomases. A mathematician's perspective on the Oldroyd-B model:
progress and future challenges. J. Non-Newton. Fluid Mech. 293 (2021).

The diffusive Oldroyd-B model (¢ > 0 stress-diffusion coefficient):
T+ M\ (88: +u-Vyr — (Vau) — T(qu)T> — A, =2p,D(u).
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v 0
Ti= 8—; 1 - Vo — (Vau)T — 7(Veu)T.
[Upper-convected (Oldroyd) derivative]

Hence the Oldroyd-B evolution equation for the polymeric stress tensor is:

ot
It has been widely used in simulations, but there are known difficulties
associated with its numerical solution as well as its mathematical analysis.

T+ M (87— +u-Vyr — (Vau) — T(qu)T> = 2u,D(u).

@ M. Renardy and B. Thomases. A mathematician's perspective on the Oldroyd-B model:
progress and future challenges. J. Non-Newton. Fluid Mech. 293 (2021).

The diffusive Oldroyd-B model (¢ > 0 stress-diffusion coefficient):

or

a1 +u-Vyr — (Vau) — T(qu)T> — A, =2p,D(u).

T+)\1<

@ A.W. El-Kareh, L.G. Leal. Existence of solutions for all Deborah numbers for a non-
Newtonian model modified to include diffusion. J. Non-Newton. Fluid Mech. 33 (1989).

@ J. Mélek, V. Prasa, T. Sk¥ivan, E. Siili. Thermodynamics of viscoelastic rate-type fluids
with stress-diffusion. Physics of Fluids, 30, 023101 (2018).



b) Microscopic approach: Kinetic theory of dilute polymers

. [ A8
George Uhlenbeck, Hans Kramers and Samuel Goudsmit
(Ann Arbor, Michigan — around 1928).

@ Werner Kuhn. Uber die Gestalt von Fadenmolekiilen in Lésung. Experientia.
vol. 3, pp. 315-318 (1947) [Original paper: Kolloid-Zeitschrift (1934)].

@ Hans A. Kramers: The viscosity of macromolecules in a streaming fluid, Physica, 11, 1944.
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Definition of the elastic extra stress tensor 7

Arbitrary point
fixed in space

u(xzt)

—
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Definition of the elastic extra stress tensor 7

Arbitrary point
fixed in space

u(xzt)

In the absence of external forces and neglecting inertial effects Langevin's
equation for the i-th bead in this model is, for: =1,..., K + 1:

K
0=—C (d?“i —u(m-,-) dt)—i_ZGU Fj(qj)dt+\/2kBTC dw; .
> —_—————

Hydrodynamic drag force J=1 Brownian force

Intramolecular force

13 / 31



After nondimensionalization and the linear change of variables:
K+1
1 +

= T, G :="riy1—ri, t=1,..., K
K+1 P

the probability density function ¢ solves the following Fokker—Planck eqn.:

oY
E—i—v u¢ +;Vql' V w) q; P 4)\ZA11F QJ>¢
1 K K
-0+ 533 4 (%
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After nondimensionalization and the linear change of variables:

1 K+1
:727“1', G :="riy1—ri, t=1,..., K
K+1 P

the probability density function ¢ solves the following Fokker—Planck eqn.:

oY
E—i—v u¢ +;Vql' V w) q; P 4)\ZA11F %)7/}

1 K K
=l 2 ;Aijvqi. (Vg ).

& A. Bhave, R.C. Armstrong, R.A. Brown. Kinetic theory and rheology of dilute,
non-homogeneous polymer solutions. J. Chem. Phys., 95 (4), 2988-3000 (1991).

& M. Dostalik, J. Malek, V. Prisa, E. Siili.
A simple approach to thermodynamically consistent modelling of non-isothermal
flows of dilute compressible polymeric fluids. Fluids, 5(3), 29 pp. (2020).
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After nondimensionalization and the linear change of variables:

K+1
1

T = K- T,
=1

qi ‘= Ti+1 — T4, izl,...,K,

the probability density function ¢ solves the following Fokker—Planck eqn.:

o0 K | K
at%—vx'(uw-l-qui- (qu)in_M;AijFi(Qj>w

1
:M"’_EZZAMV%' (Va; )

i=1 j=1

1 %
€= m (;;) is the centre-of-mass diffusion coefficient;

A = (¢/4H)(Uy/Lo) = De is the Deborah number;
Fi(q;) = HU{(%|qi\2)qi, i=1,...,K: spring forces; H > 0 the spring constant;

A:=GTG € REXK. Rouse matrix.

symm
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A) Finitely extensible nonlinear elastic (FENE) model by Warner (1972):

1 i|?
Ui(%|qi|2) = _ibi log <1 - |qb| ) — 400 as |gl? /b < oo,

defined on
Di = {q e R : |¢|* < bs}, bi >0, i=1,...,K.

B) Hookean model: U;(3|qi|*) = $|ai|* for ¢; € D; =R%, i=1,... K.
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A) Finitely extensible nonlinear elastic (FENE) model by Warner (1972):

1 i|?
Ui(%|qz-|2) = _§bi log <1 - |qb| ) — 400 as |gl? /b < oo,

defined on
Di = {q e R : |¢|* < bs}, bi >0, i=1,...,K.

B) Hookean model: U;(3|qi|*) = $|ai|* for ¢; € D; =R%, i=1,... K.

The Maxwellian is defined by

K K
M(q) == [ Mi(@),  ¢:=(q1,...,qx) € D= X D;.
i=1 i=1
where
e~ Ui(3 lail®)
i=1,... K.

M;(q;) = )
o / o~ Us(Hail) g,
D;

15 / 31



Thus the Fokker—Planck equation then becomes:

Fokker—Planck equation:

b K
Ejtv +;qu ((Vau) g 1)

1 L& P
:5Ax¢+ﬁi:1;14ijvq,(quj(ﬁ)) on Q x D x (0,T].
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Kramers—Kirkwood stress tensor:

K
T(Y) (@, 1) = k(Z/Dw(fE,qJ) g ¢ U] (3|@il*)dg — (K + 1)I/D¢(w,q7t) dq)

— (/ Y(q,¢") ¥(x, g, t) Y(x, ¢, t) dg dq’) I.
DxD

Here, v : D x D — R>q is a smooth, time-independent, z-independent and
1-independent interaction kernel, which we shall henceforth consider to be

v(¢,q) =35>0,
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Kramers—Kirkwood stress tensor:

K
T(Y) (@, 1) = k(Z/Dw(fE,qJ) g ¢ U] (3|@il*)dg — (K + 1)I/D¢(w,q7t) dq)

— (/ Y(q,¢") ¥(x, g, t) Y(x, ¢, t) dg dq’) I.
DxD

Here, v : D x D — R>q is a smooth, time-independent, z-independent and
1-independent interaction kernel, which we shall henceforth consider to be

v(¢,q) =35>0,

K =1 — dumbbell model

17 / 31



Part 2.

Mathematical analysis of the model:
existence of global weak solutions

to Navier—Stokes—Fokker—Planck systems

18 / 31



Formal energy identity

K e 2 (%)
dt/g)[2p|u| +P(p)+5(/D1/qu> +I€/DM]-' 7 dq] dx
1 2
2,5
vt |

D(w) = 5 (Vs -u) 1 der,uB/Wz uf? da
—|—253

« d dgd
o (fva) et [ o3 s
ZZA,J 5 DquJ\/> \/>dqu

11]1

:/pf-udx for all t € (0,77,
Q

2
dr + Ek

where F(s) := s(logs —1)+1for s >0 and 3> 0.
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Formal energy identity — Existence of global weak solutions

d (|1 5 ’ 0
— = P d k| M — ] d
g Q[2p|u| +P@ -+ ([ vad) wn [ v (1) q]dz
1 2
—|—2,uS/ D(u) — = (Vg -u)I dx—|—,uB/|Vx-u|2dm
Q d Q
2
+253/ Vi (/ ¢dq) de + ¢k M VI\/¢‘ dgdzx
Q D QxD M

k K K ’(/} w
+BZZAZ-J-/QXDMV%\/M-Vq”/ﬂdqu

i=1 j=1

2

= [ pf-udz for all t € (0,77,
Q
where F(s) := s(logs —1) 4+ 1 for s > 0.
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Formal energy identity — Existence of global weak solutions

d 1 5 ‘ 2 / "
= Q[§,o|u| +P(p)+3(/D1/;dq> +I<:'/D]U]-'<M) dq] dz
1 2
—|—2,u5/ Du)—=(Vy -u) I dx—|—,uB/|Vx cuftda
Q d Q
2
P
+253/ Va /1/qu Vi —| dgdz
Q D M

k K K w w
+BZZA1-J-/QXDMV%\/M-Vq”/ﬁdqu

i=1 j=1

2
de + ¢k M
QxD

= [ pf-udz for all t € (0,77,
Q
where F(s) := s(logs —1) 4+ 1 for s > 0.

Idea: construct an approximating sequence obeying an energy inequality
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Formal energy identity — Existence of global weak solutions

d [ ' ’ o
@), [2p|u| +P(p)+3(/D7,/1dq> +k/ ]L[]-'(JW) dq] dz
+2u5/ D(u)—l(Vx ) I
0 d
+2€3/ Va (/ d)dq) de + ek M
Q QxD
ZZA” quﬂ/ i qu/ dgdz

lljl

2
dx—|—,uB/ |V, -ul?de
Q

2
2 1/}

VIM

dgdx

pfrudx for all t € (0,77,
Q
where F(s) := s(logs —1) 4+ 1 for s > 0.

Idea: construct an approximating sequence obeying an energy inequality
— Energy inequality yields weak convergence of the approximating sequence
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Formal energy identity — Existence of global weak solutions

a1 ' ’ 0
= Q[2p|u|2+P(p)+3(/D¢dq> +I<:/M]-‘< )dq] dz
2 S
vt |

+253

1 2
D(u)—g(vxﬂ)l dx+,uB/Q|Vx-u|2dx

</ o
Z Z A” M Ve \/7 v \/; dgdz

1171

2

de + ¢k M
QxD

2
P

i dgdx

Va

pfrudx for all t € (0,77,
Q
where F(s) := s(logs —1) 4+ 1 for s > 0.

Idea: construct an approximating sequence obeying an energy inequality
— Energy inequality yields weak convergence of the approximating sequence
— Most difficult step: passage to limit in nonlinear terms requires strong convergence

20 / 31



Theorem

For any FENE-type spring-potential, the compressible NSFP system has a
global-in-time large-data entropy-dissipative weak solution.

(8 JW. Barrett, E. Siili
Existence of global weak solutions to compressible barotropic finitely extensible nonlinear
bead-spring chain models for dilute polymers. M3AS 26(3) (2016) 469-568.

[§ E. Feireisl, Y. Lu, E. Siili:
Dissipative weak solutions to compressible Navier—Stokes—Fokker—Planck systems with
variable viscosity coefficients. J. Math. Anal. Appl. 443 (2016) 322-351.
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Theorem

For any FENE-type spring-potential, the compressible NSFP system has a
global-in-time large-data entropy-dissipative weak solution.

[d J.W. Barrett, E. Siili:
Existence of global weak solutions to compressible barotropic finitely extensible nonlinear
bead-spring chain models for dilute polymers. M3AS 26(3) (2016) 469-568.

[§ E. Feireisl, Y. Lu, E. Siili:
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‘ What about the Hookean model and its rigorous macroscopic closure?
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Part 3.

The problem of rigorous macroscopic closure

Hookean Navier—Stokes—Fokker—Planck system — diffusive Oldroyd-B system

/ (Fokker—Planck equation) g ¢* dg = diffusive Oldroyd-B model (?)
]Rd
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@ J. W. Barrett, E. Siili. Existence of global weak solutions to the kinetic Hookean dumbbell
model for incompressible dilute polymeric fluids. J. Nonlin. Anal., Ser. B: Real World
Applications. 36 (2018) 362—-395.

@ T. Debiec, E. Siili. Corotational Hookean models of dilute polymeric fluids: existence of
global weak solutions, weak-strong uniqueness, equilibration and macroscopic closure.
SIAM J. Math. Anal. 55(1) (2023).

@ T. Debiec, E. Siili. On a class of generalised solutions to the kinetic Hookean dumbbell
model for incompressible dilute polymeric fluids. arXiv:2306.16901 [math.AP] (2023).
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Theorem

The NSFP system with a Hookean spring model has a large-data global-in-
time generalised dissipative solution (u, 1, myg) in both 2D and 3D, where
mys € L>=(0,T; M+ (Q;R¥*?)) is a defect measure. This solution is
entropy-dissipative, i.e., for a.e. t € (0,7T):
t
1/ u(®)|? dz + MF((t)/M) dgdz + 2M/ / D(u(s))[2 dz ds
2 Ja QxRd 0 Jo

+4/t/ M(e‘vx\/iﬂ/M‘z—i-’Vq\/w/Mr) dgdzds
0 QxRd

1
< 7/ |u0|2dx+/ MF(1o/M) dq da.
2 Q QxR4




Theorem

° If, then
Ao, ohaE ) = / (0, ) qas de,
R2

satisfies the diffusive Oldroyd-B stress evolution equation. Furthermore, if
ug € WH2(Q;R?) and o (1)) € W5/2’4/3(Q;R2X2), then mys = 0 and:

(u, 1)) is a weak solution to the Hookean NSFP system;

(u, 0 (1)) Is the unique weak solution to the diffusive Oldroyd-B system.

o If|d=3] due L*0,T;L2(Q;R3)) and V,u € L*(0, T; C(Q; R3*3)), then
mpys = 0 and (u, 1)) is a weak solution to the Hookean NSFP system.
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Part 4.

Numerical approximation

of Navier-Stokes—Fokker—Planck systems
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Challenges

The construction of a provably convergent numerical method for the
coupled Navier-Stokes—Fokker—Planck system is a nontrivial problem.

@ J. W. Barrett, E. Siili. Finite element approximation of finitely extensible nonlinear
elastic dumbbell models for dilute polymers. ESAIM M2AN 46 (2012), 949-978.

The Fokker—Planck equation is a high-dimensional parabolic PDE
~> curse of dimensionality:

o
55+ Ve +qul (Vaou) g )
1 K K w
:gAde—l—“ZZAiqui.(MquM) on Q@ x D x (0,7
i=1 j=1

QcR? and — PDE in (K + 1)d space dimensions!
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2D-NS/4D-FP macro-micro simulation — velocity field

@ Standard benchmark problem: flow around a cylinder

@ Stokes flow, parabolic inflow BCs on w1, no-slip on stationary walls & cylinder

@ Steady state solution (computed on 8 processors):

| @
| &

Computations by David Knezevic



2D-NS/4D-FP macro-micro simulation — PDF ¢

Computations by David Knezevic
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3D/6D: Flow past a ball in a channel: extra-stress tensor

T12 713

722 723 733

Computations by David Knezevic



Alternative: stochastic simulation

str i no extra stress tensor str li 1l

The contour plot of the velocity field at time ¢ = 5.
Top left: no stress tensor; top right: dumbbell model;
bottom left: K = 6 springs; bottom right: K = 10 springs.

Computations by Shenghan Ye: Mixed finite element method + multilevel Monte Carlo method (cf. the work of Mike Giles)
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Conclusions

@ There exist large-data global-in-time entropy-dissipative weak solutions to the
incompressible and compressible FENE NSFP systems.
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the diffusive Oldroyd-B model have ‘standard’ weak solutions, and
macroscopic closure holds.

> In 3D generalised solutions (involving a defect measure) exist, and
macroscopic closure holds assuming additional regularity of u.
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» In 2D the defect measure vanishes, the Hookean NSFP model and
the diffusive Oldroyd-B model have ‘standard’ weak solutions, and
macroscopic closure holds.

> In 3D generalised solutions (involving a defect measure) exist, and
macroscopic closure holds assuming additional regularity of u.

@ The construction of (provably!) convergent numerical algorithms for NSFP
systems remains a significant challenge.

The same is true of the development of efficient deterministic numerical
algorithms for the solution of high-dimensional Fokker—Planck equations.
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